Year | Processor | Number of Cores |
Clock Rate (GHz) |
CMOS Tech (nm) |
Die Size (mm^2) * |
Die Size Scaled to 22nm (mm^2) |
Voltage (V) |
Chip Power (W) |
Single Processor Power (mW) |
Energy | Organization | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2002 | RAW | 16 | 0.425 | 180 | 331.24 (16) | 3.975 | - | 25 W | 1562.5 mW # | - | MIT | [1] |
2005 | Cell | 9 | 4.0 | 90 | 221 ? | 17.76 ? | 1 | - | - | - | Sony,Toshiba,IBM | [2] |
2006 | SEAforth24 | 24 | 1.0 | 180 | 7.29 ? | 0.0875 ? | - | 0.15 W | 6.25 mW # | - | Intelesys Corporation | [3] |
2006 | AsAP 1 | 36 | 0.60 | 180 | 32.1 | 0.3852 | 2 | - | 2.4 mW @0.9V, 116MHz 32 mW @1.8V, 475MHz |
93.0 pJ/Op = 0.093 mW/MHz 300 pJ/Op = 0.3 mW/MHz @1.8V |
UC Davis | [4] |
2006 | PC202/203/205 | 248 | 0.16 | - | - | - | - | - | - | - | picoChip | [5] [6] |
2007 | SPARC T2 | 8 | 1.4 | 65 | 342 | 51.3 | 1.1 | 84.0 W @1.4GHz | 10500.0 mW @1.4GHz # | - | Sun Microsystems | [7] |
2007 | Tilera TILE64 | 64 | 0.75 | 90 | - | - | - | 10.8 W @1V, 750MHz | 168.75 mW @1V, 750MHz # | - | Tilera Corporation | [8] |
2007 | Polaris(TeraFLOPS) | 80 | 5.67 | 65 | 275.0 (3) | 41.25 | 1.35 | 15.6 W @670mV 97 W @1.07V, 4.27GHz 230 W @1.35V, 5.67GHz |
195.0 mW @670mV 1212.5 mW @1.07V, 4.27GHz 2875 mW @1.35V, 5.67GHz |
97 pJ/fl operation | Intel Tera-Scale | [9] [10] |
2008 | Xeon E7450 | 6 | 2.4 | 45 | 503 | 115.69 | 0.9-1.45 | 90 W | 15000 mW # | - | Intel | [11] |
2008 | Xeon X7460 | 6 | 2.66 | 45 | 503 | 115.69 | 0.9-1.45 | 130 W | 21666.7 mW # | - | Intel | [11] |
2008 | GeForce 8800 Ultra | 16 | 1.5 | 90 | 470 | 37.6 | 1.3 | 150.0 W @1.3V | 1171.88 mW @1.3V # | - | Nvidia | [13] |
2008 | SEAforth 40C18 | 40 | 0.7 | - | - (0.13) | - | - | 0.15 W | 3.75 mW # | - | Intelesys Corporation | [15] [16] |
2008 | AsAP 2 | 167 | 1.2 | 65 | 39.44 (0.1684) | 5.916 | 1.3 | - | 0.608 mW @0.675V, 66MHz 3.4 mW @0.75V, 260MHz 47 mW @1.2V, 1.06GHz 62 mW @1.3V, 1.2GHz |
5.9 pJ/Op avg@1.3V, 1GHz 32 pJ/Op = 0.032mW/MHz, 100%active |
UC Davis | [17] |
2008 | Ambric Am2045 | 336 | 0.3 | 130 | - | - | 1.2 ? | 10.0 W @300MHz | 29.76 mW @300MHz # | 10.0 pJ/op@300MHz | Ambric, Inc | [18] [19] |
2009 | QorIQ P4080 | 8 | 1.5 | 45 | - | - | - | - | 3750.0 mW @1.5GHz # | - | Freescale Semiconductor | [21] |
2010 | Core i7-980X | 6 | 3.33 | 32 | 239 | 117.11 | 0.8-1.375 | 130 W | 21667 mW # | - | Intel | [11] |
2010 | Power 7 | 8 | 4.25 ? | 45 | 567 | 130.41 | - | - | - | - | IBM | [24] |
2010 | Xeon X7560 | 8 | 2.266 | 45 | 684 ? | 157.32 ? | 0.675-1.35 ? | 130 W | 16250 mW # | - | Intel | [11] |
2010 | Opteron 6176 SE | 12 | 2.3 | 45 | 346 | 79.58 | - | 105 W | 8750 mW # | - | AMD | [25] |
2010 | SPARC T3 | 16 | 2.0 | 40 | 377.0 (6.5) | 124.41 | - | 120 W | 7500 mW # | - | Sun Microsystems | [26] [27] |
2010 | IA-32 Message-Passing Processor | 48 | 1.0 | 45 | 567.1 | 130.4 | 1.14 (typical) 0.7 (dvfs) |
25.0 W (dvfs) 125.0 W (typical) |
520.8 mW @125MHz, 0.7V # 2604 mW @1Ghz, 1.14V # |
- | Intel | [29] |
2011 | Core i7-990X | 6 | 3.46 | 32 | 239 | 117.11 | 0.8-1.375 | 130 W | 21667 mW # | - | Intel | [11] |
2011 | SPARC T4 | 8 | 3.0 | 40 | 403.0 (15.4) | 132.99 | 1 | <240 W | <30000 mW # | - | Sun Microsystems | [31] [32] |
2011 | ePUMA | 4 ? | - | 65 | 23 | 3.45 | - | 4 W ? | 1000 mW # ? | - | Linköping University | [33] [34] |
2011 | Xeon E7-8870 | 10 | 2.4 | 32 | 513? | 251.37 ? | 0.65-1.35? | 130 W | 13000 mW # | - | Intel | [11] |
2011 | Operon 6282 SE | 16 | 2.6 | 32 | 316 | 154.84 | - | - | - | - | AMD | [35] |
2011 | 3D-Maps | 64 | 0.277 | 130 | 25 | 0.875 | 1.5 | 4 W | 62.5 mW @1.5V, 277 MHz | - | Georgia Tech, Lee | [36] [37] |
2012 | Xeon E5-4607 | 6 | 2.2 | 32 | - | - | 0.6-1.35 | 95 W | 15833 mW # | - | Intel | [11] |
2012 | GeForce GTX 680 (Kepler) | 8 | 1.006 | 28 | 294 | 204.04 | - | 195 W | 24375 mW # | - | Nvidia | [38] |
2012 | Itanium 9560 | 8 | 2.53 | 32 | - | - | - | 170 W | 21250 mW # | - | Intel | [11] |
2012 | Power 7+ | 8 | 4.4 ? | 32 | 567 ? | 277.83 ? | 3.0-5.0 ? | - | - | - | IBM | [39] |
2012 | 16-Core Processor with Message-Passing |
16 | 0.8 | 65 | 9.1 (0.43) | 1.365 | 1.2 | - | 34.0 mW @1.2V, 750 MHz | 45.0 pJ/operation = 0.045 mW/MHz @1.2V |
Fudan University | [40] |
2012 | Opteron 6386 SE | 16 | 2.8 | 32 | 315 | 154.35 | - | 140 W | 8750 mW # | - | AMD | [42] |
2012 | Xeon Phi 5110P | 60 | 1.053 | 22 | - | - | - | 225 W | 3750 mW # | - | Intel | [11] |
2012 | Kalray MPPA-256 | 288 ** | 0.4 | 28 | - | - | - | 15 W | 52.08 mW # | - | Kalray | [44] |
2013 | Xeon E5-2618L v2 | 6 | 2.0 | 22 | - | - | 0.65-1.3 | 50 W | 8333 mW # | - | Intel | [11] |
2013 | Xeon E5-2628L v2 | 8 | 1.9 | 22 | - | - | 0.65-1.3 | 70 W | 8750 mW # | - | Intel | [11] |
2013 | Power 8 | 12 | 5.0 | 22 | 649 | 649 | 1.1? | - | - | - | IBM | [45] |
2013 | QorIQ T4240 | 12 | 1.8 | 28? | - | - | 1.8 | - | - | - | Freescale Semiconductor | [46] |
2013 | Kepler GK110 | 15 | - | 28 | - | - | - | - | - | - | Nvidia | [47] |
2013 | SPARC T5 | 16 | 3.6 | 28 | 478.0 (15.4) | 331.732 | - | - | - | - | Sun Microsystems | [48] [49] |
2013 | Xeon Phi 3120A | 57 | 1.1 | 22 | - | - | - | 300 W | 5263.16 mW # | 299.1 pJ/fl operation | Intel | [51] [52] |
2013 | Xeon Phi 5120D | 60 | 1.053 | 22 | - | - | - | 245 W | 4083.33 mW # | 242.34 pJ/fl operation | Intel | [52] |
2013 | Tilera TILE-Gx72 | 72 | 1.2 | 40 | - | - | - | 65 W | 902.78 mW # | - | EZchip (prev. Tilera) | [53] |
2014 | Xeon E5-2430 v2 | 6 | 2.5 | 22 | - | - | 0.65-1.3 | 80 W | 13333 mW # | - | Intel | [11] |
2014 | Core i7-5960X | 8 | 3.0 | 22 | - | - | - | 140 W | 17500 mW # | - | Intel | [11] |
2014 | TMS320C6678 | 8 | 1.4 | 40 | - | - | SmartReflex variable |
- | - | - | Texas Instruments | [54] |
2014 | Xeon E7-8895 v2 | 15 | 2.8 | 22 | - | - | - | 155 W | 10333.33 mW # | - | Intel | [11] |
2014 | GeForce GTX 980 (Maxwell) | 16 | 1.126 | 28 | 398 | 276.21 | - | 165 W | 10312.5 mW # | - | Nvidia | [38] |
2014 | Opteron 6370P | 16 | 2.0 | 32 | 316 | 154.84 | - | 99 W | 6187.5 mW # | - | AMD | [42] |
2014 | ThunderX | 24-48 | 2.5 | 28 | - | - | - | - | - | - | Cavium | [55] |
2014 | Xeon Phi 7120X | 61 | 1.238 | 22 | - | - | - | 300 W | 4918.03 mW # | 248.35 pJ/fl operation | Intel | [52] |
2015 | Xeon E5-2418L v3 | 6 | 2.0 | 22 | - | - | 0.65-1.3 | 50 W | 8333 mW # | - | Intel | [11] |
2015 | Xeon E7-4809 v3 | 8 | 2.0 | 22 | - | - | - | 115 W | 14375 mW # | - | Intel | [11] |
2015 | Carrizo x86 APU | 12 | - | 28 | 250.04 | 173.53 | - | - | - | - | AMD | [56] |
2015 | Xeon E7-4830 v3 | 12 | 2.1 | 22 | - | - | - | 115 W | 9583 mW # | - | Intel | [11] |
2015 | Xeon E7-4850 v3 | 14 | 2.2 | 22 | - | - | - | 115 W | 8214 mW # | - | Intel | [11] |
2015 | Xeon E7-8860 v3 | 16 | 2.2 | 22 | - | - | - | 140 W | 8750 mW # | - | Intel | [11] |
2015 | Xeon E7-8880 v3 | 18 | 2.3 | 22 | - | - | - | 150 W | 8333 mW # | - | Intel | [11] |
2015 | Radeon R9 Nano | 64 | 1.0 | 28 | - | - | - | 175 W | 2734 mW # | - | AMD | [50] [57] |
2015 | Mobileye EyeQ4 | 14 | - | 28 | - | - | - | 3 W | - | - | Mobileye | [59] |
2016 | Heterogeneous Nona-Core SoC | 9 | 2.0 | 16nm FinFET | 111.36 | - | - | - | - | - | Renesas | [60] |
2016 | Tri-Cluster CPU Subsystem | 10 | 2.5 | 20 | 100 | - | - | - | - | - | MediaTek | [61] |
2016 | Homogeneous Scalable 3D Network-on-Chip | 32 | 1.0 | 65 | 72.2 | 10.83 | 1.2 | 0.0557 W | 1.741 mW# | - | CEA-LETI-MINATEC | [62] |
2016 | KNUPATH Hermosa Processors | 256 | - | - | - | - | - | 34 W | 132.8 mW# | - | Knupath | [63] |
2016 (2014 fabricated) |
KiloCore | 1000 | 1.782 GHz@1.1V | 32 | 64.0 (0.055) | 31.36 | 1.1 | 13.1 W @0.84V | 0.67 mW @0.56V, 115MHz | 5.8 pJ/Op @0.56V, 115MHz | UC Davis | [64] |
Year | Processor | Number of Cores |
Clock Rate (GHz) |
CMOS Tech (nm) |
Die Size (mm^2) * |
Die Size Scaled to 22nm (mm^2) |
Voltage (V) |
Chip Power (W) |
Single Processor Power (mW) |
Energy | Organization | Reference |
Year | Processor | Number of Cores |
Clock Rate (GHz) |
CMOS Tech (nm) |
Chip Power (W) |
Single Processor Power (mW) |
Energy | Organization | Reference |
---|---|---|---|---|---|---|---|---|---|
2006 | KC256 | 256 | 0.1 | 180 | 500 mW@100MHz | 1.95 mW@100MHz# | - | Rapport, Inc. | [67] |
2008 | FireStream 9270 | 10 ? | 0.75 | 55 | <160 W | <16000 mW # | - | AMD | [12] |
2008 | GeForce 9800 GTX+ | 16 | 0.783 | 55 | 141 W | 17625 mW # | 217.6 pJ/fl operation ? | Nvidia | [14] |
2009 | GeForce G210M | 2 | 1.5 | 40 ? | 14 W ? | - | 194.6 pJ/fl operation ? | Nvidia | [20] |
2009 | Octeon II CN68XX | 32 | 1.6 | 65 | 40-65 W | 1280.0 mW @1.6GHz | - | Cavium | [22] |
2010 | Phenom II X6 1090T | 6 | 3.2 | 45? | 125 W ? | 20833 mW # ? | - | AMD | [23] |
2010 | NetLogic XLP | 32 | 2.0 | 40 | - | - | - | NetLogic Microsystems | [28] |
2011 | FX-8 | 8 | - | 32 | - | - | - | AMD | [30] |
2012 | Epiphany-III | 16 | 0.6 | 65 | 0.9-2 W | 125 mW | 62.5 pJ/operation | Adapteva | [41] |
2012 | Epiphany-IV | 64 | 0.8 | 28 | 1.4-1.2 W | 31.25 mW | 19.54 pJ/fl operation | Adapteva | [43] |
2012 | PEZY-1 Processor | 512 | 0.666 | 40 | - | - | - | PEZY Computing | [65] |
2013 | Radeon R9 290X | 44 | 1.0 | 28 | - | - | - | AMD | [50] |
2014 | PEZY-SC Processor | 1024 | 0.733 | 28 | - | - | - | PEZY Computing | [66] |
Year | Processor | Number of Cores |
Clock Rate (GHz) |
CMOS Tech (nm) |
Chip Power (W) |
Single Processor Power (mW) |
Energy | Organization | Reference |
*: The value inside the parenthesis is single core area.
: The die size is scaled to 22nm CMOS Technology using table ***.
: Each core consists of 8 SIMD processors and one Master processor.
#: The single processor power is calculated from dividing total power by number of cores.
**: 256 user cores and 32 system cores.
CMOS Tech (nm) | 180 | 150 | 130 | 120 | 90 | 65 | 55 | 45 | 40 | 32 | 28 | 22 |
Scale Factor | 0.012 | 0.026 § | 0.035 | 0.046 § | 0.08 | 0.15 | 0.19 § | 0.23 | 0.33 § | 0.49 | 0.694 § | 1 |
The data of this table come from Table VII of [58], these scale factors are formed by using Geometric Means of Three Aspects: Minimum Feature Size, Metal I half pitch, (4T) Logic Gate Size.
The scale factor that followed with a '§' means it is derived from original data by linear interpolation.
The CMOS technology that is larger than 180 nm, such as 250 nm, 600 nm, is defined not scalable in this context, since the linear interpolation will lead to negative scale factor.
[1] Taylor, Michael Bedford, et al. "The Raw microprocessor: A computational fabric for software circuits and general-purpose programs." Micro, IEEE 22.2 (2002): 25-35.
[2] Pham, Dac C., et al. "Overview of the architecture, circuit design, and physical implementation of a first-generation cell processor." Solid-State Circuits, IEEE Journal of 41.1 (2006): 179-196.
[3] E. Bailey,Embedded Arrays venture forth: IntellaSys 24-Core SEAforth chips target lowpower multimedia, Microprocessor Report: the Insider's Guide to Microprocessor Hardware, (2006).
[4] Yu, Zhiyi, et al. "AsAP: An asynchronous array of simple processors." Solid-State Circuits, IEEE Journal of 43.3 (2008): 695-705.
[5] Duller, Andrew, Gajinder Panesar, and Daniel Towner. "Parallel Processing-the picoChip way." Communicating Processing Architectures 2003 (2003): 125-138.
[6] Duller, Andrew, et al. "Development of a Family of Multi-Core Devices Using Hierarchical Abstraction." CPA. 2007.
[7] Shah, Manish, et al. "UltraSPARC T2: A highly-treaded, power-efficient, SPARC SOC." Solid-State Circuits Conference, 2007. ASSCC'07. IEEE Asian. IEEE, 2007.
[8] Bell, Shane, et al. "Tile64-processor: A 64-core soc with mesh interconnect."Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International. IEEE, 2008.
[9] Vangal, Sriram, et al. "An 80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS." IEEE International Solid-State Circuits Conference, ISSCC 2007, Digest of Technical Papers, San Francisco, CA, USA. IEEE, 2007.
[10] Vangal, Sriram R., et al. "An 80-tile sub-100-w teraflops processor in 65-nm cmos." Solid-State Circuits, IEEE Journal of 43.1 (2008): 29-41.
[11] "Intel ARK" Technical Specifications. (Intel).
[12] https://en.wikipedia.org/wiki/AMD_FireStream.
[13] Lindholm, Erik, et al. "NVIDIA Tesla: A unified graphics and computing architecture." IEEE micro 2 (2008): 39-55.
[14] Geforce.com, 'GeForce 9800 GTX+ | Specifications | GeForce ', 2015. [Online]. Available: http://www.geforce.com/hardware/desktop-gpus/ geforce-9800-gtx-plus/specifications. [Accessed: 18- Sep- 2015].
[15] B. WIRE, 'IntellaSys' 40-core Processor Technology Creates Industry Benchmark for Embedded Applications | Business Wire', Businesswire.com, 2008. [Online]. Available: http://www.businesswire.com/news /home/20080924005255/en/IntellaSys-40-core-Processor-Technology-Creates- Industry-Benchmark#.Vfpe3vlVhVR. [Accessed: 17- Sep- 2015].
[16] "SEAforth 40C18" Datasheet. (Intellasys 2008).
[17] Truong, Dean, et al. "A 167-processor 65 nm computational platform with per-processor dynamic supply voltage and dynamic clock frequency scaling."Symposium on VLSI Circuits. 2008.
[18] M. Butts, "Synchronization through Communication in a Massively Parallel Processor Array," in IEEE Micro, vol. 27, no. 5, pp. 32-40, Sept.-Oct. 2007.
[19] Embeddedinsights.com, 'Embedded Insights - Embedded Processing Directory - Nethra Am2045', 2015. [Online]. Available: http://www. embeddedinsights.com/epd/nethra/nethra-am2045.php. [Accessed: 17- Sep- 2015].
[20] Geforce.com, 'GeForce G210M | Specifications | GeForce', 2015. [Online]. Available: http://www.geforce.com/hardware/notebook-gpus/ geforce-g210m/specifications. [Accessed: 18- Sep- 2015].
[21] Freescale Semiconductor, QorIQ P4080 Communications Processor Product Brief (Freescale Publication P4080PB, 2008).
[22] Multicore and the 32 Core Cavium OCTEON II 68xx.
[23] Amd.com, 'AMD Phenom II Processors', 2015. [Online]. Available: http://www.amd.com/en-us/products/processors/desktop/phenom-ii. [Accessed: 18- Sep- 2015].
[24] Kalla, Ron, et al. "Power7: IBM's next-generation server processor." IEEE micro 2 (2010): 7-15.
[25] Advanced Micro Devices, AMD Opteron 6000 Series Platform Quick Reference Guide(AMD Publication 48101-A, 2010).
[26] Shin, Jinuk Luke, et al. "A 40 nm 16-core 128-thread SPARC SoC processor."Solid-State Circuits, IEEE Journal of 46.1 (2011): 131-144.
[27] ORACLE DATA SHEET -- SPARC T3 PROCESSOR.
[28] Phx.corporate-ir.net, 'NetLogic Microsystems | Press Release', 2015. [Online]. Available: http://phx.corporate-ir.net/phoenix.zhtml? c=178551&p=irol-newsArticle_Print&ID=1603688. [Accessed: 17- Sep- 2015].
[29] Howard, John, et al. "A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS." Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International. IEEE, 2010.
[30] Amd.com, 'AMD FX Processors', 2015. [Online]. Available: http://www.amd.com/en-us/products/processors/desktop/fx. [Accessed: 17- Sep- 2015].
[31] ORACLE DATA SHEET -- SPARC T4 PROCESSOR.
[32] Shah, Manish, et al. "Sparc T4: A dynamically threaded server-on-a-chip."IEEE Micro 2 (2012): 8-19.
[33] Liu, Dake, et al. "ePUMA embedded parallel DSP processor with Unique Memory Access." Information, Communications and Signal Processing (ICICS) 2011 8th International Conference on. IEEE, 2011.
[34] Wang, Jian, Joar Sohl, and Dake Liu. "Architectural support for reducing parallel processing overhead in an embedded multiprocessor ." Embedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International Conference on. IEEE, 2010.
[35] Advanced Micro Devices, AMD Opteron 6200 Series Processor Quick Reference Guide(AMD Publication 50368F, 2012).
[36] Healy, Michael B., et al. "Design and analysis of 3D-MAPS: A many-core 3D processor with stacked memory." CICC. 2010.
[37] Gtcad.gatech.edu, 'home |gtcad_3d maps processors', 2015. [Online]. Available: http://www.gtcad.gatech.edu/3d-maps/. [Accessed: 17- Sep- 2015].
[38] Nvidia Whitepaper, "NVIDIA GeForce GTX 980, Featuring Maxwell, The Most Advanced GPU Ever Made".
[39] Zyuban, V., et al. "IBM POWER7+ design for higher frequency at fixed power." IBM Journal of Research and Development 57.6 (2013): 1-1.
[40] Yu, Zhiyi, et al. "An 800MHz 320mW 16-core processor with message-passing and shared-memory inter-core communication mechanisms." Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International. IEEE, 2012.
[41] Epiphany-III 16-core 65nm Microprocessor (E16G301).
[42] Advanced Micro Devices, AMD Opteron 6300 Series processor Quick Reference Guide(AMD Publication 52693B, 2014).
[43] Epiphany-IV 64-core 28nm Microprocessor (E64G401).
[44] de Dinechin, Benoît Dupont, et al. "A clustered manycore processor architecture for embedded and accelerated applications." High Performance Extreme Computing Conference (HPEC), 2013 IEEE. IEEE, 2013.
[45] Fluhr, Eric J., et al. "The 12-Core POWER8 Processor With 7.6 Tb/s IO Bandwidth, Integrated Voltage Regulation, and Resonant Clocking." Solid-State Circuits, IEEE Journal of 50.1 (2015): 10-23.
[46] Freescale Semiconductor, QorIQ T4240 Processor Product Brief.
[47] Nvidia Whitepaper, "NVIDIA's Next Generation CUDATM Compute Architecture: Kepler TM GK110".
[48] Hart, John M., et al. "A 3.6 GHz 16-Core SPARC SoC Processor in 28 nm."Solid-State Circuits, IEEE Journal of 49.1 (2014): 19-31.
[49] ORACLE DATA SHEET -- SPARC T5 PROCESSOR.
[50] Amd.com, 'AMD Radeon R9 Series Graphics', 2015. [Online]. Available: http://www.amd.com/en-us/products/graphics/desktop/r9#. [Accessed: 16- Sep- 2015].
[51] Intel Xeon Phi Coprocessor - the Architecture.
[52] Intel Xeon Phi Product Family: Product Brief.
[53] EZchip Semiconductor, TILE-Gx72 Processor Product Brief.
[54] Texas Instruments, Multicore Fixed and Floating-Point Digital Signal Processor (TI Publication SPRS691E, 2014).
[55] Cavium, ThunderX Family Product Brief.
[56] K. Wilcox et al., A 28nm x86 APU optimized for power and area efficiency.International Solid-State Circuits Conference (IEEE, San Francisco, CA, 2015), pp. 1-3.
[57] "AMD Radeon R9 Nano, World's Smallest and Most Power-Efficient Enthusiast Graphics Card, Brings 4K Gaming to the Living Room" Press Release (AMD 2015).
[58] Stillmaker, Aaron, Zhibin Xiao, and Bevan Baas. "Toward more accurate scaling estimates of cmos circuits from 180 nm to 22 nm." VLSI Computation Lab, ECE Department, University of California, Davis, Tech. Rep. ECE-VCL-2011-4 (2011): 2011-4.
[59] "Mobileye's Next Vision Processor Targets Autonomous Driving | Electronics360", Electronics360.globalspec.com, 2015. [Online]. Available: http://electronics360.globalspec.com/article/5088/mobileye-s-next-vision- processor-targets-autonomous-driving. [Accessed: 17- Jun- 2016].
[60] Takahashi, Chikafumi, et al. "4.5 A 16nm FinFET heterogeneous nona-core SoC complying with ISO26262 ASIL-B: Achieving 10^-7 random hardware failures per hour reliability." 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2016.
[61] Mair, Hugh T., et al. "4.3 A 20nm 2.5 GHz ultra-low-power tri-cluster CPU subsystem with adaptive power allocation for optimal mobile SoC performance." 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2016.
[62] Vivet, Pascal, et al. "8.1 A 4x4x2 homogeneous scalable 3D network-on-chip circuit with 326MFlit/s 0.66 pJ/b robust and fault-tolerant asynchronous 3D links." 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2016.
[63] "KNUPATH Hermosa Processors - KNUPATH", KNUPATH, 2016. [Online]. Available: https://www.knupath.com/products/hermosa-processors/. [Accessed: 17- Jun- 2016].
[64] Brent Bohnenstiehl, Aaron Stillmaker, Jon Pimentel, Timothy Andreas, Bin Liu, Anh Tran, Emmanuel Adeagbo and Bevan Baas,"A 5.8 pJ/Op 115 Billion Ops/sec, to 1.78 Trillion Ops/sec 32nm 1000-Processor Array," IEEE Symposium on VLSI Circuits, Honolulu, HI, June 2016.
[65]"PEZY-1 Processor - PEZY Computing", Pezy.co.jp, 2016. [Online]. Available: http://pezy.co.jp/en/products/pezy-1.html. [Accessed: 27- Jun- 2016].
[66]"PEZY-SC Processor - PEZY Computing", Pezy.co.jp, 2016. [Online]. Available: http://pezy.co.jp/en/products/pezy-sc.html. [Accessed: 27- Jun- 2016].
[67] Rapport KC 256 Technical Overview.
This page is maintained by members of the VLSI Computation Laboratory at UC Davis.
Last update: September 13, 2016