
380 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 3, MARCH 1999

A Low-Power, High-Performance,
1024-Point FFT Processor

Bevan M. Baas,Student Member, IEEE

Abstract—This paper presents an energy-efficient, single-chip,
1024-point fast Fourier transform (FFT) processor. The 460 000-
transistor design has been fabricated in a standard 0.7���m
(LpolyLpolyLpoly = 0:6 ���m) CMOS process and is fully functional on first-
pass silicon. At a supply voltage of 1.1 V, it calculates a 1024-point
complex FFT in 330 ���s while consuming 9.5 mW, resulting in
an adjusted energy efficiency more than 16 times greater than
the previously most efficient known FFT processor. At 3.3 V, it
operates at 173 MHz—which is a clock rate 2.6 times greater
than the previously fastest rate.

Index Terms—Cache memories, chip, CMOS digital integrated
circuits, CMOS integrated circuits, digital signal processors
(DSP’s), discrete Fourier transforms (DFT’s), energy efficient,
FFT, Fourier transforms, low power, memory architecture.

I. INTRODUCTION

T HE FAST Fourier transform (FFT) is one of the most
widely used digital signal processing (DSP) algorithms.

While advances in semiconductor processing technology have
enabled the performance and integration of FFT processors
to increase steadily, these advances have also, unfortunately,
led to an increase in power consumption. This has resulted in
a situation where the number of potential FFT applications
that are limited by power—not performance (e.g., portable
applications)—is significant and growing.

For many CMOS circuits, energy dissipation is proportional
to the supply voltage squared [1]. Consequently, substantial
efficiency can be gained by aggressively reducing the supply
voltage [2]. Unfortunately, a lower supply voltage reduces
circuit performance. The processor presented here operates
with a low supply voltage , which approaches the value of
the transistor thresholds , to dramatically increase the overall
energy efficiency. To regain some lost performance, the pro-
cessor utilizes a high-performance algorithm and architecture
that are shown to perform better than previous designs.

II. FFT PROCESSORMEMORY-SYSTEM ARCHITECTURES

As with most DSP algorithms, FFT’s make frequent ac-
cesses to data in memory. FFT’s are calculated in
stages,where is the length of the transform andis the radix
of the FFT decomposition. Each stage requires the reading and
writing of all data words.

Manuscript received August 7, 1998; revised October 27, 1998. This work
was supported by a National Science Foundation fellowship, by the National
Aeronautics and Space Administration under GSRP fellowship NGT-70340,
and by MOSIS.

The author is with StarLab, Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA.

Publisher Item Identifier S 0018-9200(99)01638-8.

Fig. 1. Single-memory architecture block diagram.

Fig. 2. Dual-memory architecture block diagram.

Fig. 3. Pipeline architecture block diagram.

A. Previous Architectures

1) Single Memory:The simplest memory-system architec-
ture is thesingle-memoryarchitecture, as shown in Fig. 1,
in which a memory of at least words is connected to a
processor by a bidirectional data bus. In general, data are read
from and written back to the memory once for each of the

stages of the FFT.
2) Dual Memory: The dual-memory architecture places

two memories of size on separate buses connected to a
processor, as Fig. 2 shows. Data begin in one memory and
“ping-pong” from memory to memory times until
the transform has been calculated. The Honeywell DASP
processor [3] and the Sharp LH9124 processor [4] use the
dual-memory architecture.

3) Pipeline: For processors using apipelinearchitecture, a
series of smaller memories replace the-word memory(ies).
Either physically or logically, there are stages. Fig. 3
shows how processors and buffer memories are interleaved,
as well as the flow of data through the pipeline structure.
Typically, an -word memory is on one end of the pipeline,
and memory sizes increase bythrough subsequent stages,
with the final memory of size . The Logic Corp. (LSI)
L64280 FFT processor [5], the FFT processor designed by He
and Torkelson [6], and the FFT processor by Bidetet al. [7]
use pipeline architectures.

4) Array: Processors using anarray architecture are com-
posed of a number of independent processing elements with
local buffers, interconnected through some type of network,
as depicted in Fig. 4. The Cobra FFT processor [8] uses an
array architecture and is composed of multiple chips that each

0018–9200/99$10.00 1999 IEEE

BAAS: FFT PROCESSOR 381

Fig. 4. Array architecture block diagram.

Fig. 5. Cached-memory block diagram.

contain one processor and one local buffer. The FFT processor
by O’Brien et al. [9] uses an array-style architecture with four
datapaths and four memory banks on a single chip.

B. Cached-Memory Architecture

The proposedcached-memoryarchitecture is similar to the
single-memory architecture except that a small cache memory
resides between the processor and main memory. Fig. 5 shows
the tightly coupled processor-cache pair and the-word main
memory.

It is well known that data caches increase the effective
bandwidth to a memory—but only if the memory access
pattern exhibits sufficient locality [10]. Although nearly all
FFT algorithms have very poor locality, [11] describes an
algorithm that offers good locality over large portions of the
computation. Section III gives an overview of the algorithm.
In this algorithm, the global communication inherent in the
FFT is concentrated into a few (typically one or two) inter-
mediate steps and is easily accomplished through appropriate
addressing when filling and flushing the cache. Because the
FFT algorithm is deterministic, cache tags are unnecessary,
and correct cache operation is achieved through a fixed,
predetermined, cache address mapping. Since the flow of data
is data independent, data may also be prefetched from main
memory before they are needed.

The cached-memory architecture offers two key advantages
over other approaches; in particular, it provides:

• increased speed—since smaller memories are faster than
larger ones;

• increased energy efficiency—since smaller memories re-
quire lower energy per access and typically can be located
nearer to the datapath.

When using a cached-memory architecture, the potential gains
in speed and energy efficiency are larger with longer length
transforms.

However, the algorithm also presents two primary disad-
vantages, including:

• the addition of new functional units (caches);

• increased controller complexity.

III. T HE CACHED-FFT ALGORITHM

A. Key Features

A distinguishing characteristic of the proposedcached-FFT
algorithm is that it isolates main memory from the high-speed
portion of the processor. In a software implementation, the
algorithm allows data to be accessed from a faster level of
the memory hierarchy (e.g., register file) rather than a slower
level (e.g., data cache or DRAM).

This section presents an overview of the cached-FFT algo-
rithm; [12] provides a detailed description and development.

B. Definitions

An epoch is defined as the portion of the cached-FFT
algorithm where all data words are loaded into a cache,
processed, and written back to main memoryonce.Although
the number of epochs can equal one, that case is degenerate,
and normally .

Given values for and , the cache size is found by

(1)

For values of and where is not an integer, the
implementation isunbalanced,meaning the number of passes
through data in the cache is not the same in every epoch.
These cases are addressed in [12].

By storing frequently used data, the data cache reduces
traffic to main memory several fold. With a cache, data are
read and written to main memory only times. Therefore,
the reduction in memory traffic is

Memory traffic reduction multiple (2)

This reduction in memory traffic enables more processors to
work from a unified main memory and/or the use of a slower,
lower power main memory. In all cases, power dissipated
accessing data decreases since data words are stored in a
smaller memory that is nearer to the datapath.

C. Examples with

Fig. 6 is a representative dataflow diagram that shows
the six stages of a standard 64-point radix-2 FFT. Memory
locations are labeled along the vertical axis with the inputs to
the FFT on the left and the outputs on the right. The global
communication of the FFT is evident—each of theoutputs
depends on each of the inputs.

Fig. 7 is the flowgraph of a 64-point, radix-2, cached-
FFT. Butterflies are drawn with heavier lines, and transactions
between main memory and the cache—which involve no com-
putation—are drawn with lighter weight lines. This example
has two epochs (). From (1), the cache size is then

words. The diagram highlights a group
of butterflies that are calculated together from the cache.
Data flow in a consistent pattern within all eight-word groups
throughout the entire transform.

382 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 3, MARCH 1999

Fig. 6. Dataflow diagram for a standard FFT.

Fig. 7. Cached-FFT dataflow diagram.

D. Previous Similar Algorithms

As early as 1966, authors proposed FFT algorithms that
make use of hierarchical memory structures to increase per-
formance [13]–[18]. Previously proposed algorithms can be
viewed as a single two-dimensional decomposition of the
discrete Fourier transform. This is essentially the same as a
two-epoch case of the more general cached-FFT, providing
less insight into how a balanced epoch structure is achieved
or how the memory accesses, cache accesses, and processor
design can be optimized.

IV. THE SPIFFEE PROCESSOR

A 1024-point single-chip FFT processor namedSpiffee
was designed and fabricated. The full-custom design contains
460 000 transistors and was fabricated in a standard single-
poly, triple-metal CMOS process using 0.7m design rules
with m. PMOS thresholds are 930 mV, and
NMOS thresholds are 680 mV. The processor occupies 5.985

8.204 mm and is fully functional on first-pass silicon.

Fig. 8. Block diagram of cached-memory architecture with two cache sets
of two banks each.

A. FFT Algorithm

While higher radix, prime factor, and other FFT algorithms
have been shown to require fewer operations than radix-2
algorithms [19], Spiffee was nevertheless designed with a
simple radix-2 decomposition. A radix-2 algorithm was chosen
because in a very-large-scale-integration implementation, the
regularity and simplicity of an algorithm are very important
factors in determining the clock speed, design time, debugging
effort, and other key parameters.

The two main types of radix-2 FFT algorithms are the
decimation-in-time (DIT) and decimation-in-frequency (DIF)
varieties [20]. Because the DIT form is slightly more regular,
it was chosen for Spiffee. The DIT approach calculates two
butterfly outputs, and , from
two butterfly inputs, and , and a complex coefficient .
In general, all variables are complex.

Spiffee uses a two-epoch cached-FFT algorithm. With
and from (1), the cache size equals

words. Although the architecture easily supports multiple
processors, the chip presented here contains a single proces-
sor/cache pair and a single set of main memory. From (2),
the data cache reduces traffic to main memory by a factor of

.

B. Memory System

Performance of the memory system shown in Fig. 5 can be
enhanced by adding a second cache set (zero and one) and
partitioning the cache into two banks (and), as shown
in Fig. 8. In this configuration, the processor operates out
of one cache set while the other set is being flushed and
filled from memory. If the cache flush time plus fill time
is less than the time required to process data in the cache
(which is easy to accomplish), then the processor will not
have to wait for data. The second cache set increases processor
utilization, and therefore overall performance, at the expense
of some additional area and complexity. The double-banked
arrangement increases throughput as it allows an increased
number of cache accesses per cycle.

C. Processor Overview

The processor’s datapath calculates one complex radix-2
DIT butterfly per cycle. It operates on complex fixed-point
data and has internal datapath widths varying from 20 to 24
bits.

The pipeline has nine stages as shown in Fig. 9. In the first
pipeline stage, and are read from the caches and

BAAS: FFT PROCESSOR 383

Fig. 9. Pipeline diagram.

Fig. 10. Chip block diagram.

is read from a ROM. In stage two, the operands are routed
through two 2 2 crossbars to the correct functional units.
Four multiplications of the real
and imaginary components of and are calculated in
stages three through five. Stage six completes the complex
multiplication, stage seven performs the remaining additions
or subtractions to calculate and , and pipeline stages eight
and nine complete the routing and write-back of the results.
The deep pipeline causes a read-after-write data hazard to
occur once every 80 cycles and is handled by stalling the
pipeline for one cycle.

Fig. 10 is a block diagram of the chip, and Fig. 11 is the
corresponding die microphotograph.

D. Functional Units and Circuits

The Spiffee processor contains a wide variety of functional
units including SRAM, multiported SRAM, ROM, multiplier,
and adder/subtracter structures. In addition, the chip also
contains crossbar, control, clock generation, and test circuits.
Static circuits are used almost exclusively and were optimized
for low-power and robust low-voltage operation. The processor
is functional at arbitrarily low clock frequencies. This section
contains a brief overview of each functional unit type, followed
by a discussion of the clocking scheme.

Although first implemented in a standard CMOS process,
Spiffee was also designed to operate at very low supply volt-
ages (V) using transistors with very low thresholds
[21]. At very low supply voltages, the control of transistor
thresholds is critical to circuit performance and is accom-

Fig. 11. Die microphotograph.

plished through the biasing of transistor bodies. Spiffee was
designed with n-well and p-substrate nodes not connected to

or but instead routed to pads to allow the biasing of
transistor bodies and thereby adjust threshold voltages [22].

Another area of concern under low- , low- conditions
is the control of current leakage into high-fanin nodes. A
common high-fanin circuit is the bitline of a memory. The
proposed solution to the bitline-leakage problem is the use of a
hierarchical bitlinearchitecture [11]. Fig. 12 is a schematic of
the main memory’s SRAM. In this scheme, a column of cells
is partitioned into segments by cutting the bitlines at uniform
spacings. These short bitlines are calledlocal bitlines(lbl and
lbl_ in the figure). A second set of bitlines calledglobal
bitlines (gbl and gbl_ in the figure) are run over the entire
column and connected to the local bitlines through connecting
transistors. Word accesses are performed by connecting only
the one correct local bitline to the global bitline in addition
to activating the correct wordline as in a standard approach.
Although not as fast as other designs, the sense amplifiers
can operate in the presence of a large amount of noise, and
they have the forgiving characteristic of being able to correct
themselves if they begin latching the wrong value. Because
the cached-memory architecture significantly reduces main
memory traffic, the speed of the memory is not critical. The
main memory is made up of eight 128-word by 36-bit SRAM
arrays using six-transistor cells.

384 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 3, MARCH 1999

Fig. 12. Schematic of a hierarchical-bitline SRAM.

Fig. 13. Simplified schematic of a dual-ported memory array cell.

The calculation of an -point radix-2 FFT requires
complex coefficients. The processor presented here stores
all coefficients in an on-chip ROM. ROM’s
experience the same bitline leakage problems as SRAM’s.
To maintain functionality under low- , low- conditions,
the ROM also uses the hierarchical-bitline technique. It is
partitioned into two 256-word by 40-bit arrays. Each array has
16 segments, or local bitlines, corresponding to a maximum
of 16 cells per local bitline.

Each of the two cache sets is organized as two banks of 16-
word by 40-bit dual-ported SRAM arrays using ten-transistor
cells. The memory arrays perform one read and one write
per cycle using separate single-ended read and write bitlines.
Fig. 13 is a schematic of an SRAM cell with some transistor
dimensions indicated aswidth()/length() with m.

Four signed, pipelined, array multipliers produce 24-bit
products from 20-bit operands. They employ booth-2 encoding
and use (4, 2) and (3, 2) adders to reduce partial products.
Since the fixed-point data format requires the eventual trun-
cation of the butterfly’s outputs when writing the result back

Fig. 14. Twenty-four-bit adder block diagram.

Fig. 15. Schematic for flip-flop with local clock buffer.

to the cache, it is unnecessary to calculate all 40 bits of the
multipliers’ outputs. To reduce power dissipation and area,
27% of the partial product bits are not calculated. A bias was
added back into the partial product array to set the mean of
the truncation error to zero.

Six single-cycle 24-bit adders and subtracters propagate car-
ries using a hybrid of carry-lookahead and ripple techniques.
A hybrid approach was chosen because a standard carry-
lookahead implementation is faster than what was needed,
and larger. Fig. 14 is a block diagram of the adder. At the
lowest level, carries ripple across three full-adder blocks.
Above three-bit blocks, carry-lookahead circuits accelerate
carry propagation through three levels.

The clocking scheme uses one single-phase global clock
for the entire processor. The global clock is routed in a
single chip-wide network with no local clock buffers. The
architecture and functional units achieve a high fraction of
utilization—meaning functional units are busy nearly every
cycle. High utilization eliminates the need for clock gating.
The advantages of a single nonbuffered clock are that it is
much simpler to design and has very low clock skew.

Due to their robust operation, static edge-triggered flip-flops
are used instead of latches. The schematic of a flip-flop is
shown in Fig. 15. SPICE simulations with low- transistors
at low- values show that gating the feedback inverters
greatly improves the voltage range over which the flip-flops
can operate. The use of full transmission gates instead of
NMOS pass gates similarly improves operating range. The
generation of and locally in each flip-flop only slightly
increased the size of each cell but reduced the loading on the
global clock network by a factor of four. Transistor sizing
and the layout of the flip-flop cells were carefully designed
and simulated to avoid signal races over wide variations in
operating conditions.

V. RESULTS AND ANALYSIS

This section presents and compares measured performance
of Spiffee in three ways: first, at a low-power operating point;

BAAS: FFT PROCESSOR 385

TABLE I
MEASURED Vt VALUES

second, at a high-speed operating point; and third, with silicon
area versusEnergy Time and execution time.

A. Low-Power Operation

Through biasing of the n-wells and the substrate, it is
possible to adjust the thresholds of transistors on the chip.
Table I details the 480 and 320 mV shift range that was
measured for the NMOS and PMOS, respectively.

The chip was measured functional with slightly below
1.0 V. Because the PMOS thresholds (930 mV) are so much
larger than the NMOS thresholds (680 mV), they are the
primary performance limiter at low operating points. At

V, the processor runs at 16 MHz and 9.5 mW with
the n-wells forward biased 0.5 V—which is a 60% speed
improvement over the 10 MHz operation without bias. With
that bias, 11 A of current flows from the n-wells while the
chip is active. Latchup was never observed.

Table II contains a summary of relevant characteristics of
ten commercial and academic FFT processors calculating
1024-point complex FFT’s.CMOS technologyis the minimum
feature size of the CMOS process in which the chip was
fabricated.Datapath width is the width, in number of bits,
of the multipliers for the scalar datapaths.Number of chips
values with “ ” indicate that additional memory chips for data
and/or coefficients are required.Normalized areais the silicon
area normalized to a 0.5m technology with the following
relationship:

Normalized Area
Area

Technology m
(3)

The final column,FFT’s per energy,compares the number of
1024-point complex FFT’s calculated per unit of energy using
(4). It attempts to factor out technology and the datapath word
width by making use of the observation that roughly
1/3 of the energy consumption of the 20-bit Spiffee processor
scales as (e.g., multipliers) and approximately 2/3
scales linearly with

FFT’s/Energy
Tech

Power Exec Time
(4)

Fig. 16 compares Spiffee’s adjusted energy efficiency with
other processors. At V, Spiffee is 16 times more
energy efficient than the previously most efficient known
processor.

B. High-Performance Operation

At V, the processor is fully functional at
173 MHz—calculating a 1024-point complex FFT in 30s
while consuming 845 mW.

While clock speed is not the only factor, it is certainly
an important factor in determining the performance and area
efficiency of a design. Fig. 17 compares clock speeds of this
cached-FFT design running at V with other FFT
processors versus their CMOS technologies. Spiffee operates
with a clock frequency that is 2.6 times greater than the
next fastest processor. Though stressing the device beyond
its specifications, the processor is functional at 201 MHz with

V.
Despite having a favorable maximum clock rate, the chip’s

circuits are not optimized for high-speed operation—in fact,
nearly all transistors in logic circuits are near minimum size.
The processor owes its high speed primarily to its algorithm
and architecture, which enable the implementation of a deep
and well-balanced pipeline.

C. Other Comparisons

A popular metric that incorporates measures of both energy
efficiency and performance isEnergy Time, or . Using
values from Table II, we define it as

Energy Time
Exec Time

FFT’s/Energy
(5)

Since the quantityFFT’s/Energyis compensated, to first order,
for different Technologyand Datapath values, the
product is also compensated. Fig. 18 compares the
values for various FFT processors versus their silicon areas,
normalized to 0.5 m. The dashed line highlights a constant
Area contour. The most comprehensive metric we
consider is the productArea The Spiffee processor
running at a supply voltage of 2.5 V has anArea
product that is 17 times lower than the processor with the
previously lowest value. Although the exact minimum
value for Spiffee was not measured, its magnitude is expected
to be fairly constant for supply voltages in the vicinity of
[24]. Except for the Cobra processor, which uses 44 times as
much area, the Spiffee processor has an product less
than one-third of the values of previous processors.

The cost of a device is a strong function of its silicon area.
So processors with high performance and small area are the
most cost efficient. Fig. 19 shows the first-order-normalized
FFT calculation time(Exec Time/Technology)versus normal-
ized silicon area for several FFT processors. The dashed line
indicates a constantArea Time contour. The processor pre-
sented here compares favorably with other processors despite
additional cache memories, circuits designed for low-voltage
operation and tunability, and a less-than-optimum floorplan.
However, some processors have more than a single set of main
memory, and adding a second set to Spiffee would increase
its area by approximately 30%.

386 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 3, MARCH 1999

TABLE II
COMPARISON OF PROCESSORSCALCULATING 1024-POINT COMPLEX FFT’s

Fig. 16. The adjusted energy efficiency [FFT’s/Energy, see (4)] of various
FFT processors.

Fig. 17. CMOS technology versus clock frequency for various FFT proces-
sors.

VI. CONCLUSION

An FFT architecture and algorithm, which are optimized
for a processor with a memory system containing a cache,
were introduced. A single-chip FFT processor that uses a

Fig. 18. Silicon area versus Energy� Time [see (5)] for several FFT
processors.

Fig. 19. Silicon area versus FFT execution time for several FFT processors.

cached main memory and realizes increased energy efficiency
(through reduced communication energy) and increased per-
formance (through a deep and well-balanced pipeline) was

BAAS: FFT PROCESSOR 387

also presented. With PMOS thresholds of930 mV, the
processor is fully functional over a supply range of 1.0–4.0 V.
At a supply voltage of 1.1 V, the device is 16 times more
energy efficient than the previously most efficient known FFT
processor; at a supply voltage of 3.3 V, it is functional with
a clock rate more than 2.6 times greater than the previously
fastest.

ACKNOWLEDGMENT

The author gratefully acknowledges valuable guidance and
mentoring from J. Burr, M. Matsui, and G. L. Tyler.

REFERENCES

[1] N. Weste and K. Eshraghian,Principles of CMOS VLSI Design.Read-
ing, MA: Addison-Wesley, 1985.

[2] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power CMOS
digital design,”IEEE J. Solid-State Circuits,vol. 27, pp. 473–483, Apr.
1992.

[3] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An
application specific DSP chip set for 100 MHz data rates,” inProc.
Int. Conf. Acoustics, Speech, and Signal Processing,Apr. 1988, vol. 4,
pp. 1989–1992.

[4] “LH9124 digital signal processor user’s guide,” Sharp, Camas, WA,
1992.

[5] P. A. Ruetz and M. M. Cai, “A real time FFT chip set: Architectural
issues,” inProc. Int. Conf. Pattern Recognition,June 1990, vol. 2, pp.
385–388.

[6] S. He and M. Torkelson, “Design and implementation of a 1024-point
pipeline FFT processor,” inProc. IEEE Custom Integrated Circuits
Conf., May 1998, pp. 131–134.

[7] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A fast single-
chip implementation of 8192 complex point FFT,”IEEE J. Solid-State
Circuits, vol. 30, pp. 300–305, Mar. 1995.

[8] G. Sunada, J. Jin, M. Berzins, and T. Chen, “Cobra: An [sic] 1.2
million transistor expandable column FFT chip,” inProc. IEEE Int.
Conf. Computer Design,Oct. 1994, pp. 546–550.

[9] J. O’Brien, J. Mather, and B. Holland, “A 200 MIPS single-chip 1k FFT
processor,” inProc. IEEE Int. Solid-State Circuits Conf.,1989, vol. 36,
pp. 166–167, 327.

[10] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quan-
titative Approach,2nd ed. San Francisco, CA: Morgan Kaufmann,
1996.

[11] B. M. Baas, “An energy-efficient single-chip FFT processor,” inProc.
Symp. on VLSI Circuits,June 1996, pp. 164–165.

[12] , “An approach to low-power, high-performance fast Fourier
transform processor design,” Ph.D. dissertation, Stanford University,
Stanford, CA, to be published.

[13] W. M. Gentleman and G. Sande, “Fast Fourier transforms—For fun and
profit,” in Proc. AFIPS Conf.,Nov. 1966, vol. 29, pp. 563–578.

[14] R. C. Singleton, “A method for computing the fast Fourier transform
with auxiliary memory and limited high-speed storage,”IEEE Trans.
Audio Electroacoust.,vol. AU-15, pp. 91–98, June 1967.

[15] N. M. Brenner, “Fast Fourier transform of externally stored data,” in
IEEE Trans. Audio Electroacoust., vol. AU-17, pp. 128–132, June 1969.

[16] L. R. Rabiner and B. Gold,Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[17] D. Gannon and W. Jalby, “The influence of memory hierarchy on al-
gorithm organization: Programming FFT’s on a vector multiprocessor,”
in The Characteristics of Parallel Algorithms,L. Jamieson, D. Gannon,
and R. Douglass, Eds. Cambridge, MA: MIT Press, 1987, ch. 11, pp.
277–301.

[18] D. H. Bailey, “FFTs in external or hierarchical memory,”J. Supercom-
put., vol. 4, no. 1, pp. 23–35, Mar. 1990.

[19] C. S. Burrus and T. W. Parks,DFT/FFT and Convolution Algorithms.
New York: Wiley, 1985.

[20] A. V. Oppenheim and R. W. Schafer,Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[21] J. B. Burr and J. Shott, “A 200mV self-testing encoder/decoder us-
ing Stanford ultra-low-power CMOS,” inProc. IEEE Int. Solid-State
Circuits Conf.,1994, vol. 37, pp. 84–85, 316.

[22] J. B. Burr and A. M. Peterson, “Ultra low power CMOS technology,”
in Proc. NASA VLSI Design Symp.,1991, pp. 4.2.1–4.2.13.

[23] M. Wosnitza, M. Cavadini, M. Thaler, and G. Tröster, “A high precision
1024-point FFT processor for 2D convolution,” inProc. IEEE Int.
Solid-State Circuits Conf.,1998, vol. 41, pp. 118–119, 424.

[24] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital
design,” in Proc. IEEE Symp. Low Power Electronics,Oct. 1994, vol.
1, pp. 8–11.

Bevan M. Baas(S’94) received the B.S. degree in
electronic engineering from California State Poly-
technic University, San Luis Obispo, in 1987 and
the M.S. degree in electrical engineering from Stan-
ford University, Stanford, CA, in 1990, where he
currently is pursuing the Ph.D. degree in the De-
partment of Electrical Engineering.

From 1987 to 1989, he was with Hewlett-Packard,
Cupertino, CA, where he participated in the devel-
opment of the processor for a high-end minicom-
puter. His current research interests are in the areas

of high-performance and energy-efficient digital signal-processing algorithms,
architectures, and circuits.

Mr. Baas was an NSF Fellow from 1990 to 1993 and a NASA GSRP
Fellow from 1993 to 1996.

