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ABSTRACT

A software based IEEE 802.11a digital baseband transmitter
has been implemented on a highly parallel single-chip DSP
processor. The processing platform is a programmable and
reconfigurable Asynchronous Array of simple Processors
(AsAP) that is well matched to complex system workloads
such as 802.11a. The transmitter is the first fully-compliant
802.11a software implementation, and is the first full-rate
software implementation. The transmitter also complies
with the high-rate portions of the 802.11g standard. It
operates over all 8 data rates, includes additional upsam-
pling and filtering functions, and sustains transmissions at
54 Mb/s on a 22-processor array—which is expected to oc-
cupy less than 20 mm2 in 0.18 µm CMOS.

1. INTRODUCTION

Recently, there has been increasing interest in low-cost,
high-bandwidth wireless LAN devices for consumer and en-
terprise use. The IEEE 802.11a and 802.11g standards [1]
define an OFDM-based modulation scheme supporting raw
data rates from 6 to 54 Mbits/s. 802.11g is a more recent
standard, which incorporates backward compatibility with
the lower-rate 802.11b standard and operates in a different
RF band. The higher-rate portions of 802.11g utilize OFDM
and are identical to the digital baseband of 802.11a.

Software radio support for these standards is desirable
because it reduces system cost, and allows easy upgradabil-
ity for support of future standards. Although some progress
has been made toward the development of software solu-
tions for 802.11a, no solution has yet been reported which
is able to sustain the required data rates on a fully pro-
grammable platform.

We have demonstrated a fully compliant IEEE 802.11a
digital baseband transmitter, implemented in software run-
ning on a novel DSP architecture. The architecture consists
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of an Asynchronous Array of simple Processors (AsAP) in-
tegrated onto a single chip. AsAP provides a fully pro-
grammable platform suitable for sustaining the data rates
required by 802.11a. In the remainder of this paper, we
first examine the current state of software 802.11a imple-
mentations. We then describe the AsAP architecture, and
the implementation of the 802.11a transmitter. Finally, we
consider the transmitter’s performance and the runtime be-
havior of the processor array.

2. EXISTING WORK

Software defined radio (SDR) promises flexible and recon-
figurable digital communications platforms. Many contri-
butions have been made in the development of SDR [2]
[3] [4]. A major challenge recognized in this area is the
development of programmable architectures with adequate
throughput to support the real-time data rates required by
SDR applications [3].

Current full-rate 802.11a baseband implementations use
dedicated hardware (ASIC) processors [5]. This allows a
highly customized data path, which provides the required
throughput while maintaining a high average data rate.
However, the increasing cost, long development time, and
low flexibility of ASICs make programmable solutions in-
creasingly attractive.

Software implementations of the 802.11a physical layer
have been reported in the literature. Various software
OFDM solutions are summarized in Table 1. All of these
systems either lack full support of the IEEE 802.11a speci-
fication, or do not target a particular real-time platform.

The major challenge faced by software implementations
is achieving high throughput while constrained to a sequen-
tial execution model. Current VLIW processor architectures
allow exploitation of instruction level parallelism, but ne-
glect global parallelism found at the application level. This
forces the independent tasks of the baseband to execute seri-
ally when mapped onto a single processor, requiring a high
number of instructions per cycle to achieve the required
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Wireless Data Processing
Project Standard Rate Platform Tx/Rx

Stuber [6] MIMO-OFDM N/A N/A Tx/Rx
Bakker [7] OFDM QPSK 8 Mbit/s LART Tx/Rx
Gifford [8] OFDM DQPSK N/A ANSI C Tx/Rx
Witrisal [9] OFDM N/A SDR Tx/Rx
Barton [10] estim. IEEE 802.11a/b N/A BOPS DSP Tx/Rx
Tariq [11] partial IEEE 802.11a 1.7 Mb/s TI DSP Tx/Rx
This work full IEEE 802.11a 54 Mb/s AsAP Tx

Table 1. Comparison of related OFDM and wireless LAN
software implementations

throughput. Current DSPs do not have adequate process-
ing power to sustain the data rates demanded by applica-
tions such as 802.11a. Work by Tariq [11] in 2002 suggests
processors about 14 times faster are required for single-chip
full-rate operation at 24 Mbit/s.

3. ARCHITECTURAL OVERVIEW

AsAP is a novel architecture aimed at overcoming the short-
falls of traditional DSPs. AsAP consists of a two dimen-
sional array of independent processors, integrated with re-
configurable interconnect on a single chip. Key features
are described below and details of the architecture were re-
cently published [12].

Each processing element is a deeply pipelined single
issue processor, supporting the types of instructions com-
monly found in commercial DSPs. Many architectural fea-
tures are chosen to enable high clock rates. The datapath is
16-bit fixed-point and contains both an ALU and MAC unit.
The processors contain small instruction and data memo-
ries, of 64 and 128 words respectively. Specialized address
generation hardware is added to ease the implementation of
algorithms requiring sequential, strided, or bit-reversed ac-
cesses to data memory. Each processor contains its own
local clock generator, and no global frequency or phase in-
formation is shared among processors. Current estimates
predict processor areas and maximum clock frequencies of
0.8 mm2 and 1.0 GHz in 0.18 µm CMOS.

Inter-processor communication is accomplished
through a reconfigurable interconnection network. Each
processor may take input from two of its four nearest
neighbors, and may output to any combination of these
four neighbors. Asynchronous dataflow is managed by
FIFO buffers at the inputs of each processor. If a processor
attempts to write to a neighboring processor with a full
FIFO, an output stall will occur. If a processor attempts to
read from an empty FIFO, an input stall will occur. When
stalled, no instructions are executed and the processor’s
clock can be stopped to save power.

Input
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Training

IFFT
Cyclic

Extension
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Fig. 1. Data flow diagram of primary 802.11a processing
blocks

We have implemented a functional RTL model, which
allows simulation of a processor array of arbitrary size. The
model currently contains single cycle processors, as pipelin-
ing details will be largely driven by the results of VLSI and
layout work. The program for each processor is written in
AsAP assembly language. Initial instruction and data mem-
ory contents are downloaded into the processors during sys-
tem startup via a common configuration bus.

4. IEEE 802.11A TRANSMITTER
IMPLEMENTATION

We have implemented a digital baseband transmitter as
specified in the physical layer specification of IEEE 802.11a
on the AsAP platform. The transmitter has been imple-
mented and verified to be fully compliant with Annex G of
the standard [1], as well as with a software model written in
Matlab.

4.1. Partitioning and Dataflow

The processing required for the 802.11a transmitter can be
partitioned into a number of independent serial tasks, as
summarized in Figure 1. When implementing the trans-
mitter on AsAP, each task is mapped to a separate pro-
cessor to allow parallel execution. If either more memory
or higher performance is required than can be provided by
a single processor, a task is mapped across multiple pro-
cessors. Code for each processor is implemented indepen-
dently, considering only its inputs and outputs. This makes
the software development no more complicated than when
writing code for a sequential machine. AsAP code may, in
fact, be simpler to write because inter-process communica-
tion is handled in hardware. The final system partitioning is
detailed in Table 2. The processors are integrated in a four
by six array as shown in Figure 2.

The serial nature of the 802.11a transmit path dictates
the dataflow among the processors. In most cases, each task
takes a single input set, and produces a single output set,
which is consumed by downstream processors. There are
two primary exceptions to this paradigm that appear in this
application. The first is when processors generate output
with no input. The second is when the execution of two pro-
cessors is closely coupled, requiring that a bidirectional link
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Processor Functions Performed

Pad Generates PLCP header; pads and scrambles data.
Scrambler Generates a pseudo-random scrambling sequence.
Conv. Code Performs rate=1/2, k=7 convolutional coding.
Puncture Punctures coded data based on the data rate.
Interleave1 Applies the first interleaving permutation.
Interleave2 Applies the second interleaving permutation.
Mod. Map Modulates the data using the appropriate

rate-dependent modulation scheme.
Training Generates short and long training sequences.
Pilot Insertion Prepends training sequence. Inserts pilot signals

onto the specified sub carriers.
IFFT BR Reorders the input using bit-reversed addressing.
IFFT Mem Performs address generation for the IFFT, provides

data to butterfly processors, and writes results
back to memory. This processor is replicated to
allow multiple stages to be computed in parallel.

IFFT BF Computes complex radix-2 butterflies. Twiddle
factors are chosen to implement an IFFT.

IFFT Output Reorders the IFFT output into proper order.
GI/Window (Real) Performs cyclic extension, windowing, and

concatenation for the real part of the data.
GI/Window (Imag) Performs cyclic extension, windowing, and

concatenation for the real part of the data. Two
processors are required for GI/Windowing,
because the working data set will not fit in a
single processor’s memory.

Upsample/FIR Performs upsampling by two, and applies a
parameterized Nyquist filter.

Output Sync Synchronizes the data stream to the application’s
output data rate. This processor is clocked by an
externally-supplied 80 MHz clock.

Table 2. Distribution of computation tasks in the AsAP
802.11a transmitter implementation

be established between them. The global dataflow through
the array is indicated in Figure 2 by the large grey arrows,
while the smaller arrows indicate all communication that
takes place between processors. The required processor in-
terconnection results in one processor that cannot be used.
This processor is turned off to save power.

The major advantage of AsAP over conventional soft-
ware platforms is its capability to operate on data as it passes
through the system, rather than storing large amounts of
data, and performing tasks sequentially. This feature effec-
tively creates an application level pipeline, allowing the se-
rial tasks of the transmitter to take place in parallel. As data
flows through the system, it is operated on as soon as pos-
sible. In addition, only data that is required for the pending
computation is required to be stored by any one processor.

This approach is highly data driven, which presents a
challenge when control information is required to be com-
municated among processors. In the 802.11a physical layer,
there are two control data required for packet transmission:

Pad Scrambler

Conv. Code

Puncture

Interleave 1 Interleave 2 Modulation
Mapping

Pilot
InsertionTraining

IFFT BR

IFFT Mem
stages 0-1 IFFT BF

IFFT Output

GI/Window
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GI/Window
(Imaginary)

IFFT Mem
stages 2-3

IFFT BF

Upsample
FIR

Upsample
FIR

IFFT BF

IFFT Mem
stages 4-5

Output Sync

Fig. 2. Block diagram of tasks and dataflow of the 22 pro-
cessors used for the 802.11a implementation. The processor
marked with an “×” is unused and powered down.

the transmission rate and the data length. We solve this
problem by preceding the data input to each processor with
the appropriate rate and length data. Each processor is pro-
grammed to read, and propagate this data appropriately be-
fore beginning computation on a particular packet. This so-
lution is effective because the deterministic nature of the al-
gorithms makes it easy to differentiate control words from
data words by their location in the data stream.

4.2. Modularity and Code Reuse

The AsAP architecture lends itself to code reuse. The
802.11a transmitter implementation contains two general
signal processing blocks that do not require any special
modification to operate in the transmitter system.

The FIR modules contain code to upsample their inputs
by a factor of two, and apply a parameterized low-pass filter.
Although not required by the standard, we cascade two of
these upsampling filters at the output to ease analog filtering
requirements.

The IFFT required by the 802.11a transmitter is im-
plemented with an eight-processor FFT block. The twid-
dle factors of the block are chosen to implement an inverse
Fourier transform. The algorithm uses eight processors for
increased throughput. Due to the small memories in each
processor, two processors are required for the core compu-
tation of a 64-point FFT. By adding four additional proces-
sors, we are able to pipeline the computation of consecutive
transforms, computing two butterfly stages of each FFT in a
single butterfly-memory processor pair.

To avoid modifying the FFT block to handle the con-
trol data mentioned above, we have selected a topology
that allows the FFT to be bypassed temporarily, passing the
needed control data to the GI/Windowing processors with-
out passing through the FFT. This link is shown by a dotted
arrow in Figure 2.
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4.3. Diversity of Algorithmic Requirements

The algorithms that compose the transmitter are widely di-
verse. Block-oriented computation, such as the FFT, re-
quires a large amount of input to be accumulated before
producing any data. These algorithms often require large
memories. We cope with this challenge by expanding the
algorithm across multiple processors to exploit the memory
of each processor. In our FFT implementation, one pro-
cessor stores the data values for the current FFT stage, and
resolves the complex addressing required for the algorithm.
A second processor stores the twiddle factors, and executes
butterflies, returning the results to the memory processor for
storage. This allows us to maintain small and fast mem-
ories in each processor, decreasing cycle time and power
consumption.

Other computation is not block oriented, and requires
minimal data storage. Examples are the convolutional
coder, and the FIR filters. Here, the input data are operated
on as soon as available. When mixing block computation
with computation which is not block oriented, the proces-
sors’ input FIFOs help reduce the impact of data bursts at
the output of block-oriented algorithms.

Bit manipulations such as scrambling and interleaving
are often easily implemented in hardware, but are more
challenging in software. AsAP is able to successfully han-
dle this type of computation as well, because of its high
clock rate and because other tasks can occur in parallel.
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Fig. 4. Time domain waveforms from IEEE compliant
AsAP and Matlab models, and difference error, for a 5-
symbol packet

5. RESULTS

We have implemented all portions of the IEEE 802.11a
physical layer digital baseband transmitter [1] on the AsAP
architecture. When simulating this application, we assume
that the processors in the array are pipelined to achieve a
1 GHz clock frequency. Current VLSI progress supports
this assumption. All processors in the array are clocked
at this frequency, but share no phase information. At this
frequency, we are able to sustain transmission at 54 Mbit/s
indefinitely, after an initial startup latency. In addition,
we implement upsampling and filtering at the system out-
put to meet the spectral mask requirements set forth in the
standard. The resulting signal spectrum is shown in Fig-
ure 3. Our 16-bit fixed point implementation was compared
against a floating point Matlab model. The AsAP-generated
and reference waveforms are shown in Figure 4, along with
the error in the AsAP signal. The SNR is 64.9dB. The major
sources of error are the lack of rounding in the FFT and the
FIRs. Rounding was not implemented to improve through-
put, and reduce design time, but is an easy addition if greater
precision is required.

5.1. Processor Activity Analysis

A more detailed analysis of processor execution reveals
some interesting insight into the AsAP architecture. Fig-
ures 5 and 6 illustrate processor activity and stall frequency
for a 5-symbol packet and for a single symbol during a long
transmission. Figure 5 is useful in understanding edge ef-
fects due to initial packet overhead, and Figure 6 is useful
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Fig. 5. Processor activity for one 5-symbol packet

in understanding the steady state long-packet behavior. The
activity of each processor (the amount of time spent execut-
ing, instead of stalled), is indicated by the black bar in each
figure. The dark gray bar indicates the time spent waiting
for input to arrive, while the white bar indicates the amount
of time stalled on output. In general, these stall cycles can
be interpreted as slack, and any increase in execution time
will reduce this stall time. The exception to this is when the
input to a processor is dependent on that processor’s output.
This is the case in the FFT butterfly/memory pairs. The tight
coupling of these processors introduces some unavoidable
input stalls, which cannot be counted as slack. This cou-
pling also explains why the FFT memory processors never
stall on their outputs.

Analysis of the stall frequency and processor activity
also gives insight into the bottleneck of the application. A
processor will stall on output only if the downstream FIFO
is full. This will occur if the source processor is too fast, or
if the destination processor is not fast enough. Furthermore,
a processor will stall on its input only if the source processor
is not providing data at an adequate rate. The system bot-
tleneck can be estimated by observing the stall behavior of
neighboring processors. From Figure 6, we estimate two
system bottlenecks due to interleaving (inter1) and IFFT
calculation. These two algorithms are block-oriented, forc-
ing non-block algorithms downstream to wait for data while
computation is taking place.

5.2. Estimated Pipeline Impact

A deeply pipelined processor requires a careful analysis of
its hazards. Processors in our current simulation model op-
erate with an ideal CPI of one. When a pipelined imple-
mentation is considered, read-after-write (RAW) data haz-
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Fig. 6. Processor Activity for one 4 µsec symbol

ards will introduce pipeline stalls, increasing the effective
CPI. We estimated the frequency of RAW hazard stalls by
examining dynamic execution traces of the application. We
assume 6 cycle latency between operand fetch and write-
back stages, and we assume that ALU results may be for-
warded from the ALU output to the ALU input. For all pro-
cessors in the transmitter, the RAW hazard penalty can be
completely absorbed by the time currently spent stalling on
input and output. Table 3 compares the estimated number
of stalls due to RAW hazards against the number of cycles
each processor stalls on input or output.

6. FUTURE WORK

We are currently designing a scalable full-custom CMOS
implementation of the AsAP architecture and have com-
pleted layout of major functional units. Current estimates
from layout and extracted layout spice simulations predict
processor areas and maximum clock frequencies of 0.8mm2

and 1.0 GHz in 0.18 µm CMOS and 0.4 mm2 and 1.4 GHz
in 0.13 µm CMOS. We recently completed a very high
speed JPEG encoder implementation and are working to
map other workloads, such as an 802.11a receiver, to the
AsAP processor array. We are also working to develop tools
and methodologies to more easily program and configure
AsAP arrays.

7. CONCLUSION

We have developed and successfully simulated a fully com-
pliant digital baseband transmitter for IEEE 802.11a en-
tirely in software. The transmitter implementation is fully
compliant with the standard, and is able to sustain a data
rate of 54 Mbit/s. The transmitter is targeted for the AsAP
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Measured RAW Required % for
Processor stall estimate IO stalls complete coverage

train 0 4000 0
pad 188 4000 5
scram 594 3702 16
conv 162 3190 5
punc 72 2758 3
inter1 887 3280 27
inter2 153 1300 12
modmap 576 2823 20
pilot 11 3032 0
FFTbr 0 3807 0
FFTbf 709 3414 21
FFTmem 0 2183 0
FFTbf 709 3112 23
FFTmem 0 2183 0
FFTbf 709 2780 26
FFTmem 0 2183 0
FFTout 0 2780 0
GI real 195 3671 5
GI imag 238 3591 7
FIR1 0 3609 0
FIR2 0 1200 0
sync 0 640 0

Table 3. Estimated stall cycles due to RAW hazards com-
pared to IO stalls already occuring. Coverages of less than
100% results in no additional stalls due to RAW hazards.

architecture which is currently in development. AsAP pro-
vides significant advantages over traditional programmable
DSPs due to its high degree of parallelism. These include
increased performance due to global pipelining, and simpli-
fied implementation due to reduced communication over-
head in software. AsAP’s high clock rate and small area
enable high performance and energy efficiency with all the
benefits of a software-programmable solution.
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