
Performance and Power Analysis of Globally Asynchronous
Locally Synchronous Multi-Processor Systems

Zhiyi Yu, Bevan M. Baas
ECE department, University of California, Davis

{zhyyu, bbaas}@ece.ucdavis.edu

Abstract

This paper investigates the performance and power dis-
sipation of Globally Asynchronous Locally Synchronous
(GALS) multi-processor systems. We show that communi-
cation loops are a source of significant throughput degrada-
tion in communications links and that there is no degrada-
tion whatsoever under certain conditions for one-way links,
and that it is possible to design GALS multi-processors
without this performance penalty. Independent clock do-
mains and unbalanced computation in the GALS multi-
processor allow scaling of the clock frequency and supply
voltage to achieve high energy efficiency. The synchroniza-
tion overhead between independent clock domains results in
a less than 1% performance reduction compared to a glob-
ally synchronous system over a number of DSP and numer-
ical applications. Clock and voltage scaling can achieve an
approximately 40% power savings with no reduction of per-
formance. These results compare favorably with the 25%
power savings and more than 10% performance reduction
reported for GALS uniprocessors.

1. Introduction

Clocking circuits have become increasingly difficult to
design with larger chip sizes, higher clock rates, larger rel-
ative wire delays, and larger parameter variations [1]. Ad-
ditionally, high speed global clocks consume a significant
portion of power budgets. The Globally Asynchronous Lo-
cally Synchronous (GALS) clocking style separates pro-
cessing blocks such that each part is clocked by an indepen-
dent clock domain. The approach is a promising strategy
to address these design challenges. Previous GALS work
includes performance and power analysis in an ASIC sys-
tem [2] and a uniprocessor system [3, 4, 5]; and the clock
domain analysis for a clustered array processor [6].

Modern deep submicron fabrication technologies are not
able to sustain historical increases in clock frequencies, but
do enable very high levels of integration such as chips with

IF ID EXE MEM WB

IF ID EXE

Branch inst

Branch inst IF ID EXE MEM WBSYNC SYNC SYNC SYNC

IF

(a) Branch penalty of 3 cycles in a synchronous uni-processor

(b) Branch penalty of 3 cycles and 4 SYNC delays in a GALS uni-processor

clk4 clk5clk3clk2clk1

MEM WBbranch penalty

branch penalty

Figure 1. Pipeline control hazard penalties of a 5 stage syn-
chronous uniprocessor and a 5 stage GALS uniprocessor

more than a billion transistors [7]. Multiple-processor chips
now show a promising future [7, 8]. In this context, ar-
ray processors—which combine multiple processors in an
array—are increasingly attractive. An array processor can
also provide high energy efficiency since parallel computing
improves performance and may allow the clock frequency
and voltage to be reduced.

1.1. Performance reduction and energy efficiency of
the GALS uniprocessor

In addition to multiple clock generators, GALS systems
require synchronization circuits between clock domains to
reliably transfer data. Small clock domains normally sim-
plify clock trees, but unmatched clocks between different
domains and synchronization circuitry introduce communi-
cation delays.

We define a GALS uniprocessor as an architecture where
the processor itself is partitioned into multiple clock do-
mains. The GALS overhead increases the delay between
pipeline stages and reduces processor performance. Fig-
ure 1 shows the control hazard of a simple DLX RISC pro-
cessor [9]. The lower subplot shows a GALS uniprocessor
where each pipeline stage is in its own clock domain. Dur-
ing the cycle with the taken branch, the synchronous pro-
cessor has a 3-cycle control hazard, while the GALS system
has a 3 + 4 × SYNC cycle penalty, significantly reducing
system performance. Reported performance reductions of
the GALS uniprocessor include 10% [3], 7%–11% [4] and
4% [5].

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

IF ID EXE MEM WB
sync

circ.

sync

circ.

sync

circ.

sync

circ.

clk1

task1
program with

few MEM
instructions

task2

program with
few WB

instructions

clk4 can be
reduced

clk5 can be
reduced

clk2 clk3 clk4 clk5

Figure 2. Clock scaling in a GALS uniprocessor

Proc 1 Proc 2 Proc 3 Proc 4
sync

circ.

sync

circ.

sync

circ.

task1 task2 task3 task4

Figure 3. Mapping multiple tasks to a GALS array processor

GALS uniprocessors normally control their independent
clock domains adaptively to achieve high energy efficiency,
by reducing the clock frequency and voltage of modules that
are less heavily used. Figure 2 illustrates this concept where
the frequency of the MEM module clock clk4 is reduced
when executing task1 since it has few MEM instructions.
Then in task2, the frequency of clk5 is reduced. Unfortu-
nately, reducing the clock of some modules reduces perfor-
mance. The static scaling method sets the frequency before
execution and reduces the energy by approximately 16%
with an approximately 18% reduction in performance [3].
The dynamic scaling method changes the frequency at run-
time and achieves 20%–25% energy savings along with a
10%–15% performance reduction [4, 5].

1.2. The GALS array processor

While the GALS uniprocessor puts synchronization
logic between pipeline stages, the array processor puts syn-
chronization circuits between different processors as shown
in Fig. 3.

Clock frequency selection in GALS uniprocessors is
based upon the utilization probability of each function mod-
ule. Similarly, GALS array processors base their frequency
selections on the activity of its computational tasks, as
shown in Fig. 3.

2. A GALS Array Processor

Two array processor designs were implemented for com-
parison: one is fully synchronous and the other is a GALS
array processor. Both contain multiple uniform simple pro-
cessing units, as shown in Fig. 4a. Both processors contain

IMEM

ALU

MAC

Control

DMEM

FIFO0

FIFO1

IMEM

ALU

MAC

Control

DMEM

osc.
dualclk-

FIFO0

dualclk-

FIFO1

added local oscillator

enhanced dual-clock FIFO

(a) 3x3 array processor (b) single processor in a

synchronous system

(c) single processor in a

GALS system

config config

Figure 4. Two array processors: one using synchronous pro-
cessors and the other using GALS array processors

small instruction and data memories, two 32-word FIFOs, a
16-bit datapath, and execute 32-bit instructions. Each pro-
cessor communicates with its four neighboring processors.

Figure 4b shows a single synchronous array processor. It
utilizes simple fully synchronous FIFOs. Figure 4c shows a
single GALS array processor. In order to support the GALS
methodology, a frequency configurable oscillator is added
as the processor’s local clock, and the synchronous FIFO
is enhanced with features to allow it to perform as a dual-
clock FIFO [10]. The dual-clock FIFO writes and reads
data in independent clock domains and reliably transfers
data across the domains. For increased characterization ca-
pability, a configurable number of synchronization registers
are inserted at the clock domain interface to avoid metasta-
bility. The local oscillator occupies approximately 0.5% of
the processor’s area. The area overhead of the dual-clock
FIFO is also around 0.5%. In addition, the GALS system
has a simplified clock tree.

A 6×6 GALS array processor chip has been imple-
mented [11]. The synchronous array processor is emu-
lated by special configurations in the GALS array process-
ing chip.

3. Performance Analysis of the GALS Array
Processor

Several applications are mapped and simulated onto the
RTL model of both synchronous and GALS array proces-
sors to investigate their performance. The synchronous sys-
tem uses a global clock and has no synchronization regis-
ters. The GALS system uses a local oscillator and two syn-
chronization registers.

The mapped applications we consider include: an 8-
point DCT using 2 processors, an 8×8 DCT using 4 pro-
cessors, a zig-zag transform using 2 processors, a merge
sort using 8 processors, a bubble sort using 8 processors, a
5×5 matrix multiplier using 6 processors, a 64-point com-
plex FFT using 8 processors, a JPEG encoder using 9 pro-

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

DC in
Huffm

DC in
Huffm

Lv-shift
1-DCT

Zig-zag
Quant,
Zig-zag

AC in
Huffm

AC in
Huffm

1-DCT

Trans
in DCT

Figure 5. JPEG encoder core using 3x3 processors

unit1
(T1)

unit2
(T3)

comm.
(T2)

(a) One way communication:
The throughput is 1/Max (T1, T2, T3)

unit1
(T1)

unit2
(T3)

comm.
(T2)

(b) Communication loop:
The throughput is 1/(T1 + T2 + T3 + T4)

comm.
(T4)

Figure 6. System throughput in a) one way communication
path, and b) communication loop path

cessors, and an IEEE 802.11g/802.11a wireless LAN trans-
mitter using 22 processors [12].

The JPEG encoder core composition as shown in Fig. 5
is one application example. The main functional blocks in-
clude a level shifter, an 8×8 DCT, quantization, zig-zag re-
ordering, and a Huffman encoder. The 8×8 DCT is pro-
cessed using two 1-dimensional DCTs. The second DCT
data transpose is avoided by changing the quantization ta-
ble order and zig-zag order. Four processors are used for
the Huffman encoding.

3.1. Comparison of application performance

The first two lines of Table 1 show the computation time
in clock cycles when mapping these applications onto the
synchronous and GALS array processors. The third line
lists the relative performance penalty of the GALS array
processor. The performance of the GALS system is nearly
the same as the synchronous system with an average of less
than 1% performance reduction, which is much smaller than
the 10% performance reduction of a GALS uniprocessor [3,
4].

3.2. Performance effects of GALS clocking

3.2.1 Importance of the communication loop delay

The performance penalty of a GALS system comes from
its increased communication delay. More specifically, sim-
ple one way communication does not affect system perfor-
mance, but communication loops—in which two units wait
for information from each other—can degrade performance.

Proc.
1

 Proc.
2

(a) Data producer proc. 1 too slow causes
frequent FIFO empty stalls

Proc.
1

 Proc.
2

(b) Data consumer proc. 2 too slow causes

frequent FIFO full stalls

Proc.
1

 Proc.
2

(c) Data producer proc. 1 and data
consumer proc. 2 both too slow at different

times cause FIFO empty and full stalls

Proc.
1

(d) Example of multiple-link loop between

two processors

 Proc.
2

F
I
F
O

F
I
F
O

empty
stall

full
stall

empty stall

full stall

empty
stall

full
stall

full stall

empty stall

F
I
F
O

F
I
F
O

F
I
F
O

Figure 7. Examples of stalls and stall loops in a GALS array
processor

In a one way communication path as shown in Fig. 6a,
the system throughput is dependent on the slowest unit
and is not related to the communication—assuming com-
munication is not the slowest unit, which is true in our
case. However, throughput is significantly impacted when
the communication has feedback and generates a loop, as
shown in Fig. 6b. If unit 1 and unit 2 both need to wait for
information from each other, the throughout will be depen-
dent on the sum of unit execution time and communication
time. Then the communication time affects the performance
of both synchronous and GALS systems, but the GALS sys-
tem has a larger performance penalty due to its larger com-
munication time.

A similar conclusion can be drawn from the GALS
uniprocessor. In instructions without pipeline hazards, the
GALS uniprocessor has the same performance as the syn-
chronous uniprocessor since it has only one way communi-
cation. However, during instructions such as taken branches
(where the new PC needs the feedback from the execu-
tion result), a communication loop is formed. Thus the
GALS style brings a performance penalty in some cases.
Other pipeline hazards also generate similar communication
loops.

3.2.2 FIFO stall loops in GALS array processors gen-
erate communication loops

In both synchronous array processors and GALS array pro-
cessors, FIFO stalls effect performance since one processor
must wait for the information from another processor when
they enter a stall status. GALS systems have a larger per-
formance penalty than synchronous systems since they have
larger latencies for FIFO stall information.

A FIFO-empty stall occurs when a processor reads an
empty FIFO and must wait (stall) until data is available,
as illustrated in Fig. 7a. A FIFO-full stall occurs when a
processor writes a full FIFO and must wait until there is

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

Table 1. Clock cycles (1/throughput) of several applications mapped onto a synchronous array processor and a GALS array
processor, with 32-word FIFOs

8-pt DCT 8×8 DCT zig-zag mergesort bubblesort matrix 64 FFT JPEG 802.11
Synchronous array 41 498 168 254 444 817.5 11439 1439 87857
GALS array 41 505 168 254 444 819 11710 1443 88989
GALS Perf. reduction 0% 1.4% 0% 0% 0% 0.1% 2.3% 0.3% 1.3%

writable space, as shown in Fig. 7b.
Pure FIFO-full stalls or FIFO-empty stalls alone as in

Fig. 7a,b generate one way communication and have no ef-
fect on system throughput. The situation shown in Fig. 7c
is one example of the FIFO stall communication loop. Pro-
cessor 2 has FIFO-empty stalls and must wait for proces-
sor 1, and processor 1 has FIFO-full stalls and must wait
for processor 2. When FIFO-full stalls and FIFO-empty
stalls both exist (obviously at different times) in a link,
they produce a communication loop and this reduces sys-
tem performance—for both synchronous and GALS sys-
tems, albeit with less of a penalty for a synchronous system.
Another situation which generates a FIFO stall communica-
tion loop is shown in Fig. 7d. In this case, processor 1 and
processor 2 send data to each other, and each processor has
both FIFO full stalls and FIFO empty stalls. An example of
this case exists in our FFT application where some proces-
sors are used as data storing coprocessors and they send and
receive data to computation processors.

Simulation results in Table 1 show that the GALS ar-
ray processor has nearly the same performance as the syn-
chronous array processor. This performance reduction is
much less compared to the GALS uniprocessor’s reduction.
This implies that the chance of the FIFO stall loop in an ar-
ray processor for our applications is much smaller than the
probability of a pipeline hazard in a uniprocessor. These re-
sults match well with our model. In Table 1, the 8-pt DCT,
zig-zag, mergesort and bubblesort have no GALS perfor-
mance penalties since they have only one-way FIFO stalls.
The 8×8 DCT and JPEG have situations like Fig. 7c and
have an approximately 1% performance penalty. The 64-
point FFT and 802.11g/a applications have situations like
Fig. 7c and Fig. 7d and their performance penalty is slightly
larger.

3.3. FIFO size affects synchronous and GALS sys-
tem performance

FIFO stalls are highly dependent on the FIFO size. When
the FIFO is large enough, there will be no FIFO-full stalls,
and at the same time, the number of FIFO-empty stalls can
be greatly reduced. With a sufficiently large FIFO, the com-
munication loop in Fig. 7c will be broken due to the miss-
ing FIFO-full stalls. The likelihood of the communication
loop in Fig. 7d will also be highly reduced, but is still pos-

8 DCT 8x8 DCTzig−zag m−sort b−sort matrix 64 FFT JPEG 802.11
0

0.5

1

R
el

. P
er

fo
rm

an
ce

Relative performance of synchronous system in different FIFO depth

16 words
32 words
64 words
128 words

8 DCT 8x8 DCTzig−zag m−sort b−sort matrix 64 FFT JPEG 802.11
0

0.5

1

R
el

. P
er

fo
rm

an
ce

Relative performance of GALS system in different FIFO depth

16 words
32 words
64 words
128 words

8 DCT 8x8 DCTzig−zag m−sort b−sort matrix 64 FFT JPEG 802.11
0.8

0.85

0.9

0.95

1

P
er

fo
rm

an
ce

 R
at

io

Performance ratio of GALS to synchronous in different FIFO depth

16 words
32 words
64 words
128 words

Figure 8. Performance of synchronous and GALS array pro-
cessors with different FIFO sizes

sible since FIFO-empty stalls alone can still form a loop.
Reduced FIFO stall loops increase the system performance
and reduce the GALS performance penalty.

The top and middle subplots of Fig. 8 show the perfor-
mance of the synchronous and GALS systems with different
FIFO sizes, respectively. Whether using a synchronous or
GALS style, increasing the FIFO size will increase system
performance because of reduced FIFO stall loops. Also,
a threshold FIFO size exists above which the performance
won’t change. The threshold is the point when the FIFO-
full stall becomes non-existent due to having a large enough
FIFO size, and increasing the FIFO size further gives no
benefit. The threshold is dependent on the application as
well as the mapping method. In our case, the thresholds for
the 8×8 DCT and 802.11g/a are 64 words; JPEG and bub-
ble sort are 32 words; the 8-pt DCT and merge sort are less
than or equal to 16 words.

The bottom subplot of Fig. 8 shows the performance ra-
tio of the GALS system to the synchronous system. The
ratio normally stays at a high level larger than 95%. When
increasing the FIFO size, the ratio tends to increase due to
fewer communication loops. The ratio normally reaches
1.0 at the threshold, which means the FIFO communication
loops are all broken and the GALS system has the same
performance as the synchronous system. The exception in
the examples is the FFT in which the GALS system always

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

1 2
0

0.5

1

R
el

. c
om

pu
te

 lo
ad

8−pt DCT

1 2 3 4
0

0.5

1
8x8 DCT

1 2
0

0.5

1
Zig−zag

1 2 3 4 5 6 7 8
0

0.5

1

R
el

. C
ou

m
pt

e
lo

ad

merge−sort

1 2 3 4 5 6 7 8
0

0.5

1
bubble−sort

1 2 3 4 5 6
0

0.5

1
matrix

1 2 3 4 5 6 7 8
0

0.5

1

R
el

. C
ou

m
pt

e
lo

ad

64 FFT

1 2 3 4 5 6 7 8 9
0

0.5

1
JPEG

0 10 20
0

0.5

1
802.11

Figure 9. Relative computational load of different processors
in nine applications illustrating unbalanced loads

has a noticeable performance penalty of approximately 2%.
The reason can be seen from Fig. 7d where the FIFO-empty
stall alone can generate the stall loop without a FIFO-full
stall.

4. Energy Efficiency Analysis of Independent
Clock Frequency Scaling

Several researchers have reported the high power ef-
ficiency of the GALS style due to its simplified clock
tree [2, 6]. We focus on another power consumption benefit
of the GALS system due to the flexibility of clock frequency
and supply voltage scaling. The work presented here ad-
dresses static scaling methods.

The Synchroscalar [13] system utilizes processors with
rationally-related clocks. While the approach avoids the ex-
tra hardware of asynchronous communication, its clocks are
not as flexible as GALS clocks.

4.1. Unbalanced processor computation loads give
power saving potential

Traditional parallel programming methods normally
seek to balance computational loads in different processors.
On the other hand, when using adaptive clock methods, un-
balanced computational loads are no longer a problem, and
in fact give an opportunity to reduce the clock frequency
and supply voltage of some processors to achieve further
power savings without degrading system performance [14].
Releasing the constraint of a balanced computational load
enables the designer to explore wider variations in other pa-
rameters such as program size, local data memory size and
communication methods. Figure 9 shows the unbalanced
computational load among processors when mapping our
applications onto an array processor.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Relative clock frequency

R
el

at
iv

e
P

er
fo

rm
an

ce

scale 1st processor
scale 2nd processor
scale 3rd processor
scale 4th processor

optimal clock
scaling points

Figure 10. Throughput changes with statically configured
processor clocks for an 8×8 DCT

1-DCT Trans 1-DCT Trans

FIFO-full stall of

1st processor

FIFO-empty stall of

2nd processor

FIFO-full stall of

2nd processor

FIFO-empty stall of

3rd processor

FIFO-empty stall of

4th processor

Figure 11. Relationship of processors in an 8×8 DCT

4.2. Computational load and position affect optimal
clock frequency

The optimal processor clock frequency in a GALS array
processor depends strongly on its computational load, and
also depends on its position and relationship with respect to
other processors.

Figure 10 shows the system throughput versus the clock
frequencies of four processors in the 8×8 DCT. The compu-
tational load of the four processors is 408, 204, 408 and 204
clock cycles respectively. The throughput changes with the
scaling of the 2nd and 4th processor much more slowly than
the scaling of the 1st and 3rd processors. This illustrates
the clear point that a processor with a light computational
load is more likely to maintain its performance with a re-
duced clock frequency. Somewhat counterintuitively, how-
ever, the 2nd and 4th processors have the same light compu-
tational load, but the throughput changes with the 4th pro-
cessor scaling much more slowly than the 2nd processor’s
scaling. Minimal power consumption is achieved with full
throughput when the relative clock frequencies are 100%,
95%, 100%, and 57% of full speed respectively.

The reason for the different behavior of the 2nd and 4th

processors comes from their different positions and FIFO
stall styles as shown in Fig. 11. The 2nd processor has both
FIFO-full stalls and FIFO-empty stalls, while the 4th pro-
cessor has only FIFO-empty stalls.

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

8pt DCT8x8 DCT zig−zag 64 FFT JPEG 802.11 msort bsort 5x5 matrix
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e
P

ow
er

Figure 12. Estimated relative power of the GALS system with
static clock/voltage scaling compared to a synchronous system

4.3. Estimating power reduction

Reducing the clock frequency allows for a reduction in
voltage to obtain further power savings. The relationship
between clock frequency and voltage, and power and volt-
age can be modeled by a simple linear relation and a square
relation respectively. However, these relationships become
much more complex in the deep submicron regime because
of other parameters such as leakage power. For this anal-
ysis, we use a model derived from measured data from a
0.18 μm technology [15] to estimate power consumption.

Using the optimal clock frequency for each processor
as described in Sec. 4.2, and the power-frequency-voltage
model, we estimate the relative power consumption of the
GALS array processor compared to the synchronous ar-
ray processor after using static clock frequency and sup-
ply voltage scaling for several applications. The result is
shown in Fig. 12. The GALS system achieves an average
power savings of approximately 40% without affecting the
performance. This power savings is much higher than the
GALS uniprocessor which was reported to save approxi-
mately 25% power when operating with a performance re-
duction of more than 10% [3, 4, 5].

5. Summary and acknowledgments

It has been shown that communication loops are a source
of significant throughput reduction in communication links
and that there is no reduction under certain conditions for
one-way links. A key advantage of the GALS array pro-
cessor compared to the GALS uniprocessor is that commu-
nication loops occur far less frequently and therefore the
performance penalty is significantly lower. The proposed
GALS array processor has a throughput penalty of less than
1% with a power dissipation reduction of 40% over a vari-
ety of DSP and numerical workloads. These results com-
pare well with a reported 25% power reduction and a 10%

performance reduction with GALS uniprocessors.
Data presented in this paper are based on the fabri-

cated GALS processor and its synchronous mode of oper-
ation [11]. While results will certainly vary over different
applications and specific architectures, we expect the gen-
eral conclusion that multi-processor GALS systems have
smaller performance reductions and larger power reduc-
tions, should still hold.

The authors thank E. Work, T. Mohsenin, other VCL
processor co-designers, R. Krishnamurthy, M. Anders,
S. Mathew; and support from Intel, UC MICRO, NSF Grant
No. 0430090, and a UCD Faculty Research Grant.

References

[1] S. Borkar et al., “Parameter variations and impact on circuits
and microarchitecture,” in DAC, 2003, pp. 338–342.

[2] T. Meincke et al., “Globally asynchronous locally syn-
chronous architecture for large high-performance asics,” in
ISCAS, May 1999, pp. 512–515.

[3] A. Iyer et al., “Power and performance evaluation of globally
asynchronous locally synchronous processors,” in ISCA.

[4] E. Talpes and D. Marculescu, “A critical analysis of
application-adaptive multiple clock processor,” in ISLPED.

[5] G. Semeraro et al., “Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency
scaling,” in HPCA, 2002, pp. 29–40.

[6] A. Upadhyay et al., “Optimal partitioning of globally
asynchronous locally synchronous processor arrays,” in
GLSVLSI, 2004, pp. 26–28.

[7] S. Naffziger et al., “The implementation of a 2-core multi-
threaded Itanium family processor,” in ISSCC, 2005.

[8] M. B. Taylor et al., “The raw microprocessor: A computa-
tional fabric for software circuits and general purpose pro-
grams,” IEEE Micro, pp. 25–35, 2002.

[9] D. A. Patterson et al., Computer Architecture – A Quantita-
tive Approach, Morgan Kaufmann, second edition, 1999.

[10] R. Apperson, “A dual-clock FIFO for the reliable transfer
of high-throughput data between unrelated clock domains,”
M.S. thesis, UC Davis, 2004.

[11] Z. Yu et al., “An asynchronous array of simple processors
for DSP applications,” in ISSCC, Feb. 2006.

[12] M. Meeuwsen et al., “A full-rate software implementation of
an IEEE 802.11a compliant digital baseband transmitter,” in
SiPS, 2004, pp. 297–301.

[13] J. Oliver et al., “Synchroscalar: A multiple clock domain,
power-aware, tile-based embedded processor,” in ISCA.

[14] T. Njolstad et al., “A socket interface for gals using locally
dynamic voltage scaling for rate-adaptive energy saving,” in
ASIC/SOC, Sept. 2001, pp. 110–116.

[15] K. Nowka et al., “A 32-bit powerpc system-on-a-chip with
support for dynamic voltage scaling and dynamic frequency
scaling,” JSSC, pp. 1441–1447, Nov. 2002.

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

