Performance and Power Analysis of Globally Asynchronous Locally Synchronous Multiprocessor Systems

Zhiyi Yu, Bevan M. Baas

VLSI Computation Lab, ECE department, UC Davis

Outline

Motivation

- Experimental platform: a GALS array processor
- Performance analysis of GALS multiprocessors
- Power analysis of GALS multiprocessors

Why GALS Chip Multiprocessor

- Why GALS clocking style
 - The challenge of globally synchronous systems
 - The challenge of totally asynchronous systems
 - GALS is a good compromise
- Why chip multiprocessor
 - The challenge of increasing clock frequency
 - High performance and high energy efficiency of multiprocessor system

GALS Effects

• Performance penalty due to additional synchronization delay

A simple GALS system

Sync. delay = clk edge alignment (t_e) + sync. circuit (t_s)

 High energy efficiency due to independent clock/voltage scaling

Synchronous vs. GALS comparisons

Outline

- Motivation
- Experimental platform: a GALS array processor
- Performance analysis of GALS multiprocessor
- Power analysis of GALS multiprocessor

Our Implementation of a GALS Array and Synchronous Array

- Contains multiple identical simple processors
- Local oscillator and dual-clock FIFOs are key components for GALS style

Micrograph of the 6 x 6 GALS Array

Technology:	0.18 µm CMOS
Max speed:	475 MHz
Area (1 Proc):	0.66 mm²
Fully functional	

[Yu, ISSCC06]

Outline

- Motivation
- Experimental platform: a GALS array processor
- Performance analysis of GALS multiprocessor
- Power analysis of GALS multiprocessor

Performance Penalty of GALS Uni-processor

• Extra pipeline hazards result in ~10% throughput penalty compared with synchronous uni-processor

Branch penalty of 3 cycles and 4 SYNC delays in a GALS uni-processor

[Lyer, ISCA02; Semeraro, HPCA02; Talpes, ISLPED03]

Application Performance of GALS and Synchronous Array

- GALS array has only ~1% performance penalty
- Simulation conditions: 32-word FIFO, same clock frequency, 2 synchronization registers for GALS

	8-pt DCT	8×8 DCT	Zig- zag	merg sort	bub. sort	ma- trix	64 FFT	JPEG	802. 11a/g
Sync. array	41	498	168	254	444	817.5	11439	1439	87857
GALS array	41	505	168	254	444	819	11710	1443	88989
GALS perf. reduction(%)	0	1.4	0	0	0	0.1	2.3	0.3	1.3

Clock cycles for several applications

The Source of Performance Penalty of GALS Array Processor

- For all systems, communication delay affects system throughput only when it generates a loop
- For GALS array processor, communication loop is the FIFO stall loop
 - Performance simulation results show that the chance of FIFO stall loop is low for many DSP applications
- FIFO depth affects FIFO stalls and hence a reasonable FIFO size is required

Importance of the Communication Loop Delay

- One way communication does not affect system throughput
- Communication loop degrades throughput
 - In uni-processor, it is caused by pipeline hazards
 - GALS system has longer communication loop delay

Examples of Stall and Stall Loops in a GALS Array Processor

Data producer proc. 1 too slow causes frequent FIFO empty stalls

Data consumer proc. 2 too slow causes frequent FIFO full stalls

Data producer proc. 1 and data consumer proc. 2 both too slow at different times cause FIFO empty and full stalls

Performance of Synchronous and GALS Array with Different FIFO Sizes

Outline

- Motivation
- Experimental platform: a GALS array processor
- Performance analysis of GALS multiprocessor
- Power analysis of GALS multiprocessor

Clock/Voltage Scaling in GALS Uni-processor

- All GALS designs
 - Independently control clock frequencies to save power
 - Reduced clock frequency allows voltage reduction
- Around 25% energy savings with more than 10% performance penalty

Clock/Voltage Scaling in GALS Array Processor

- Similar basic idea as uni-processor
 - Use low clock frequency for processors with light computation load
 - Benefit from unbalanced processor computation loads
- Both static and dynamic clock scaling methods
 We study only static scaling here
- The optimal processor clock frequency is determined by its
 - Computational load
 - Position
- Can achieve power savings without performance reduction!

Unbalanced Processor Computation Loads in Nine Applications

Throughput Changes with Statically Configured Clock for 8x8 DCT

Relationship of Processors in an 8x8 DCT

- Proc. 2 and 4 have identical computational load
- Different position results in a different FIFO stall style, which causes different clock scaling behavior

Power of GALS Array with Static Clock/Voltage Scaling

- 40% power savings without a performance penalty
- From simulated clock frequency and referenced clk/voltage/pow relationship

Summary

- Compared to a synchronous array processor, the proposed GALS array processor has:
 - < 1% throughput reduction
 - ~40% energy savings
- These results compare well with reported GALS uni-processors:
 - ~10% throughput reduction
 - ~25% energy savings
- Source of throughput reduction in GALS system
 - Extra cost for communication loops
 - Extra cost for FIFO stall loops in GALS array processors
- Energy benefit of GALS clock/voltage scaling
 - Unbalanced processor computation loads

Acknowledgments

- Funding
 - Intel Corporation
 - UC Micro
 - NSF Grant No. 0430090
 - UCD Faculty Research Grant
- Special Thanks
 - E. Work, T. Mohsenin, other VCL processor codesigners, R. Krishnamurthy, M. Anders, S. Mathew