
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 3, MARCH 2008 695

AsAP: An Asynchronous Array of Simple Processors
Zhiyi Yu, Michael J. Meeuwsen, Ryan W. Apperson, Omar Sattari, Michael Lai, Jeremy W. Webb, Eric W. Work,

Dean Truong, Tinoosh Mohsenin, and Bevan M. Baas

Abstract—An array of simple programmable processors is
implemented in 0.18 m CMOS and contains 36 asynchro-
nously clocked independent processors. Each processor occupies
0.66 mm2 and is fully functional at a clock rate of 520–540 MHz at
1.8 V and over 600 MHz at 2.0 V. Processors dissipate an average
of 32 mW under typical conditions at 1.8 V and 475 MHz, and
2.4 mW at 0.9 V and 116 MHz while executing applications such
as a JPEG encoder core and a fully compliant IEEE 802.11a/g
wireless LAN baseband transmitter.

Index Terms—Array processor, chip multi-processor, digital
signal processing, DSP, GALS, globally asynchronous locally
synchronous, many-core, MIMD, multi-core.

I. INTRODUCTION

APPLICATIONS that require the computation of complex
DSP workloads are becoming increasingly common-

place. These applications often comprise multiple DSP tasks
and are frequently key components in many systems such
as: wired and wireless communications, multimedia, remote
sensing and processing, and biomedical applications. Many
of these applications are embedded and are strongly energy
and cost-constrained. In addition, many of them require very
high throughputs, often dissipate a significant portion of the
system power budget, and are therefore of considerable interest.
Therefore, the key challenges in DSP and embedded processor
design are in maximizing performance (often throughput),
minimizing energy dissipation per operation, and minimizing
silicon area (cost).

Increasing clock frequencies and increasing numbers of cir-
cuits per chip has resulted in modern chip performance being
limited by power dissipation rather than circuit constraints. This
implies a new era of high-performance design that must now
focus on energy-efficient implementations. Furthermore, future
fabrication technologies are imposing new challenges such as
large circuit parameter variations, and wire delays which may
significantly reduce maximum clock rates. Therefore, architec-
tures that address the challenges and exploit the advantages of
future fabrication technologies are worthy of special considera-
tion.

There are several design approaches for DSP processors.
ASICs can provide very high performance and very high energy

Manuscript received June 20, 2006; revised October 31,2007. This work was
supported by Intel, UC Micro, National Science Foundation Grant 0430090
and CAREER Award 0546907, Semiconductor Research Corporation GRC
Grant 1598, IntellaSys, S Machines, MOSIS, Artisan, ST Microelectronics,
and a UCD Faculty Research Grant.

The authors are with the Department of Electrical and Computer Engineering,
University of California, Davis, CA 95616 USA (e-mail: zhyyu@ece.ucdavis.
edu).

Digital Object Identifier 10.1109/JSSC.2007.916616

efficiency, but they have little programming flexibility. On the
other hand, programmable DSPs are easy to program but their
performance and energy efficiency are much lower. FPGAs fall
somewhere in between. The goal of the Asynchronous Array
of simple Processors (AsAP) project is to develop a system
that computes complex DSP application workloads with high
performance and high energy efficiency, is well suited for
implementation in future fabrication technologies, and main-
tains the flexibility and programming ease of a programmable
processor.

The AsAP system comprises a 2-D array of simple pro-
grammable processors interconnected by a reconfigurable mesh
network [1]. Processors are each clocked by fully independent
haltable oscillators in a Globally Asynchronous Locally Syn-
chronous (GALS) [2] scheme. The multi-processor architecture
efficiently makes use of task level parallelism in many complex
DSP applications, and also efficiently computes many large
DSP tasks through fine-grain parallelism (i.e., large numbers of
processors computing a fine-grain partitioning of the workload)
to achieve high performance.

AsAP uses a simple processor architecture with small mem-
ories to dramatically increase energy efficiency. The flexible
programmable processor architecture broadens the target ap-
plication domain and allows high one-time fabrication costs to
be shared among a variety of applications. The GALS clocking
style and nearest-neighbor communication greatly enhance
scalability, and provide opportunities to mitigate effects of de-
vice variations, global wire limitations, and processor failures.
A prototype 6 6 AsAP chip has been implemented in 0.18 m
CMOS and is fully functional [3].

This paper is organized as follows. Section II introduces the
key AsAP processor features and Section III details the AsAP
design. Section IV presents measured results from the fabricated
chip, and Sections V and VI discuss related work and conclude
the paper.

II. MOTIVATION AND KEY FEATURES OF ASAP PROCESSOR

Several key features distinguish the AsAP processor. These
features and the resulting benefits are illustrated in Fig. 1 and
are discussed in greater detail in the following subsections.

A. Chip Multiprocessor and Task Level Parallelism

Increasing the clock frequency of processors has worked
well for increasing performance but recently has become sig-
nificantly more challenging. Advanced CPUs already consume
more than 100 W operating over 2 GHz [4]. Cooling costs for
such chips limit the acceptable power consumption and also the
achievable clock frequency and processor performance [5]. The
technique of increasing the clock frequency by deeper pipeline
stages is also reaching its limit, since it requires more registers

0018-9200/$25.00 © 2008 IEEE

696 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 3, MARCH 2008

Fig. 1. Key features of AsAP and resulting benefits.

Fig. 2. Multi-task application executing on (a) a traditional architecture and
(b) a stream-oriented multi-processor well suited for task level parallelism.

and control logic, thereby further increasing design difficulty
and lowering energy efficiency.

Parallelization, rather than increased clock frequency, is an-
other strategy to increase system performance with techniques
such as instruction level parallelism, data level parallelism and
task level parallelism.

Task level parallelism is especially well suited for many DSP
applications, but unfortunately it can not be easily used on tradi-
tional sequentially executing processors. As shown in Fig. 2(a),
the traditional system normally contains a powerful processor
with a large memory, and executes the tasks of the application in
sequence and stores temporary results into memory. The same
application may be able to run on multiple processors using
task level parallelism more efficiently as shown in Fig. 2(b),
where different processors handle different tasks of the appli-
cation. Normally the data input of DSP applications is consid-
ered of infinite length, so these processors can execute in par-
allel and achieve high performance. Also, the temporary results
from each processor can be sent to the following processor di-
rectly and do not need to be stored in a large global memory, so
less memory is necessary compared to the traditional method.

Task level parallelism is widely available in many DSP
applications. Fig. 3 shows an example of a modern complex
application that exhibits abundant task-level parallelism—the
transmit chain of an IEEE 802.11a/g wireless LAN transmitter.
It contains more than 10 tasks, and each of them can be di-
rectly mapped to separate processors to take advantage of the
available task level parallelism.

B. Memory Requirements of the Targeted Tasks

With an ever increasing number of transistors possible per
die, modern programmable processors typically use not only an
increasing amount of on-chip memory, but also an increasing
percentage of die area for memory. Fig. 4 shows the area break-
down of four modern processors [6], [4], [7], [8] with mem-

Fig. 3. IEEE 802.11a/g wireless LAN (54 Mb/s, 5/2.4 GHz) baseband transmit
path.

Fig. 4. Area breakdown for four modern processors.

TABLE I
MEMORY REQUIREMENTS FOR COMMON DSP TASKS

ASSUMING A SIMPLE SINGLE-ISSUE PROCESSOR

ories that occupy 55% to 75% of the processor’s area. Large
memories reduce the area available for execution units, con-
sume significant power, and require larger delays per memory
transaction. Therefore, architectures that minimize the need for
memory and keep data near or within processing elements can
increase area efficiency, performance, and energy efficiency.

A notable characteristic of the targeted DSP and embedded
tasks is that many have very limited memory requirements com-
pared to general-purpose tasks. The level of required memory
must be differentiated from the amount of memory that can be
used or is typically used to calculate these kernels. Table I lists
the actual amounts of instruction and data memory required for
several tasks commonly found in DSP applications. These num-
bers assume a simple single-issue fixed-point processor. The
data show that several hundred words of memory are enough
for many DSP and embedded tasks—far smaller than the 10
KBytes to 10 MBytes per processing element typically found
in modern DSP processors. Reducing memory sizes can result
in significant area and power savings.

C. GALS Clocking Styles

A globally synchronous clock style is normally used in
modern integrated circuits. But with the larger relative wire
delays and larger parameter variations of deep-submicron

YU et al.: ASAP: AN ASYNCHRONOUS ARRAY OF SIMPLE PROCESSORS 697

technologies, it has become increasingly difficult to design both
large chips, and chips with high clock rates. Additionally, high
speed global clocks consume a significant portion of power
budgets in modern processors. For example, 1/4 of the total
power dissipation in the recent 2-core Itanium [4] is consumed
by clock distribution circuits and the final clock buffer. Also,
the synchronous style lacks the flexibility to independently
control the clock frequency among system sub-components to
achieve increased energy efficiency.

The opposite clock style of globally synchronous—fully
asynchronous—has the potential for speed and power im-
provements, but currently lacks EDA tool support, is difficult
to design, and has large circuit overhead which reduces its
efficiency.

The GALS [2] clocking style separates processing blocks
such that each part is clocked by an independent clock domain.
Its use enables the possibility of eliminating global clock distri-
bution completely which brings power and design complexity
benefits. Another significant benefit of GALS is the opportunity
to easily and completely shut off a circuit block’s clock (not just
portions of the clock tree as with clock gating) when there is no
work to do. Additionally, independent clock oscillators permit
independent clock frequency scaling, which can dramatically
reduce power dissipation in combination with supply voltage
scaling [9].

D. Wires and On Chip Communication

A considerable challenge is presented by the increasing
power dissipation and delay caused by on-chip communication
(wires). As Ho et al. report [10], global chip wires will dramati-
cally limit performance in future fabrication technologies if not
properly addressed since their delay is roughly constant with
technology scaling—which leads to an increasing percentage
of clock cycle time. A number of architectures have specifically
addressed this concern [11]–[13]. Therefore, architectures that
enable the elimination of long high-speed wires will likely be
easier to design and may operate at higher clock rates [10].

There are several methods to avoid global wires. Networks
on Chip (NoC) [14] treat different modules in a chip as different
nodes in a network and use routing techniques instead of simple
wire links and buses to transfer data. NoCs provide a powerful
communication method, but often consume large amounts
of area and power. Another method is local communication,
where each processor connects only to processors within a
local domain. One of the simplest examples is nearest neighbor
communication, where each processor directly connects and
communicates only to immediately adjacent processors. This
architecture has high area and energy efficiency per pro-
cessor, and can also provide sufficient communication for
many DSP applications, especially those that are stream-like
[15]. The greatest challenge when using nearest-neighbor
interconnects is efficiently mapping applications that exhibit
significant long-distance communication. Fortunately, for
many applications—including embedded and complex DSP
applications—nearest neighbor inter-processor communication
is highly effective.

Fig. 5. Block diagram of an AsAP processor.

III. THE ASAP PROCESSOR SYSTEM

The AsAP system comprises a 2-D array of simple pro-
grammable processors. Each processor is clocked in a GALS
fashion and interconnected by a reconfigurable mesh network.
AsAP processors are optimized to efficiently compute DSP
algorithms individually as well as in conjunction with neigh-
boring processors.

Fig. 5 shows a block diagram of an AsAP processor and the
fabricated processing array. The array is organized as a 6 by 6
mesh. Data enters the array through the top left processor and
exits through one of the right column processors, selected by a
mux. Input and output circuits are available on each edge of all
periphery processors but most are unconnected in this test chip
due to package I/O limitations.

Each processor is a simple single-issue processor, and con-
tains: a local clock oscillator; two dual-clock asynchronous in-
terfaces to provide communication with other processors; and a
simple CPU including ALU, MAC, and control logic. Each pro-
cessor contains a 64-word instruction memory and a 128-word
data memory. They also contain static and dynamic configura-
tion logic to provide configurable functions such as addressing
modes and interconnections with other processors. Each pro-
cessor can receive data from any two neighbors and can send
data to any combination of its four neighbors. Each processor
contains two input ports because it meshes well with the data
flow graphs of the applications we have studied. Clearly, two
or more input ports are required to support graph fan-in and we
found a third input port was not frequently used. AsAP supports
54 RISC style instructions. Other than the bit-reverse instruction
which is useful for the calculation of the Fast Fourier Transform
(FFT), no algorithm-specific instructions are implemented.

The AsAP processor system utilizes a GALS clocking style
with a local clock oscillator inside each processor. The max-
imum span of the clock tree is less than 1 mm in 0.18 m tech-
nology—the distance across a single processing element. This
approach has excellent scalability and allows the simple addi-
tion of more processors to the array. In a synchronous system,
the global clock tree must be redesigned when adding more pro-
cessors, which can be very difficult for large chips.

A. Single AsAP Processor Design

1) Pipelining and Datapath: Each AsAP processor has a
nine stage pipeline as shown in Fig. 6. The IFetch stage fetches
instructions according to the program counter (PC). No branch
prediction circuits are implemented. All control signals are

698 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 3, MARCH 2008

Fig. 6. AsAP 9-stage pipeline.

generated in the Decode stage and pipelined appropriately.
The Mem Read and Src Select stages fetch data from the data
memory (DMEM), immediate field, the asynchronous FIFO in-
terface from other processors, dynamic configuration memory
(DCMEM), the ACC accumulator register, or ALU/MAC for-
warding logic. The execution stages occupy three cycles, and
bypass logic is used for the ALU and MAC to alleviate data
hazard pipeline penalties. The Result Select and Write Back
stages select results from the ALU or MAC unit, and write the
result to data memory, DC memory, or neighboring processors.
To simplify pre-tapeout verification, pipeline interlocks are not
implemented in hardware, and all code is scheduled prior to
execution by the programmer or compiler.

The MAC unit is divided into three stages to enable a high
clock rate as well as the capability of issuing MAC and mul-
tiply instructions every cycle. Fig. 7 shows a block diagram of
the MAC unit. The first stage generates the partial products of
the 16 16 multiplier. The second stage uses carry-save adders
to compress the partial products into a single 32-bit carry-save
output. The final stage contains a 40-bit adder to add the re-
sults from the second stage to the 40-bit accumulator register
(ACC). Because the ACC is normally read infrequently, only the
least-significant 16 bits of the ACC are readable. More signifi-
cant ACC bits are read by shifting those bits into the 16 LSBs.
This simplification reduces hardware and relaxes timing in the
final MAC unit stage which is the block’s critical pipeline stage.

2) Local Oscillator: Fig. 8 contains a simplified schematic
of the programmable local oscillator which provides the clock
to each processor. The oscillator is an enhanced ring oscillator
and is built entirely with standard cells. Three methods are used
to configure the frequency of the oscillator. First, the ring size
can be configured to 5 or 9 stages using the configuration signal
stage_sel. Second, seven tri-state inverters are connected in par-
allel with each inverter. When a tri-state inverter is turned on,
that stage’s current drive increases, and the ring’s frequency
increases [16]. Third, a clock divider at the output divides the
clock from 1 to 128 times. The halt signal and the SR latch allow
the oscillator to cleanly halt when the processor stalls without
any partial clock pulses.

Processors must stall when they attempt to read data from an
empty FIFO or write data to a full FIFO, to maintain correct
operation. The clock oscillator can be configured to halt during
stalls so that the processor consumes no power whatsoever ex-
cept leakage while stalled. Fig. 9 shows an example waveform

Fig. 7. Block diagram for the three-stage MAC unit.

Fig. 8. Programmable clock oscillator: an inverter ring with configurable tri-
state inverters, ring size and frequency divider.

for clock halting and restarting. Signal stall_fifo is asserted when
FIFO access is stalled due to either an empty input or full output
condition. After a nine clock cycle period, during which the pro-
cessor’s pipeline is flushed, the signal halt_clk (same as halt in
Fig. 8) goes high which halts the clock oscillator. The signal
stall_fifo returns low when the cause of the stall has been re-
solved (when data is put into the empty input FIFO or data is
removed from the full output FIFO); then halt_clk restarts the
oscillator at full speed in less than one clock period. Using this
method, power is reduced by 53% and 65% for a JPEG encoder
and a 802.11a/g transmitter application respectively, by making
active power dissipation equal to zero during periods when pro-
cessors have no work to perform.

Figs. 10(a) and (b) show measured oscillator frequencies for
the 5-inverter and 9-inverter rings respectively. Over all pos-
sible configurations, the oscillator has 524 288 frequency set-
tings and its frequency range is 1.66 MHz to 702 MHz as shown
in Fig. 10(c). Figure 10(d) shows the number of occurrences of
different frequency gaps between settings within the useful fre-
quency range of 1.66 to 500 MHz. In this useful range, approx-
imately 99% of the frequency gaps are smaller than 0.01 MHz,
and the largest gap is 0.06 MHz.

YU et al.: ASAP: AN ASYNCHRONOUS ARRAY OF SIMPLE PROCESSORS 699

Fig. 9. Example waveform of clock halting and restarting.

Fig. 10. Measured oscillator data for a single processor: (a) frequencies for the
5-inverter ring, (b) frequencies for the 9-inverter ring, (c) frequencies over all
configuration possibilities, and (d) number of occurrences at different frequency
gaps.

Despite the fact that the layout for all processors is exactly
the same, process variation causes different processors on the
same die to perform differently than others. Fig. 11 shows mea-
sured oscillator frequencies taken at the same configuration set-
ting on the same chip. The oscillator located in the bottom right
processor has a frequency greater than 540 MHz, while several
oscillators in the top row have frequencies less than 500 MHz.
By its very nature of being a truly GALS processor array, this
design is free from any new functionality issues whatsoever not
present in standard clocked digital systems (other than possible
metastability at clock domain crossings which can be reduced to
extremely low levels through configurable synchronization reg-
isters) in either hardware (including the FIFO buffers) or soft-
ware due to processor clock frequency variations from jitter,
skew, halting, restarting, frequency changes, or process vari-
ations. The only impact of variations is a possible change in
throughput.

B. Design of Inter-Processor Communication

The AsAP architecture connects processors via a con-
figurable 2-D mesh as shown in Fig. 12. To maintain link
communication at full clock rates, inter-processor connections
are made to nearest-neighbor processors only. Each processor
has two asynchronous input data ports and can connect each
port to any of its four nearest neighboring processors. The

Fig. 11. Physical distribution of measured oscillator frequencies across dif-
ferent processors with the same configuration. Data are given in MHz with con-
tour lines from 500 MHz to 540 MHz in 5 MHz steps.

input connections of each processor are normally defined
during the configuration sequence after powerup. The output
port connections can be changed among any combination of
the four neighboring processors at any time through software.
Input ports are read and output ports written through reserved
program variables and inter-processor timing is in fact invisible
to programs without explicit software synchronization. AsAP’s
nearest neighbor connections result in no high-speed wires
with a length greater than the linear dimension of a processing
element. Since inter-processor links are extremely short local
wires and not global wires, inter-processor delay decreases with
advancing fabrication technologies and allows clock rates to
scale upward. Data transfers between distant AsAP processors
are handled by routing through intermediary processors—phys-
ical links are still only among nearest neighbors, however.

The reliable transfer of data across unrelated asynchronous
clock domains is accomplished by mixed-clock-domain FIFOs.
The dual-clock FIFOs read and write in fully independent and
haltable clock domains without restrictions other than minimum
cycle times. No special circuits are required other than the ones
shown. The FIFO block was entirely synthesized, and automat-
ically placed and routed. A block diagram of the FIFO’s major
components is shown in Fig. 13. The FIFO’s write clock and
write data are supplied in a source-synchronous fashion by the
upstream processor and the FIFO’s read clock is supplied by the
downstream processor. In AsAP, the dual-clock FIFO resides
in the downstream processor to simplify the physical design.
Values are read from only the head of the FIFO, and this is pre-
sented to software as a single operand source. The read and write
addresses are transferred across the asynchronous interface, and
are used to decide if the FIFO is full or empty. Configurable syn-
chronization registers are inserted in the asynchronous interface
to alleviate metastability. In order to avoid changing multiple
address bit values at the same time across the asynchronous in-
terface, the addresses are gray coded when transferred across
the clock domain boundary [17].

C. Implementation of AsAP

The AsAP processor is implemented in 0.18 m TSMC stan-
dard CMOS using Artisan standard cells. The chip is fully syn-
thesized from verilog, except the clock oscillator which was de-
signed by hand from standard cells. The IMem, DMem, and two

700 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 3, MARCH 2008

Fig. 12. Nearest neighbor inter-processor communication diagram.

Fig. 13. Block diagram of the dual-clock FIFO used for asynchronous
boundary communication.

FIFO memories are built using memory macro blocks. The de-
sign process was done in two phases. First, a single processor
was auto placed and routed including power grid design, clock
tree insertion, and several passes of in-place optimization to in-
crease speed and reduce wiring congestion. Second, processors
were arrayed across the chip, and the small amount of global cir-
cuitry was auto placed and routed around the array. Processors
nearly abut with very short wires between them. Fig. 14 shows
the die micrograph of the first generation 6 6 AsAP array pro-
cessor. Each processor contains 230 000 transistors.

For testing purposes, 27 critical signals from each of the 36
processors can be selectively routed to eight chip pads for real-
time viewing of these key signals which include: clocks, stall
signals, FIFO signals, program counter, etc. Figure 15 shows
the test environment for the AsAP prototype including a printed
circuit board hosting an AsAP processor and a supporting FPGA

Fig. 14. Micrograph of the 6� 6 AsAP chip.

Fig. 15. AsAP board and supporting FPGA-based test board.

board to interface between AsAP’s configuration and data ports
and a host computer. There is one SPI style serial port designed
in the AsAP processor which receives external information and
commands for configuration and programs.

YU et al.: ASAP: AN ASYNCHRONOUS ARRAY OF SIMPLE PROCESSORS 701

Fig. 16. Area evaluation of AsAP processor and several other processors; with technology scaled to 0.13 �m.

TABLE II
AREA BREAKDOWN IN A SINGLE PROCESSOR

IV. MEASUREMENT AND EVALUATION

A. Testing and Measurement Results

1) Area: Due to its small memories and simple communi-
cation scheme, each AsAP processor devotes most of its area
to the execution core and thereby achieves a high area effi-
ciency. Table II shows the area breakdown for each AsAP pro-
cessor. Each one dedicates 8% to communication circuits, 26%
to memory circuits, and a favorable 66% to the core. These data
compare well to other processors [6], [12], [18], [8], [19], [20],
as shown in Fig. 16(a), since the other processors use 20% to
45% of their area for the core. Each AsAP processor occupies
0.66 mm and the 6 6 array occupies 32.1 mm including
pads, global power rings, and a small amount of chip-level cir-
cuits. Fig. 16(b) compares the area of several processors scaled
to 0.13 m, assuming area reduces as the square of the tech-
nology’s minimum feature size. The AsAP processor is 20 to
210 times smaller than these other processors.

2) Power and Performance: The fabricated processors run at
520–540 MHz at a supply voltage of 1.8 V and over 600 MHz
at 2.0 V. The shmoo plot of Fig. 17 shows processor operation
as a function of supply voltage and clock speed. Since AsAP
processors dissipate zero active power when idle for even brief
periods of time (such as is common in complex applications),
and because different instructions dissipate varying amounts of
power, it is useful to consider several power measurements. The
average processor power while executing the JPEG encoder and
802.11a/g transmitter applications is 32 mW at 475 MHz. Pro-
cessors that are 100% active and executing a “typical applica-
tion” mix of instructions dissipate 84 mW each at 475 MHz. The
absolute worst case power per processor at 475 MHz is 144 mW
and occurs when using the MAC instruction with all memories
active every cycle.

At a supply voltage of 0.9 V, processors run at 116 MHz and
the typical application power is only 2.4 mW.

Fig. 17. Processor shmoo: voltage versus speed.

Approximately 2/3 of AsAP’s power is dissipated in its
clocking system. This is largely due to the fact that clock
gating is not implemented in this first design, so the future
addition of even coarse levels of clock gating (distinguished
from oscillator halting) are expected to significantly reduce
power consumption further.

Fig. 18 compares the peak performance density and energy
efficiency of several processors [9], [18], [20], [12], [6]. All data
are scaled to 0.13 m technology. Energy efficiency is defined
as the power divided by the clock frequency with a scale factor
to compensate for multiple issue architectures. These proces-
sors have large differences that are not taken into account by
these simple metrics—such as word width and workload—so
this comparison is only approximate. The AsAP processor has
a high peak performance density that is 7 to 30 times higher than
the others. Also, the AsAP processor has a low power per oper-
ation that is 5 to 15 times lower than the others.

If the exact AsAP design presented here were scaled to a
90 nm technology, a 13 mm by 13 mm chip would yield over
1000 processors, have a peak computation rate of 1 TeraOp/sec,
but dissipate only 10 W typical application power in addition
to leakage. The fine-grain structure of the AsAP design could
provide opportunities for leakage and active power reduction
in the common case when loads are unbalanced across proces-
sors, and would be able to leverage techniques commonly used

702 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 3, MARCH 2008

Fig. 18. Power and performance evaluation of AsAP processor and several
other processors; with technology scaled to 0.13 �m.

Fig. 19. JPEG encoder core using nine processors; thin arrows show all paths
and wide arrows show the primary data flow.

in much larger processors (e.g., by reducing the supply voltage
to a region of lightly used AsAP processors). While this design
contains no special circuits or architectural features to reduce
leakage, assuming a constant transistor density, AsAP’s leakage
power would scale lower roughly at the same rate as its 20 to 210
times lower area compared to the processors shown in Fig. 16,
when implemented in deep-submicron technologies.

B. Software and Application Implementations

While the previous benchmark results are useful, most are
based on simple metrics and do not take into account applica-
tion performance. In addition to the tasks listed in Table I, we
also implemented and further analyzed several complex appli-
cations, including a JPEG encoder core and an 802.11a/g base-
band transmitter [21] which were written in assembly code by
hand, were lightly optimized, and had to be written in parallel
tasks to map to the array.

1) JPEG Encoder: Fig. 19 shows a JPEG encoder core using
nine processors. Three processors compute the Level Shift and
an 8 8 DCT, and four processors implement a Huffman
encoder. All processors consume 224 mW at a clock rate of
300 MHz. Processing each 8 8 block requires approximately
1400 clock cycles. Compared to one implementation on a TI
C62x 8-way VLIW DSP processor, AsAP has similar perfor-
mance, and 11 times lower power consumption [22], [23].

2) 802.11a/g Transmitter: Fig. 20 shows a fully-compliant
IEEE 802.11a/g wireless baseband transmitter using 22 pro-
cessors [24]. Data enters the transmitter in the upper left,

Fig. 20. 802.11a/g transmitter implementation using 22 processors; thin arrows
show all paths and wide arrows show the primary data flow.

TABLE III
COMPARISON OF JPEG ENCODER (9 ASAP PROCESSORS) AND IEEE

802.11A/11G WIRELESS LAN TRANSMITTER (TI C62X NON-COMPLETE,
22 ASAP PROCESSORS COMPLETE IMPLEMENTATION) SOFTWARE

IMPLEMENTATIONS

flows through a number of frequency-domain tasks, the OFDM
64-point complex IFFT, a number of time-domain tasks, and
finally to a synchronization processor whose only purpose is
to enable the asynchronous array to be directly connected to
a digital-to-analog (D/A) converter with no other necessary
logic.

The implementation consumes 407 mW at 300 MHz and
achieves 30% of full rate at 54 Mb/s despite that fact the code
is lightly optimized and unscheduled. This result compares
well to a previously published non-complete implementation
on a TI C62x 8-way VLIW DSP [25], [23]—AsAP achieves
5 to 10 times higher performance with 35 to 75 times lower
energy dissipation—depending on details of the application
conditions. Data are summarized in Table III.

V. RELATED WORK

Most parallel processor systems can be easily differenti-
ated by their processing element architectures. They can be
categorized into three broad types: 1) heterogeneous such as
Pleiades [26], 2) SIMD or SIMD-like such as Imagine [15] and
PipeRench [27], and 3) homogeneous MIMD. AsAP is a homo-
geneous MIMD-style machine and can be distinguished from
other MIMD systems such as Smart Memories [28], RAW [12],
TRIPS [13], and Synchroscalar [29], by processing element
granularity alone. Smart Memories contains 64-bit processors
with two integer clusters, one FPU cluster, and 128 KB of
memory. Each RAW processor contains 32 KB instruction
memory and 32 KB Dcache. The TRIPS processor contains

YU et al.: ASAP: AN ASYNCHRONOUS ARRAY OF SIMPLE PROCESSORS 703

large multiple-issue processors. Individual Synchroscalar pro-
cessing elements are SIMD processors.

Clocking style is another feature that distinguishes AsAP
from other projects. Most of the other implementations use
globally synchronous clocking styles. Pleiades and FAUST
[30] use a handshaking GALS clocking style, which requires
acknowledgment of each transaction and is therefore signif-
icantly different from the source-synchronous interprocessor
communication used in AsAP—which is able to sustain a
full-rate communication of one word per clock cycle, albeit
with longer latencies. The Intel 80-core processing array [31]
employs mesochronous clocking where each processor operates
at the same clock frequency with a varying clock phase.

The inter-processor network is another key feature in AsAP.
Smart Memories and RAW use mesh-connected structures, but
contain sophisticated networks to route data. The Transputer
[32] and Systolic processors [11] share the same idea of nearest-
neighbor communication with AsAP, but Transputer uses a bit
serial communication channel, and systolic processors send and
receive data in a highly regular manner. Many other architec-
tures have used the 2-D mesh or 2-D toroidal mesh such as the
MasPar MP-1 [33].

VI. CONCLUSION

The AsAP scalable programmable processor array targets
DSP and embedded applications and features a simple chip
multiprocessor architecture with small memories, GALS
clocking style, and nearest neighbor communication. These and
other features make AsAP well-suited for future fabrication
technologies, and for the computation of complex multi-task
DSP workloads.

The AsAP processing array is implemented in 0.18 m
CMOS, and runs at 520–540 MHz at 1.8 V and over 600 MHz
at 2.0 V. Each highly energy-efficient processor dissipates
32 mW while executing applications, and 84 mW when 100%
active at 475 MHz. It achieves a high performance density of
over 910 peak MOPS per mm .

ACKNOWLEDGMENT

The authors thank M. Singh, R. Krishnamurthy, M. Anders,
S. Mathew, S. Muroor, W. Li, and C. Chen.

REFERENCES

[1] B. M. Baas, “A parallel programmable energy-efficient architecture for
computationally-intensive DSP systems,” in 37th Asilomar Conf. Sig-
nals, Systems and Computers, Nov. 2003.

[2] D. M. Chapiro, “Globally-asynchronous locally-synchronous sys-
tems,” Ph.D. dissertation, Stanford Univ., Stanford, CA, Oct. 1984.

[3] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E.
Work, T. Mohsenin, M. Singh, and B. Baas, “An asynchronous array
of simple processors for DSP applications,” in IEEE ISSCC Dig. Tech.
Papers, 2006, pp. 428–429.

[4] S. Naffziger, T. Grutkowski, and B. Stackhouse, “The implementation
of a 2-core multi-threaded Itanium family processor,” in IEEE ISSCC
Dig. Tech. Papers, 2005, pp. 182–183, 592.

[5] M. Horowitz and W. Dally, “How scaling will change processor archi-
tecture,” in IEEE ISSCC Dig. Tech. Papers, 2004, pp. 132–133.

[6] S. Agarwala, M. D. Ales, R. Damodaran, P. Wiley, S. Mullinnix, J.
Leach, A. Lell, M. Gill, A. Rajagopal, A. Chachad, M. Agarwala, J.
Apostol, M. Krishnan, D. Bui, Q. An, N. S. Nagaraj, T. Wolf, and T. T.
Elappuparackal, “A 600-MHz VLIW DSP,” IEEE J. Solid-State Cir-
cuits, vol. 37, no. 11, pp. 1532–1544, Nov. 2002.

[7] J. Hart, S. Choe, L. Cheng, C. Chou, A. Dixit, K. Ho, J. Hsu, K. Lee,
and J. Wu, “Implementation of a 4th-generation 1.8 GHz dual-core
SPARC v9 microprocessor,” in IEEE ISSCC Dig. Tech. Papers, 2005,
pp. 186–187.

[8] A. Bright, M. Ellavsky, A. Gara, R. Haring, G. Kopcsay, R. Lembach, J.
Marcella, M. Ohmacht, and V. Salapura, “Creating the Bluegene/L su-
percomputer from low-power SoC AISCs,” in IEEE ISSCC Dig. Tech.
Papers, 2005, pp. 188–189.

[9] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S.
Dwarkadas, and M. L. Scott, “Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling,”
in Proc. Int. Symp. High-Performance Computer Architecture, 2002,
pp. 29–40.

[10] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proc.
IEEE, vol. 89, no. 4, pp. 490–504, Apr. 2001.

[11] S. Y. Kung, “VLSI array processors,” IEEE ASSP Mag., vol. 2, no. 3,
pp. 4–22, Jul. 1985.

[12] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffman, P. Johnson, W. Lee, A. Saraf, N. Shnidman, V.
Stumpen, S. Amarasinghe, and A. Agarwal, “A 16-issue multiple-pro-
gram-counter microprocessor with point-to-point scalar operand net-
work,” in IEEE ISSCC Dig. Tech. Papers, 2003, pp. 170–171.

[13] S. W. Keckler, D. Burger, C. R. Moore, R. Nagarajan, K. Sankar-
alingam, V. Agarwal, M. S. Hrishikesh, N. Ranganathan, and P.
Shivakumar, “A wire-delay scalable microprocessor architecture for
high performance systems,” in IEEE ISSCC Dig. Tech. Papers, 2003,
pp. 168–169.

[14] W. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” in IEEE Int. Conf. Design Automation, Jun. 2001,
pp. 684–689.

[15] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, “Eval-
uating the Imagine stream architecture,” in Proc. Int. Symp. Computer
Architecture, Jun. 2004, pp. 19–23.

[16] T. Olsson and P. Nilsson, “A digitally controlled PLL for SOC appli-
cations,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 751–760, May
2004.

[17] R. W. Apperson, Z. Yu, M. J. Meeuwsen, T. Mohsenin, and B. M. Baas,
“A scalable dual-clock FIFO for data transfers between arbitrary and
haltable clock domains,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 15, no. 10, pp. 1125–1134, Oct. 2007.

[18] A. Suga, T. Sukemura, H. Wada, H. Miyake, Y. Nakamura, Y. Takebe,
K. Azegami, Y. Himura, H. Okano, T. Shiota, M. Saito, S. Wakayama,
T. Ozawa, T. Satoh, A. Sakutai, T. Katayama, K. Abe, and K. Kuwano,
“A 4-way VLIW embedded multimedia processor,” in IEEE ISSCC
Dig. Tech. Papers, 2000, pp. 240–241.

[19] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns,
J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy,
D. Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel,
T. Yamazaki, and K. Yazawa, “The design and implementation of a
first-generation CELL processor,” in IEEE ISSCC Dig. Tech. Papers,
2005, pp. 184–185.

[20] R. Witek and J. Montanaro, “StrongARM: A high-performance arm
processor,” in Proc. IEEE Computer Society Int. Conf.: Technologies
for the Information Superhighway (COMPCON), Feb. 1996, pp.
188–191.

[21] “Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications: High speed physical layer in the 5 GHz band,”
Standard for Information Technology, LAN/MAN Standard Com-
mittee of the IEEE Computer Society, New York, NY, 1999.

[22] T. Lin and C. Jen, “Cascade—configurable and scalable DSP environ-
ment,” in Proc. IEEE ISCAS, 2002, pp. 26–29.

[23] C. Kozyrakis and D. Patterson, “Vector versus superscalar and
VLIW architectures for embedded multimedia benchmarks,” in Proc.
IEEE/ACM MICRO, Nov. 2002, pp. 283–289.

[24] M. Meeuwsen, O. Sattari, and B. Baas, “A full-rate software imple-
mentation of an IEEE 802.11a compliant digital baseband transmitter,”
in Proc. IEEE Workshop on Signal Processing Systems, Oct. 2004, pp.
297–301.

[25] M. F. Tariq, Y. Baltaci, T. Horseman, M. Butler, and A. Nix, “Devel-
opment of an OFDM based high speed wireless LAN platform using
the TI C6x DSP,” in IEEE Int. Conf. Communications, Apr. 2002, pp.
522–526.

[26] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and J.
M. Rabaey, “A 1-V heterogeneous reconfigurable DSP IC for wireless
baseband digital signal processing,” IEEE J. Solid-State Circuits, vol.
35, no. 11, pp. 1697–1704, Nov. 2000.

704 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 3, MARCH 2008

[27] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor,
“PipeRench: A virtualized programmable datapath in 0.18 micron tech-
nology,” in Proc. IEEE Custom Integrated Circuits Conf., 2002, pp.
63–66.

[28] K. Mai, T. Paaske, and N. Jayasena et al., “Smart memories: A mod-
ular reconfigurable architecture,” in Proc. Int. Symp. Computer Archi-
tecture, Jun. 2000, pp. 161–171.

[29] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, L. W. Jones,
D. Franklin, V. Akella, and F. T. Chong, “Synchroscalar: A multiple
clock domain, power-aware, tile-based embedded processor,” in Proc.
Int. Symp. Computer Architecture, Jun. 2004.

[30] D. Lattard, E. Beigne, and C. Bernard et al., “A telecom baseband cir-
cuit based on an asynchronous network-on-chip,” in IEEE ISSCC Dig.
Tech. Papers, 2007, pp. 258–259.

[31] S. Vangal, J. Howard, and G. Ruhl et al., “An 80-tile 1.28 TFLOPS
network-on-chip in 65 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers,
2007, pp. 98–99.

[32] C. Whitby-Strevens, “Transputers–past, present and future,” IEEE
Micro, vol. 10, no. 6, pp. 16–19, Dec. 1990.

[33] T. Blank, “The MasPar MP-1 architecture,” in Proc. 35th IEEE
Computer Society Int. Conf.: Intellectual Leverage (COMPCON
Spring’90), 1990, pp. 20–24.

Zhiyi Yu received the B.S. and M.S. degrees in elec-
trical engineering from Fudan University, Shanghai,
China, in 2000 and 2003, respectively, and the Ph.D
degree in electrical and computer engineering from
the University of California, Davis, in 2007.

Dr. Yu is currently a Hardware Engineer with
IntellaSys Corporation, headquartered in Cupertino,
CA. His research interests include high-performance
and energy-efficient digital VLSI design, architec-
tures, and processor interconnects, with an emphasis
on many-core processors. He was a key designer of

the 36-core Asynchronous Array of simple Processors (AsAP) chip, and one of
the designers of the 150+ core second generation computational array chip.

Michael J. Meeuwsen received the B.S. degrees with
honors in electrical engineering and computer engi-
neering (both summa cum laude) from Oregon State
University, Corvallis, and the M.S. in electrical and
computer engineering from the University of Cali-
fornia, Davis.

He is currently a Hardware Engineer with Intel
Digital Enterprise Group, Hillsboro, OR, where
he works on CPU hardware design. His research
interests include digital circuit design and IEEE
802.11a/g algorithm mapping.

Ryan W. Apperson received the B.S. in electrical
engineering (magna cum laude) from the University
of Washington, Seattle, and the M.S. degree in elec-
trical and computer engineering from the University
of California, Davis.

He is currently an IC Design Engineer with
Boston Scientific CRM Division, Redmond, WA.
His research interests include multiclock domain
systems and SRAM design.

Omar Sattari received the B.S. and M.S. degrees in
electrical and computer engineering from the Univer-
sity of California, Davis.

He is currently a software engineer at Corner-
Turn. His research interests include FFT and DSP
algorithms and digital hardware design.

Michael Lai received the B.S. and M.S. degrees in
electrical and computer engineering from the Univer-
sity of California, Davis.

He is currently a Design Engineer at Altera Cor-
poration working on the next generation transceiver
product. His research interests include the design of
high-speed arithmetic units and control.

Jeremy W. Webb received the B.S. degree in elec-
trical and computer engineering from the University
of California, Davis.

He is currently an M.S. student in electrical and
computer engineering at the University of California,
Davis, and a hardware engineer at Centellax. His re-
search interests include high-speed board design and
system interfacing.

Eric W. Work received the B.S. degree from the Uni-
versity of Washington, and the M.S. degree in elec-
trical and computer engineering from the University
of California, Davis.

He is currently an engineer at S Machine corpo-
ration. His research interests include the mapping of
arbitrary task graphs to processor networks and soft-
ware tool flow.

Dean Truong received the B.S. degree in electrical
and computer engineering from the University of
California, Davis.

He is currently a Ph.D. student in electrical and
computer engineering at the University of California,
Davis. His research interests include high-speed pro-
cessor architectures and VLSI design.

YU et al.: ASAP: AN ASYNCHRONOUS ARRAY OF SIMPLE PROCESSORS 705

Tinoosh Mohsenin received the B.S. degree in elec-
trical engineering from Sharif University, Tehran,
Iran, and the M.S. degree in electrical and computer
engineering from Rice University, Houston, TX. She
is currently pursuing the Ph.D. degree in electrical
and computer engineering from the University of
California, Davis.

She is the designer of the Split-Row and
Multi-Split-Row Low Density Parity Check (LDPC)
decoding algorithms. Her research interests include
energy-efficient and high-performance signal pro-

cessing and error correction architectures including multi-gigabit full-parallel
LDPC decoders and many-core processor architecture design.

Bevan M. Baas received the B.S. degree in electronic
engineering from California Polytechnic State Uni-
versity, San Luis Obispo, in 1987, and the M.S. and
Ph.D. degrees in electrical engineering from Stanford
University, Stanford, CA, in 1990 and 1999, respec-
tively.

In 2003 he became an Assistant Professor with the
Department of Electrical and Computer Engineering,
University of California, Davis. He leads projects in
architecture, hardware, software tools, and applica-
tions for VLSI computation with an emphasis on DSP

workloads. Recent projects include the Asynchronous Array of simple Proces-
sors (AsAP) chip, applications, and tools; low density parity check (LDPC) de-
coders; FFT processors; viterbi decoders; and H.264 video codecs.

From 1987 to 1989, he was with Hewlett-Packard, Cupertino, CA, where he
participated in the development of the processor for a high-end minicomputer.
In 1999, he joined Atheros Communications, Santa Clara, CA, as an early em-
ployee and served as a core member of the team which developed the first IEEE
802.11a (54 Mb/s, 5 GHz) Wi-Fi wireless LAN solution. During the summer of
2006 he was a Visiting Professor in Intel’s Circuit Research Lab.

Dr. Baas was a National Science Foundation Fellow from 1990 to 1993 and
a NASA Graduate Student Researcher Fellow from 1993 to 1996. He was a
recipient of the National Science Foundation CAREER Award in 2006 and the
Most Promising Engineer/Scientist Award by AISES in 2006. He is an Associate
Editor for the IEEE Journal of Solid-State Circuits and has served as a member
of the Technical Program Committee of the IEEE International Conference on
Computer Design (ICCD) in 2004, 2005, and 2007. He also serves as a member
of the Technical Advisory Board of an early stage technology company.

