
JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS 1

Architecture and Evaluation of An Asynchronous
Array of Simple Processors

Zhiyi Yu, Michael J. Meeuwsen, Ryan W. Apperson, Omar Sattari, Michael A. Lai,
Jeremy W. Webb, Eric W. Work, Tinoosh Mohsenin, Bevan M. Baas

Contact: zhyyu@ucdavis.edu, bbaas@ucdavis.edu

Abstract— This paper presents the architecture of an Asyn-
chronous Array of simple Processors (AsAP), and evaluates its
key architectural features as well as its performance and energy
efficiency. The AsAP processor calculates DSP applications with
high energy-efficiency, is capable of high-performance, is easily
scalable, and is well-suited to future fabrication technologies. It
is composed of a 2-D array of simple single-issue programmable
processors interconnected by a reconfigurable mesh network.
Processors are designed to capture the kernels of many DSP
algorithms with very little additional overhead. Each processor
contains its own tunable and haltable clock oscillator, and pro-
cessors operate completely asynchronously with respect to each
other in a globally asynchronous locally synchronous (GALS)
fashion.

A 6 � 6 AsAP array has been designed and fabricated in a
0.18 ��� CMOS technology. Each processor occupies 0.66 ���

�
,

is fully functional at a clock rate of 520–540 MHz at 1.8 V,
and dissipates an average of 35 mW per processor at 520 MHz
under typical conditions while executing applications such as a
JPEG encoder core and a complete IEEE 802.11a/g wireless LAN
baseband transmitter. Most processors operate at over 600 MHz
at 2.0 V. Processors dissipate 2.4 mW at 116 MHz and 0.9 V.
A single AsAP processor occupies 4% or less area than a single
processing element in other multi-processor chips. Compared to
several RISC processors (single issue MIPS and ARM), AsAP
achieves performance 27–275 times greater, energy efficiency 96–
215 times greater, while using far less area. Compared to the TI
C62x high-end DSP processor, AsAP achieves performance 0.8–
9.6 times greater, energy efficiency 10–75 times greater, with an
area 7–19 times smaller. Compared to ASIC implementations,
AsAP achieves performance within a factor of 2–5, energy
efficiency within a factor of 3–50, with area within a factor of
2.5–3. These data are for varying numbers of AsAP processors
per benchmark.

I. INTRODUCTION

Applications that require the computation of complex DSP
workloads are becoming increasingly commonplace. These
applications often comprise multiple DSP tasks and are found
in applications such as: wired and wireless communications,
multimedia, sensor signal processing, and medical/biological
processing. Many are embedded and are strongly energy-
constrained. In addition, many of these workloads require very
high throughputs and often dissipate a significant portion of
the system power budget and are therefore of considerable
interest.

Increasing clock frequencies and an increasing number of
circuits per chip has resulted in modern chip performance be-
ing limited by power dissipation rather than circuit constraints.
This implies a new era of high-performance design that must
now focus on energy-efficient implementations [1]. Future

fabrication technologies are expected to have large variations
in devices and wires, and “long” wires are expected to signif-
icantly reduce maximum clock rates. Therefore, architectures
that enable the elimination of long high-speed wires will likely
be easier to design and may operate at higher clock rates [2].

The Asynchronous Array of simple Processors (AsAP) com-
putes the aforementioned complex DSP application workloads
with high performance and high energy-efficiency, and is well
suited for future technologies. The AsAP system comprises a
2-D array of simple programmable processors interconnected
by a reconfigurable mesh network. Processors are each clocked
by fully independent haltable oscillators in a globally asyn-
chronous locally synchronous (GALS) [3] fashion. Several of
AsAP’s key features distinguish it from other broadly similar
work:
� A chip multiprocessor architecture achieves high per-

formance through parallel computation. Many DSP ap-
plications are composed of a collection of cascaded
DSP tasks, so an architecture that allows the parallel
computation of independent tasks will likely be more
efficient.

� Small memories and simple single-issue architecture
for each processor achieves high energy efficiency. Since
large memories—which are normally used in modern pro-
cessors [4], [5]—dissipate significant energy and require
larger delays per memory transaction, architectures that
minimize the need for memory and keep data near or
within processing elements are likely to be more efficient.
Along with reduced memory sizes, the datapath and
control logic complexity of AsAP are also reduced.

� GALS clocking style is suitable for future fabrication
technologies and can achieve high energy efficiency due
to the fact that global clock circuits have become in-
creasingly difficult to design and they consume significant
power.

� Nearest neighbor communication is used to avoid
global wires to make it suitable for future fabrication
technologies, due to the fact that global chip wires will
dramatically limit performance if not properly addressed
since their delay is roughly constant when scaled [2].

A prototype 6 � 6 AsAP chip has been implemented in
0.18 �
	 CMOS and is fully functional [6]. In this paper, we
discuss AsAP’s architectural design and investigate how the
key features affect system results. In addition, we present a
thorough evaluation of its performance and energy efficiency



TABLE I
ASAP 32-BIT INSTRUCTION TYPES AND FIELDS

Instruction 6 8 8 8 2
Type bits bits bits bits bits

General opcode dest src1 src2 NOPs
Immediate opcode dest immediate NOPs
Branch opcode – – target NOPs

TABLE II
CLASSES OF THE 54 SUPPORTED INSTRUCTIONS

Instruction class Number of instructions
Addition 7
Subtraction 7
Logic 11
Shift 4
Multiply 2
Multiply-accumulate 6
Branch 13
Miscellaneous 4

for several DSP applications.

II. THE ASAP PROCESSOR SYSTEM

A. Architecture of the AsAP processor

The AsAP array consists of a large number of simple
uniform processing elements operating asynchronously with
respect to each other and connected through a reconfigurable
network. The processors are optimized to efficiently compute
DSP algorithms individually as well as in conjunction with
neighboring processors. Figure 1 contains diagrams of the
fabricated processing array and a single AsAP processor.

Each AsAP processor is a simple single-issue processor
with a 64-word 32-bit instruction memory (IMEM), a 128-
word 16-bit data memory (DMEM), a dynamic configuration
memory (DCMEM), a 16 � 16-bit multiplier with a 40-bit
accumulator, a 16-bit ALU, and four address generators. It
utilizes a memory-to-memory architecture with no register file.
No support is provided for branch prediction, out of order
execution, or speculative operation. During the design phase,
hardware was added only when it significantly increased
performance and/or energy-efficiency for our benchmarks. A
nine stage pipeline is implemented as shown in Fig. 1. All
control signals are generated in the instruction decode stage,
and pipelined appropriately. Interlocks are not implemented in
hardware, so all code is scheduled prior to execution by the
compiler.

1) Instruction set: AsAP supports 54 32-bit instructions
with three broad instruction formats. A summary of the 54
instructions is given in Tables I and II. General instructions
select two operands from memories, accumulator, FIFOs, and
three ALU bypass routes; and they select one destination from
memories, accumulator and output ports. Immediate instruc-
tions receive input from a 16-bit immediate field. Branch
instructions include a number of conditional and unconditional
branch functions. Two bits in each instruction define how many
NOP operations (from 0 to 3) should follow after instruction
processing, which allows inserting NOPs to avoid pipeline
hazards without requiring additional NOP instructions.

TABLE III
DATA FETCH ADDRESSING MODES

Addressing mode Example Meaning
Direct Move Obuf DMEM 0 Obuf � DMEM[0]
Address pointer Move Obuf aptr0 Obuf � DMEM[DCMEM]
Address generator Move Obuf ag0 Obuf � DMEM[generator]
Short immediate Add Obuf #3 #3 Obuf � 3+3
Long immediate Move Obuf #256 Obuf � 256
DCMEM Move Obuf DCMEM 0 Obuf � DCMEM[0]
Bypassing Move Obuf regbp1 Obuf � first bypass
FIFOs Move Obuf Ibuf0 Obuf � FIFO 0
ACC Move Obuf Acc Obuf � ACC[15:0]

Other than a bit-reverse instruction and a bit-reverse mode
in the address generators, no algorithm-specific instructions
or hardware are implemented. While single-purpose hard-
ware can greatly speed computation for specific algorithms,
it can prove detrimental to the performance of a complex
multi-algorithmic system and limits performance for future
presently-unknown algorithms—which is one of the key do-
mains for programmable processors.

2) Data addressing: AsAP processors fetch data at pipeline
stage Mem Read, using the addressing modes listed in Ta-
ble III. Three methods are supported to address data memory.
Direct memory addressing uses immediate data as the address
to access static memory locations; four address pointers access
memory according to the value in special registers located
in DCMEM; and four address generators provide automatic
addressing with special-purpose hardware to accelerate many
tasks. In addition to the data memory, AsAP processors can
also fetch data from another 6 locations: 1) short immediate
data (6 bits) can be used in dual-source instructions, 2) long
immediate data (16 bits) can be used in the move immediate
instruction, 3) the DCMEM’s configuration information can
be read or written by instructions, 4) three bypass paths from
the ALU and MAC units can be used as sources to accelerate
execution, 5) the two processor input FIFOs are available as
general instruction sources, and 6) the lowest 16 bits of the
accumulator register can also be a source for execution.

Figure 2 shows the logic diagram for one address generator.
Each address generator contains a count register which is used
as the memory pointer, and several inputs define how to change
its value after each memory access. Start addr defines the start
address of the count register. When the counter is enabled
(enable = 1), it will be increased or decreased (determined
by direction) by the amount of the value stride. The count
register is reloaded to the start address when it reaches the
end address (end addr). The other control signals are primarily
used to accelerate FFTs. Each address generator occupies
about 3700 �
	� in a 0.18 �
	 technology, and the four address
generators occupy only 2% of the processor’s area.

3) Completely independent clocking and circuits for cross-
ing asynchronous clock domains: Each processor has its own
digitally programmable clock oscillator which occupies only
about 0.5% of the processor’s area. There are no phase-
locked loops (PLLs), delay-locked loops (DLLs), or global
frequency or phase-related signals, and the system is fully
GALS. While impressive low clock skew designs have been

2



Inst
Mem

OSC
control

config

In0 clock
domain

In1 clock
domain

Source
read

FIFO0

FIFO1

DMEM

Inst.
fetch

A
L
U

EXE1 Result
select

To other
processors

DCMEM

PC
ctrl.

proc. clk

Inst.
decoder

Inst.
Decod.

Addr.
Gen.

Source
select

MAC

EXE2
WB &
OuputEXE3

ALU
bypass
to SRC
select

A
C
C

clk
data
valid
hold

DMEM

OSC

clk
data
valid
hold

Fig. 1. Block diagram of an AsAP processor and the 6 � 6 chip. Vertical gray bars indicate the nine pipeline stages.

>> X

10

1 0

+ / −

0

(Bit−Reversal)

enable
reset

end_addr
shr_amt

bit_rev
and_mask stridestart_addr

sml

1

direction

count

or_mask

(SHL 1)

addr_out

Fig. 2. Address generator; thin lines represent one-bit wires, and thick lines
represent seven-bit wires.

achieved at multi-GHz clock rates, the effort expended in
clock tree management and layout is considerable [7]. Placing
a clock oscillator inside each processor reduces the size of
the clock tree circuit to a fraction of a mm � —the size of a
processing element. Large systems can be made with arrays
of processing elements with no change whatsoever to clock
trees (that are wholly contained within processing elements),
simplifying overall design complexity and scalability.

The reliable transfer of data across unrelated asynchronous
clock domains is accomplished by dual-clock FIFOs [8].
The FIFO’s write clock and data are supplied in a source-
synchronous fashion by the upstream processor and its read
clock is supplied by the downstream processor—which is the
host for the dual-clock FIFO in AsAP.

Special clock control circuits enable processing elements to
power down completely—dissipating leakage power only—if
no work is available for nine clock cycles. The local oscillator
is fully restored to full speed in less than one cycle after work

again becomes available.
4) Reconfigurable 2-D mesh network: Processors connect

via a configurable 2-dimensional mesh. To maintain link
communication at full clock rates, inter-processor connections
are made to nearest-neighbor processors only. A number
of architectures including wavefront [9], RAW [10], and
TRIPS [11], have specifically addressed this concern and
have demonstrated the advantages of a tile-based architecture.
AsAP’s nearest neighbor connections result in no high-speed
wires with a length greater than the linear dimension of a
processing element. The inter-processor delay decreases with
advancing fabrication technologies and allows clock rates to
scale upward. Longer distance data transfers in AsAP are
handled by routing through intermediary processors or by
“folding” the application’s data flow graph so that commu-
nicating processing elements are placed adjacent or near each
other—for example, the Pilot Insert processor and the first G.I.
Wind. processor in Fig. 5b.

Each AsAP processor has two asynchronous input data
ports and can connect each port to any of its four nearest
neighboring processors. Because changing active clock signals
can cause runt clock pulses, a processor may change its input
connection only during times when both input clocks are
guaranteed to both be low—which is normally only during
power-up. On the other hand, output port connections can
be changed among any combination of the four neighboring
processors at any time through software.

B. AsAP implementation

The first generation AsAP 6 � 6 processor array has been
implemented using TSMC 0.18 �
	 CMOS technology [6].
The left part of Fig. 3 shows the die micrograph. A standard
cell based design flow was used from verilog source code. All
circuits were synthesized, except the programmable oscillator.
A single processor tile and the entire chip were placed and
routed by CAD tools.

The right part of Figure 3 shows the test environment
for the AsAP prototype including a printed circuit board
hosting an AsAP processor and a supporting FPGA board to
interface between AsAP and a host PC. AsAP’s SPI-style serial

3



single

processor

ASAP

Fig. 3. Micrograph of the (a) 6 � 6 AsAP chip and (b) its test environment

void main() �
int i;
int a, b, c;
sat int d; /* saturating integer */
while(1) � /* loop */

a = Ibuf0; /* read value from FIFO 0 */
b = Ibuf1; /* read value from FIFO 1 */
c = (a + b) ��� 1;/* AddHigh instruction */
for (i = 0; i � 10; i++) �

d = c + i; /* saturating instruction */
OBuf = d; /* OBuf is proc.’s output */�

�
�

Fig. 4. An example C language program for an AsAP processor

port receives configuration information and programs for each
processor.

C. Software

Programming the AsAP processor presents significant chal-
lenges. Programming involves taking advantage of all lev-
els of parallelism easily available to simplify the coding
of small kernels, including task-level parallelism, data-level
parallelism, and address-data parallelism. Partly due to the
natural partitioning of applications by task-level parallelism,
we have found the task less challenging than first expected.
This is supported by data in Table IV showing the memory
requirements of common DSP tasks.

A high level language (which we call called AsAP-C) and
its corresponding compiler were developed to generate code
for each individual AsAP processor. AsAP-C contains most
standard C language functions such as arithmetic calculations
(addition, subtraction, multiplication, etc.), logic calculations
(AND, OR, NOT, etc.), and control functions (while loops,
for loops, etc.). A saturating integer type is defined to support
DSP integer calculations which are commonly used in high
level DSP languages [12]. Additionally, the language contains
several functions specific for AsAP such as FIFO reads and
direct inter-processor communication. Both inputs and outputs
are mapped into the language through the reserved variable
names: Ibuf0, Ibuf1, and Obuf. Figure 4 shows one
example of AsAP-C program which fetches data from two
FIFOs and sends its result to the processor’s output port.

The job of programming processors also includes the map-
ping of processor graphs to the 2-D planar array. While this

Pad

Scram

Conv.

Code
Punc

Inter-

leave 1

Inter-

leave 2

Mod.

Map

Pilot

Insert

Train

IFFT

BR

IFFT

Mem

IFFT

BF

IFFT

Output

GI/

Wind.
GI/

Wind.

IFFT

Mem
IFFT

BF
FIRFIR

IFFT

BF

IFFT

Mem

Output

Sync
IFFT

Data bits

To

D/A

converter

DC in

Huffm

DC in

Huffm

Lv-shift

1-DCT

Zigzag
Quant.

Zigzag

AC in

Huffm

1-DCT

Trans

in DCT

outputinput

AC in

Huffm

(b)(a)

Fig. 5. Block diagram of the (a) 9-processor JPEG encoder and (b) 22-
processor 802.11a/g implementation. Thin arrows show all paths and wide
arrows show the primary data flow. The processor marked with an “ � ” is
unused and powered down.

1001010.1
2-core
Itanium

CELLRAWAsAP

coarse
granularity

fine
granularity

(mm²)

Fig. 6. Size of a single processing element in several chip multi-processor
systems. Data are scaled to 0.13 ��� CMOS technology.

is normally done at compile time, an area of current work is
tools for the automatic mapping of graphs to accommodate
rapid programming and to recover from hardware faults and
extreme variations in circuits, environment, and workload.

D. Task and application implementations

In addition to the tasks listed in Table IV, we have com-
pleted the implementation and further analysis of several
complex applications, including a JPEG encoder and an IEEE
802.11a/g wireless LAN baseband transmitter as shown in
Fig. 5—both are fully functional on the fabricated chip. The
JPEG encoder principally consists of five sub-tasks: level
shift, 8 � 8 Discrete Cosine Transform (DCT), quantization,
zig-zag scanning, and Huffman encoding. The fully-compliant
802.11a/g transmitter implementation operates over all 8 data
rates, includes additional upsampling and filtering functions
not specified by the standard [13], and sustains transmissions
at 30% of the full 54 Mb/s rate at a clock speed of 300 MHz
on 22 processors [14].

III. ANALYSIS OF THE KEY FEATURES

One of the most important variables in chip multiprocessor
architectures is the level of granularity of each processing
element. A wide range of granularities are possible as shown
in Fig. 6 [6], [10], [15], [16]. The coarse grain 2-core Ita-
nium [16] contains large wide-issue processors each close to
300 mm � in 90 nm technology, while the fine grain AsAP
contains single-issue processors less than 1 mm � in 0.18 �
	

4



TABLE IV
REQUIRED INSTRUCTION MEMORY AND DATA MEMORY SIZES FOR

VARIOUS DSP TASKS ON A SIMPLE SINGLE-ISSUE PROCESSOR

IMem DMem
Size Size

Task (words) (words)
16-tap FIR filter 6 33
Level-shifting for JPEG 8 1
8-point DCT 40 16
8 � 8 2-D DCT 154 72
Quantization for 64 elements 7 66
Zig-zag re-ordering for JPEG 68 64
Huffman encoding for JPEG 203 334
Scrambling for 802.11a/g 31 17
Padding OFDM bitstream 49 25
Convolutional coding ��������� 29 14
Interleaving 1 for 802.11a/g 35 30
Interleaving 2 for 802.11a/g 51 31
Modulation for BPSK, QPSK, 16QAM, 64QAM 53 33
Pilot insertion for OFDM 47 68
Training symbol generation for 802.11a/g 31 76
64-pt complex FFT 97 192
Guard interval insertion for OFDM 44 74
2 � upsampling + 21-tap Nyquist FIR filter 40 128
Bubble sort 20 1 

merge sort 50
 

Square root 62 15
Exponential 108 32

technology. Size differences of factors of tens and hundreds
make strong impacts on system behavior.

Most chip multiprocessors target a broad range of applica-
tions, and each processor in such systems normally contains
powerful computational resources—such as large memories,
wide issue processors [16], and powerful inter-processor com-
munication [10]—to support widely varying requirements.
Extra computational resources can enable systems to pro-
vide high performance to a diverse set of applications, but
they reduce energy efficiency for tasks that can not make
use of those specialized resources. Most DSP applications
AsAP targets are made up of computationally intensive tasks
with very small instruction and data kernels, which makes it
possible to use extremely simple computational resources—
small memory, simple single issue datapath, and nearest neigh-
bor communication—to achieve high energy efficiency while
maintaining high performance.

In this section, we analyze these key features of the AsAP
processor which justify its fine grain architecture. We also
briefly analyze AsAP’s GALS clocking style.

A. Small memory

A clear trend among all types of programmable processors
is not only an increasing amount of on-chip memory, but also
an increasing percentage of die area used for memory. For
example, the TI C64x [4] and third generation Itanium pro-
cessor [5] use approximately 75% and 70% area for memory
respectively. Since large memories dissipate more energy and
require larger delays per transaction, we seek architectures that
minimize the need for memory and keep data near or within
processing elements.

1) Inherent small memory requirement for DSP applica-
tions: A notable characteristic of the targeted DSP tasks is

101 102 103 104

100

101

Instruction Memory Size per Processor (words)

To
ta

l A
re

a 
fo

r a
ll 

P
ro

ce
ss

or
(s

) (
m

m
2 )

20−200 Inst. words

Points of minimum instruction memory for a task

1 processor

2 processors

3 processors

4 processors

6 processors

9 processors

13 processors

8−pt DCT
8x8 DCT
Huffman Encoder
FFT core
FFT output
21−tap FIR with 2x upsamp

Fig. 7. Total area required for representative tasks mapped onto one or
multiple 0.18 �!� CMOS simple processors, as a function of the size of
the instruction memory per processor. Minimum total area is achieved with
approximately 20–200 instructions per processor.

that many have very limited memory requirements compared
to general-purpose tasks. The level of required memory must
be differentiated from the amount of memory that can be used
or is typically used to calculate these kernels. For example,
an " -tap filter may be programmed using a vast amount
of memory though the base kernel requires only #�" data
words. Table IV lists the actual amounts of instruction and
data memory required for 22 common DSP tasks and shows
the very small required memory sizes compared to memo-
ries commonly available in modern processors. This analysis
assumes a simple single-issue processor like AsAP. Although
programs were hand written in assembly code, little effort was
placed on optimizing them such as scheduling instructions for
the pipeline or using forwarding paths.

2) Finding the optimal memory size for DSP applications:
Once the amount of required instruction and data memory
is known, it is worthwhile to consider what size of memory
per processor is optimal in terms of total processing element
area. We begin our analysis with several assumptions: 1) the
non-memory processor size is 0.55 	$	 � in 0.18 �
	 CMOS
and is not a function of memory size, 2) memory area scales
linearly with capacity and the area is 400 �
	%� for a 16-bit
word and 800 �
	 � for a 32-bit word, 3) a fixed partitioning
overhead is added each time a task is split onto multiple
processors—this overhead is estimated per task and varies
from 2–8 instructions and from 0–30% of the total space, and
4) additional processors used only for routing data may be
needed for designs using a large number of processors, but
are neglected. Figures 7 and 8 show the total circuit areas for
several representative tasks listed in Table IV, while varying
the instruction memory and data memory sizes respectively.

These analyses show that processors with memories of a
few hundred words will likely produce highly energy efficient
systems due to their low overall memory power and their very
short intra-processor wires. On the negative side, processors
with very small memories that require parallelization of tasks
across processors may require greater communication energy

5



101 102 103 104

100

101

Data Memory Size per Processor (words)

To
ta

l A
re

a 
fo

r a
ll 

P
ro

ce
ss

or
(s

) (
m

m
2 )

10−300 Data words

Points of minimum data memory for a task

1 processor

2 processors

3 processors

4 processors

5 processors

7 processors

10 processors

13 processors 8−pt DCT
8x8 DCT
Huffman Encoder
FFT core
FFT output
Convolutional encoder, k=7

Fig. 8. Analysis similar to that shown in Fig. 7 but for data memory. The
minimum total area is achieved with approximately 10–300 data words per
processor.

8x8 DCTzig−zag b−sort 64 FFT JPEG 802.11
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
in

st
. m

em
or

y direct addr.
addr. pointer
addr. gener

8x8 DCTzig−zag b−sort 64 FFT JPEG
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
pe

rfo
rm

an
ce direct addr.

addr. pointer
addr. gener

Fig. 9. Comparison of relative instruction memory requirements and relative
performance for three different addressing modes. Comparisons are made
against the direct address case which uses straight line code with pre-
calculated addresses only.

and present significant programming challenges.
3) Several architectural features help reduce memory re-

quirement: In addition to the inherent small instruction mem-
ory requirement of DSP applications, address generators help
reduce the required instruction memory for applications since
they can handle many complex addressing functions without
any additional instructions. The upper figure of Fig. 9 shows
the estimated relative instruction cost for a system using three
addressing modes to fulfill the same functions. Compared
to systems primarily using direct memory addressing and
address pointers, the system containing address generators
reduces the number of required instructions by 60% and
13% respectively. Also, using address generators can increase
system performance. As shown in the lower figure of Fig. 9, it
comes within 15% of the performance of a system using direct
addressing with pre-calculated addresses, and approximately 2
times higher performance compared to a system using address
pointers alone.

The embedded NOP instruction field described in Sec. II-
A.1 also helps reduce instruction memory requirements since it

8 DCT8x8 DCTzig−zag msort b−sort matrix 64 FFT JPEG 802.11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e 
in

st
. m

em
or

y

Fig. 10. Relative instruction memory reductions by using a 2-bit embedded
NOP field in each instruction

CPU

A B C

CPU CPUB CA

From traditional view to
cascading tasks view

Memory

Fig. 11. Traditional large memory versus small memory cascading tasks
views

dramatically reduces the number of explicit NOP instructions.
Figure 10 shows that instruction memory requirements can be
reduced by approximately 30% for 9 applications.

In addition to the inherent small data memory requirements
of DSP applications, task cascading also helps to reduce the
required data memory size. As shown in Fig. 11, a system
with many processors can use separate processors to compute
individual tasks in an application, and the intermediate data
can be streamed between processors instead of buffering them
in a large memory.

B. Datapath—wide issue vs. single issue

The datapath, or execution unit, plays a key role in processor
computation, and also occupies a considerable amount of
chip area. Uniprocessor systems are shifting from single issue
architectures to wide issue architectures in which multiple
execution units are available to enhance system performance.
For chip multiprocessor systems, there remains a question
about the trade-off between using many small single-issue
processors, versus larger but fewer wide-issue processors.

A large wide-issue processor has a centralized controller,
contains more complex wiring and control logic, and its area
and power consumption increase faster than linearly along
with the number of execution units. One model of area
and power for processors with different issues derived by
J. Oliver et al. [17] shows using wide-issue processors con-
sumes significantly more area and power than using multiple
single-issue processors. Their work shows a single 32-issue
processor occupies more than 2 times the area and dissipates
approximately 3 times the power of 32 single-issue processors.

6



0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

Number of processors

R
el

at
iv

e 
sy

st
em

 th
ro

ug
hp

ut

8−tap FIR
8x8 DCT
Max in 100 data
64−pt comp. FFT

Fig. 12. Increase in system throughput with increasing number of processors

However, chip multiprocessor systems composed of single-
issue processors will not always have higher area and energy
efficiency—much depends on specific applications. Wide-issue
processors work well when instructions fetched during the
same cycle are highly independent and can take full advantage
of functional unit parallelism, but this is not always the
case. Multiple single-issue processors such as AsAP are less
efficient if the application is not easy to partition, but it can
perform particularly well on many DSP applications since they
are often made up of complex components exhibiting task
level parallelism so that tasks are easily spread across multiple
processors. Large numbers of simple processors also introduce
extra inter-processor communication overhead, which we dis-
cuss further in Sec. III-C.

Figure 12 shows how throughput scales for four single tasks
relative to the throughput of a single processor. Programs
were written in assembly by hand but are lightly optimized
and unscheduled. The memory requirement for the 8 � 8 DCT
and 64-pt complex FFT exceeds the available memory of a
single AsAP processor, so data points using one processor
are estimated assuming one single processor had a large
enough memory. An analysis of scaling results of a 16-tap
FIR filter implemented in 85 different designs using from 1–
52 processors shows a factor of 9 variation in throughput per
processor over this space [18].

When all processors have a balanced computational load
with little communication overhead, the system throughput
increases close to linearly with the number of processors, such
as for the task of finding the maximum value of a data set
(Max in 100 data in Fig. 12). Clearly, applications that are
difficult to parallelize show far less scalability at some point.
For example, the performance of the 8 � 8 DCT increases well
up to 10 processors where 4.4 times higher performance is
achieved, but after that, little improvement is seen and only
5.4 times higher performance is seen using 24 processors.
However, there is significant improvement in the FIR filter
and FFT after a certain number of processors is reached. The
reason for this is because increasing the number of processors
in these applications avoids extra computation in some cases.
For example, the FFT avoids the calculation of data and

scram.
coding

inter-
leave

mod.
map IFFT

up-
samp
filter

up-
samp
filter

(c)

level
shift

8 x 8
DCT

quanti-
zation

in zig-
zag

huffm.
coding

out

in

pilots
loadfft
inter-
leave

training

scale
clip

win-
dow

(d)

out

(b)

8 x 1
butterflies

4 x 2
butterflies

2 x 4
butterfliesin0 - in15 1 x 8

butterflies
out0 - out15

Z 1 Z 1

h0 h1 hn-1

... Z 1 y(n)

...

...

(a)

x(n)

Fig. 13. Common DSP tasks and applications exhibiting their abilities to
be linearly pipelined: (a) transpose form FIR filter, (b) 16-point radix-2 FFT,
(c) JPEG encoder, and (d) IEEE 802.11a/g wireless LAN transmitter

coefficient addresses when each processor is dedicated to one
stage of the FFT computation. On average, 10 processor and
20 processor systems achieve more than 5 times and 10 times
higher performance compared to a single processor system,
respectively.

C. Nearest neighbor communication

Currently, most chip multiprocessors target broad general
purpose applications and use complex inter-processor com-
munication strategies [10], [19], [20], [21], [22]. For example,
RAW [10] uses a separate complete processor to provide
powerful static routing and dynamic routing functions, Blue-
Gene/L [21] uses a torus network and a collective network to
handle inter-processor communication, and Niagara [22] uses
a crossbar to connect 8 cores and memories. These methods
provide flexible communication abilities, but consume a signif-
icant portion of the area and power in communication circuits.

The DSP applications which AsAP targets have specific
regular features and make it possible to use a simple nearest
neighbor communication scheme to achieve high area and
energy efficiency, without a large performance loss. As can be
seen from several popular industry-standard DSP benchmarks
such as TI [23], BDTI [24], and EMBC [25], the most common
tasks include FIR and IIR filtering, vector operations, the
Fast Fourier Transform (FFT), and various control and data
manipulation functions. These tasks can normally be linearly
pipelined, as shown in the upper two examples in Fig. 13,
and the result from one stage can be sent directly to the
next stage without complex global communication. Complete
applications containing multiple DSP tasks also have similar
features, as two examples shown in Fig. 13(c) and (d) for
the JPEG encoder and the 802.11a/g baseband transmitter. All
these examples can be handled efficiently by nearest neighbor
inter-processor communication.

Nearest neighbor communication simplifies the inter-
processor circuitry and two dual-clock FIFOs present the ma-
jor cost in this case, which results in low area and high energy
efficiencies. Figure 14 compares AsAP to four other chip

7



AsAP Niag. BG/L RAWIntel80
0

0.1

0.2

0.3

0.4

Fr
ac

tio
n 

of
 p

ro
ce

ss
or

‘s
 a

re
a

(b)

AsAP Niag. BG/L RAWIntel80
10−2

10−1

100

101

102
A

bs
ol

ut
e 

ar
ea

 (m
m

2 )

(a)

AsAP Niag. BG/L RAWIntel80
0

0.1

0.2

0.3

0.4

Fr
ac

tio
n 

of
 p

ro
ce

ss
or

‘s
 p

ow
er

(d)

AsAP Niag. BG/L RAWIntel80
10−3

10−2

10−1

100

101

A
bs

ol
ut

e 
en

er
gy

 (m
W

/M
H

z)

(c)

Fig. 14. Comparison of communication circuit area and power dissipation for
five chip multiprocessors: (a) absolute area; (b) fraction of processor’s circuit
area used for communication; (c) absolute energy dissipation; and (d) fraction
of processor’s power dissipation due to communication circuits. Values are
scaled to 0.13 �!� CMOS technology.

multiprocessors (Niagara [22], BlueGene/L [21], RAW [20],
and Intel 80-core [26]). The communication circuitry in the
AsAP processor occupies less than 0.08 mm � in 0.18 �
	
CMOS, which is approximately 8% of the processor area, and
is more than 50 times smaller than the others. Under the worst
case conditions when maximizing possible communication,
the communication circuity in the AsAP processor consumes
around 4 mW at 475 MHz, which is about 4% of the processor
power, and the energy efficiency is more than 100 times higher
than the others.

D. GALS

The GALS clocking style simplifies the clock tree design
and provides the opportunity for a joint clock/voltage scaling
method to achieve very high energy efficiency. However, at the
same time, it introduces an extra performance penalty since
it requires extra circuitry to handle asynchronous boundaries
which introduce additional latency. It has been shown that
the performance penalty from a GALS chip multiprocessor
architecture like AsAP can be highly reduced, due to its
localized computation and less frequent communication loops.
Simulation results show the performance penalty of the AsAP
processor is less than 1% compared to the corresponding
synchronous system [27].

IV. EVALUATION OF THE ASAP PROCESSOR

This section provides a detailed evaluation and discussion
of the AsAP processor including performance, area, and power
consumption.

Each processor occupies 0.66 mm � and the 6 � 6 array
occupies 32.1 mm � including pads. Due to its small memories
and simple architecture, each AsAP processor’s area is divided

TABLE V
ESTIMATES FOR A 13 MM � 13 MM ASAP ARRAY IMPLEMENTED IN

VARIOUS SEMICONDUCTOR TECHNOLOGIES

CMOS Processor Num Procs Clock Peak System
Tech Size per Chip Freq Processing
(nm) (mm

�
) (GHz) (Tera-Op)

180 0.66 256 0.51 0.14
130 0.34 500 0.66 0.33
90 0.16 1050 1.02 1.07
45 0.04 4200 2.04 8.57

as follows: 8% for communication circuitry, 26% for memory
circuitry, and a favorable 66% for the remaining core.

Processors operate at 520–540 MHz under typical condi-
tions. The average power consumption for each processor is
35 mW when processors are executing applications such as a
JPEG encoder or an 802.11a/g baseband transmitter, and they
consume 94 mW when 100% active at 520 MHz. At a supply
voltage of 2.0 V, most processors operate at clock frequencies
over 600 MHz.

A. High speed, small area, and high peak performance

Small memories and simple processing elements enable
high clock frequencies and high system performance. The
AsAP processor operates at frequencies among the highest
possible for a digital system designed using a particular design
approach and fabrication technology. The clock frequency
information listed in Table VI supports this assertion.

AsAP is also highly area efficient. AsAP has a processing
element density about 23–100 times greater than that of other
broadly-similar projects [6], and thus each AsAP processor oc-
cupies 4% or less area compared to other reported processing
elements.

High clock speeds and small area result in a high peak
performance density with a fixed chip size. With advancing
semiconductor fabrication technologies, the number of pro-
cessors will increase with the square of the scaling factor
and clock rates will increase approximately linearly—resulting
in a total peak system throughput that increases with the
cube of the technology scaling factor. Table V summarizes
area and performance estimates for several technologies with
the corresponding peak performance. It shows that in 90 nm
technology, an AsAP array can achieve 1 Tera-op/sec with
a 13 mm � 13 mm chip. Real applications would unlikely be
able to sustain this peak rate, but tremendous throughputs are
nonetheless expected.

B. High performance and low power consumption for DSP
applications

Table VI lists area, performance, and power data for a
number of general-purpose, programmable DSP, and ASIC
processors for which we could obtain data. We choose the
TI C62x as the reference programmable DSP processor since
it belongs to the TI VLIW C6000 series which is TI’s
highest performance series. The enhanced TI C64x VLIW
DSP processor [4] is also in the C6000 series and has an
architecture similar to the C62x, but it contains substantial

8



TABLE VI
AREA, PERFORMANCE AND POWER COMPARISON OF VARIOUS PROCESSORS FOR SEVERAL KEY DSP KERNELS AND APPLICATIONS; ALL DATA ARE

SCALED TO 0.18 ��� TECHNOLOGY ASSUMING A &('�) � REDUCTION IN AREA, A FACTOR OF ) INCREASE IN SPEED, AND A &('�) � REDUCTION IN POWER

CONSUMPTION. THE AREA IS THE CHIP CORE AREA WHEN AVAILABLE.

Benchmark Processor Processor Scaled Scaled Clock Scaled Scaled Scaled
style area clock freq. cycles execution power energy

(mm
�
) (MHz) time (mW) (nJ)

(ns)
40-tap FIR AsAP Array (8 proc.) 5.28 510 10 20 730 15
filter MIPS VR5000 [23], [28] RISC processor. N/A 347 430 1239 2600 3222

TI C62x [23], [28] VLIW DSP � 100 216 20 92 3200 296
PipeRench [29] Parallel processor 55 120 2.87 24 1873 45

8x8 DCT AsAP Array (8 proc.) 5.28 510 254 498 390 194
NMIPS [30] RISC processor N/A 78 10772 137000 177 24400
CDCT6 [30] Enhanced RISC N/A 178 3208 18000 104 1950
TI C62x [23], [28] VLIW DSP � 100 216 208 963 3200 3078
DCT processor [31] ASIC 1.72 555 64 115 520 60

Radix-2 AsAP Array (13 proc.) 8.6 510 845 1657 730 1209
complex MIPS VR5000 [28] RISC proc. N/A 347 15480 44610 2600 115988
64-pt FFT TI C62x [23], [28] VLIW DSP � 100 216 860 3981 3200 12739

FFT processor [32] ASIC 3.5 (core) 27 23 852 43 37
JPEG AsAP Array (9 proc.) 5.94 300 1443 4810 224 1077
encoder ARM [33] RISC processor N/A 50 6372 127440 N/A N/A
(8x8 block) TI C62x [33], [28] VLIW DSP � 100 216 840 3900 3200 12400

ARM+ASIC [33] ASIC + RISC N/A 50 1023 20460 N/A N/A
802.11a/g AsAP Array (22 proc.) 14.52 300 4000 13200 407 5372
transmitter TI C62x [34] [28] VLIW DSP � 100 216 27200 126800 3200 405760
(1 symbol) Atheros [35] ASIC 4.8 (core) N/A N/A 4000 24.2 96.8

circuit level optimizations that achieve more than 4 times
higher performance with less than half the power consumption
compared to the C62x. We feel the C62x is a fair comparison
with the first version AsAP processor and thus a better
comparison at the architecture level, without tainting from
circuit level optimizations.

In support of our assertion that the AsAP prototype has
significant room for improvement, we note that measurements
show approximately 2/3 of AsAP’s power is dissipated in
its clocking system. This is largely due to the fact that we
did not implement clock gating in this first prototype. All
circuits within each processor are clocked continuously—
except during idle periods when the oscillator is halted.

The area used by AsAP, shown in Table VI, is the combined
area required for all processors including those used for com-
munication. Data for the FIR, 8 � 8 DCT, and FFT are deduced
from measured results of larger applications. We estimated
the performance of the JPEG encoder on the TI C62x by
using the relative performance of the C62x compared to MIPS
processors [28], and a reported similar ARM processor [33].

Figure 15 compares the relative performance and power of
an AsAP processor to other processors in Table VI. These
comparisons use 8, 8, 13, 9, and 22 AsAP processors—which
clearly do not make full use of the chip’s 36 processors.
Utilizing a larger numbers of processors (through further par-
allelization) would increase performance further. Nevertheless,
� AsAP achieves 27–275 times higher performance and

96–215 higher energy efficiency than RISC processors
(single issue MIPS and ARM);

� compared to a high-end programmable DSP (TI C62x),
AsAP achieves 0.8–9.6 times higher performance and 10–
75 times higher energy efficiency; and

� compared to ASIC implementations, AsAP achieves per-

formance within a factor of 2–5 and energy efficiency
within a factor of 3–50 with an area within a factor of
2.5–3.

Another source of AsAP’s high energy efficiency comes
from its haltable clock, which is greatly aided by the GALS
clocking style. Halting clocks while processors are even mo-
mentarily inactive results in power reductions of 53% for the
JPEG core and 65% for the 802.11a/g baseband transmitter.

Supply voltage scaling can be used to further improve power
savings. Processors dissipate an average of 2.4 mW at a clock
rate of 116 MHz using a supply voltage of 0.9 V while
executing the described applications.

V. RELATED WORK

There have been many other styles of parallel processors.
The key features of the AsAP processor are a small memory,
a simple processor, GALS clocking style, and reconfigurable
nearest-neighbor mesh network. These features distinguish it
from other previous and current parallel processors.

The transputer [44] is a popular parallel processor originally
developed in the 1980’s. It shares the philosophy of using
multiple relatively simple processors to achieve high perfor-
mance. The transputer is designed for a multiple processor
board, where each transputer processor is a complete stan-
dalone system. It uses a bit serial channel for inter-processor
communication which can support communication of different
word lengths to save hardware, but with dramatically reduced
communication speeds.

Systolic processors and wavefront processors are two more
classic parallel architectures. Systolic processors [45] contain
synchronously-operating processors which send and receive
data in a highly regular manner [46]. Wavefront array pro-
cessors [47] are similar to systolic processors but rely on

9



FIR 8x8 DCT FFT JPEG 802.11
10

−2

10
0

10
1

10
3

R
el

at
iv

e 
ar

ea
DSP
AsAP
ASIC

FIR 8x8 DCT FFT JPEG 802.11
10

−2

10
0

10
1

10
3

R
el

at
iv

e 
ex

ec
ut

io
n 

tim
e

RISC
 DSP
AsAP
ASIC

FIR 8x8 DCT FFT JPEG 802.11
10

−2

10
0

10
1

10
3

R
el

at
iv

e 
en

er
gy

RISC
 DSP
AsAP
ASIC

Fig. 15. Relative area, execution time and energy for various implementations of several key DSP kernels and applications. Source data are available in
Table VI.

TABLE VII
COMPARISON OF KEY FEATURES OF SELECTED PARALLEL PROCESSOR ARCHITECTURES

Processor Single Element Clock Style Inter-proc Network Applications
Pleiades [36] heterogeneous (ASIC + proc.) handshake GALS hierarchical network wireless apps
Picochip [37] heterogeneous (DSP + coproc.) synchronous hierarchical network wireless apps
Cradle [38] heterogeneous (RISC + DSP) synchronous global bus multimedia apps
Imagine [39] ALU cluster synchronous hierarchical switch stream apps
RaPiD [40] multiple execution units synchronous linear array DSP apps
PipeRench [29] execution unit stripe synchronous linear array DSP apps
TRIPS [11] wide-issue processor synchronous 2-D mesh; dynamic route all apps
Intel 80-core [26] VLIW processor mesochronous 2-D mesh; dynamic route all apps
Synchroscalar [41] SIMD processor rationally related global interconnect DSP apps
CELL [15] SIMD processor synchronous high-bandwidth ring bus multimedia apps
ClearSpeed [42] SIMD processor synchronous N/A high perf. apps
Sandbridge [43] SIMD processor with cache synchronous N/A wireless apps
Smart Memories [19] single-issue proc. with 128 KB mem synchronous packet dynamic route all apps
RAW [10] single-issue proc. with 128 KB mem synchronous static+dynamic route all apps
AsAP single-issue proc. with 512 B mem GALS 2D reconfig. mesh DSP apps

dataflow properties for inter-processor data synchronization.
Previous designs were optimized for simple and single al-
gorithm workloads such as matrix operations [9] and image
processing kernels [48].

More parallel processor projects have appeared recently.
Table VII compares the key features of other projects to AsAP.
Most parallel processors can be easily differentiated by their
processing element architectures which can be categorized
into three broad types—heterogeneous, multiple execution
units (often similar to classic SIMD), and multiple proces-
sors (MIMD). A heterogeneous style such as the one used
by Pleiades [36], Picochip [37] and Cradle [38] makes the
system efficient for specific applications, but results in a non-
regular layout and difficult scaling. Recent processors such as
RAW [10], CELL [15], TRIPS [11], and Synchroscalar [41],
also use MIMD architectures, but can be easily distinguished
from AsAP by their larger processing element granularity
alone. One of the main reasons for their increased processor
granularity is because they target a wider range of applications.
Most other projects use a fully synchronous clocking style.
Pleiades and FAUST [49] use GALS but with handshak-
ing flow control, which is quite different from the source-
synchronous interprocessor communication used in AsAP that
is able to sustain full-rate communication of one word per
cycle at high clock rates. The Intel 80-core chip [26] employs
mesochronous clocking where each processor has the same
clock frequency while the clock phase is allowed to vary.

VI. CONCLUSION

The AsAP platform is well-suited for the computation
of complex DSP workloads comprised of many DSP tasks,
as well as single highly-parallel computationally demanding
tasks. By its very nature of having independent clock domains,
very small processing elements, and short interconnects, it is
highly energy-efficient and capable of high throughput.

Measured results show that on average, AsAP can achieve
several times higher performance and 10 times higher energy
efficiency than a high performance DSP processor, while
utilizing an area more than 10 times smaller.

Areas of interesting future work include: mapping a broader
range of applications to AsAP; developing algorithms and
hardware for intelligent clock and voltage scaling; automatic
software mapping tools to optimize utilization, throughput, and
power; C compiler enhancements; connecting large memories
when more memory is needed; and automatic fault detection
and recovery.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from Intel, UC
Micro, NSF Grant 0430090 and CAREER Award 0546907,
SRC GRC Grant 1598, Intellasys, S Machines, MOSIS, Ar-
tisan, and a UCD Faculty Research Grant; and thank D.
Truong, M. Singh, R. Krishnamurthy, M. Anders, S. Mathew,
S. Muroor, W. Li, and C. Chen.

10



REFERENCES

[1] M. Horowitz and W. Dally, “How scaling will change processor
architecture,” in IEEE International Solid-State Circuits Conference
(ISSCC), Feb. 2004, pp. 132–133.

[2] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,”
Proceedings of the IEEE, pp. 490–504, Apr. 2001.

[3] D. M. Chapiro, Globally-Asynchronous Locally-Synchronous Systems,
Ph.D. thesis, Stanford University, Stanford, CA, Oct. 1984.

[4] S. Agarwala, T. Anderson, A. Hill, et al., “A 600-MHz VLIW DSP,”
IEEE Journal of Solid-State Circuits (JSSC), pp. 1532–1544, Nov. 2002.

[5] J. Stinson and S. Rusu, “A 1.5 GHz third generation Itanium 2
processor,” in Design Automation Conference (DAC), June 2003, pp.
706–710.

[6] Z. Yu, M. Meeuwsen, R. Apperson, et al., “An asynchronous array of
simple processors for DSP applications,” in IEEE International Solid-
State Circuits Conference (ISSCC), Feb. 2006, pp. 428–429.

[7] N. Bindal et al., “Scalable sub-10ps skew global clock distribution for a
90nm multi-GHz IA microprocessor,” in IEEE International Solid-State
Circuits Conference (ISSCC), Feb. 2003, pp. 346–347.

[8] R. Apperson, Z. Yu, M. Meeuwsen, T. Mohsenin, and B. Baas, “A scal-
able dual-clock FIFO for data transfers between arbitrary and haltable
clock domains,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 15, no. 10, pp. 1125–1134, Oct. 2007.

[9] S. Y. Kung, “VLSI array processors,” in IEEE ASSP Magazine, July
1985, pp. 4–22.

[10] M. Taylor et al., “A 16-issue multiple-program-counter microprocessor
with point-to-point scalar operand network,” in IEEE International
Solid-State Circuits Conference (ISSCC), Feb. 2003, pp. 170–171.

[11] S. Keckler et al., “A wire-delay scalable microprocessor architecture for
high performance systems,” in IEEE International Solid-State Circuits
Conference (ISSCC), Feb. 2003, pp. 168–169.

[12] J. Glossner, J. Moreno, M. Moudgill, et al., “Trends in compilable DSP
architecture,” in IEEE Workshop on Signal Processing Systems (SiPS),
Oct. 2000, pp. 181–199.

[13] IEEE Computer Society, “Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications: High speed physical layer in
the 5 GHz band,” in Standard for Information Technology. Institute of
Electrical and Electronics Engineers, 1999.

[14] M. J. Meeuwsen, O. Sattari, and B. M. Baas, “A full-rate software
implementation of an IEEE 802.11a compliant digital baseband trans-
mitter,” in IEEE Workshop on Signal Processing Systems (SiPS), Oct.
2004, pp. 124–129.

[15] D. Pham et al., “The design and implementation of a first-generation
CELL processor,” in IEEE International Solid-State Circuits Conference
(ISSCC), Feb. 2005, pp. 184–185.

[16] S. Naffziger et al., “The implementation of a 2-core multi-threaded
Itanium family processor,” in IEEE International Solid-State Circuits
Conference (ISSCC), Feb. 2005, pp. 182–183.

[17] J. Oliver et al., “Tile size selection for low-power tile-based architec-
ture,” in ACM Computing Frontiers, May 2006, pp. 83–94.

[18] B. Baas, “A parallel programmable energy-efficient architecture for
computationally-intensive DSP systems,” in Asilomar Conference on
Signals, Systems and Computers, Nov. 2003, pp. 2185–2189.

[19] K. Mai et al., “Smart memories: A modular reconfigurable architecture,”
in Proceedings of the International Symposium on Computer Architec-
ture (ISCA), June 2000, pp. 161–171.

[20] J. Sungtae et al., “Energy characterization of a tiled architecture
processor with on-chip network,” in International Symposium on Low
Power Electronics and Design (ISLPED), Aug. 2003, pp. 424–427.

[21] A. A. Bright et al., “Creating the BlueGene/L supercomputer from
low-power SOC ASICs,” in IEEE International Solid-State Circuits
Conference (ISSCC), Feb. 2005, pp. 188–189.

[22] A. S. Leon et al., “A power-efficienct high-throughput 32-thread SPARC
processor,” in IEEE International Solid-State Circuits Conference
(ISSCC), Feb. 2006, pp. 98–99.

[23] Texas Instruments, “DSP platforms benchmarks,” Tech. Rep., http:
//www.ti.com/.

[24] Berkeley Design Technology, Evaluating DSP Processor Performance,
Berkeley, CA, USA, 2000.

[25] the Embedded Microprocessor Benchmark Consortium, Data sheets,
www.eembc.org, 2006.

[26] S. Vangal, J. Howard, G. Ruhl, et al., “An 80-tile 1.28TFLOPS network-
on-chip in 65nm CMOS,” in IEEE International Solid-State Circuits
Conference (ISSCC), Feb. 2007, pp. 98–99.

[27] Z. Yu et al., “Performance and power analysis of globally asynchronous
locally synchronous multi-processor systems,” in IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Mar. 2006, pp. 378–384.

[28] C. Kozyrakis et al., “Vector vs. superscalar and vliw architectures for
embedded multimedia benchmarks,” in Micro, Nov. 2002, pp. 283–289.

[29] H. Schmit et al., “PipeRench: A virtualized programmable datapath
in 0.18 micron technology,” in IEEE Custom Integrated Circuits
Conference (CICC), May 2002, pp. 63–66.

[30] B. Gorjiara et al., “Custom processor design using NISC: a case-study
on DCT algorithm,” in ESTIMedia, Sept. 2005, pp. 55–60.

[31] M. Matsui et al., “A 200 MHz 13 mm
�

2-d DCT macrocell using
sense-amplifying pipeline flip-flop scheme,” IEEE Journal of Solid-State
Circuits (JSSC), pp. 1482–1490, Dec. 1994.

[32] K. Maharatna et al., “A 64-point fourier transform chip for high-speed
wireless LAN application using OFDM,” IEEE Journal of Solid-State
Circuits (JSSC), pp. 484–493, Mar. 2004.

[33] T. Lin and C. Jen, “Cascade – configurable and scalable DSP envi-
ronment,” in IEEE International Symposium on Circuits and Systems
(ISCAS), May 2002, pp. 26–29.

[34] M. Tariq et al., “Development of an OFDM based high speed wireless
LAN platform using the TI C6x DSP,” in IEEE International Conference
on Communications (ICC), Apr. 2002, pp. 522–526.

[35] J. Thomson et al., “An Integrated 802.11a Baseband and MAC Pro-
cessor,” in IEEE International Solid-State Circuits Conference (ISSCC),
2002, vol. 45, pp. 126–127, 451.

[36] H. Zhang et al., “A 1-V heterogeneous reconfigurable DSP IC for
wireless baseband digital signal processing,” IEEE Journal of Solid-
State Circuits (JSSC), pp. 1697–1704, Nov. 2000.

[37] R. Baines et al., “A total cost approach to evaluating different recon-
figurable architectures for baseband processing in wireless receivers,”
IEEE Communication Magazine, pp. 105–113, Jan. 2003.

[38] Cradle Technologies, “Multiprocessor DSPs: Next stage in the evolution
of media processor DSPs,” Tech. Rep., http://www.cradle.com/.

[39] B. Khailany et al., “VLSI design and verification of the imagine
processor,” in IEEE International Conference on Computer Design
(ICCD), Sept. 2002, pp. 289–294.

[40] D. C. Cronquist et al., “Architecture design of reconfigurable pipelined
datapaths,” in Advanced research in VLSI (ARVLSI), Mar. 1999, pp.
23–40.

[41] J. Oliver et al., “Synchroscalar: A multiple clock domain, power-aware,
tile-based embedded processor,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), June 2004, pp. 150–161.

[42] ClearSpeed, “CSX600: Advanced product,” Tech. Rep., http://
www.clearspeed.com/.

[43] Sandbridge, “The sandbridge sandblaster convegence platform,” Tech.
Rep., http://www.sandbridgetech.com/.

[44] C. Whitby-Strevens, “Transputers-past, present and future,” IEEE Micro,
pp. 16–19, Dec. 1990.

[45] H. T. Kung, “Why systolic architectures?,” in Computer Magazine, Jan.
1982, pp. 37–46.

[46] H. T. Kung, “Systolic communication,” in International Conference on
Systolic Arrays, May 1988, pp. 695–703.

[47] S. Kung et al., “Wavefront array processor: Language, architecture, and
applications,” IEEE Transactions on Computers, vol. C-31, no. 11, Nov.
1982.

[48] U. Schmidt and S. Mehrgardt, “Wavefront array processor for video
applications,” in IEEE International Conference on Computer Design
(ICCD), Sept. 1990, pp. 307–310.

[49] D. Lattard, E. Beigne, C. Bernard, et al., “A telecom baseband circuit
based on an asynchronous network-on-chip,” in IEEE International
Solid-State Circuits Conference (ISSCC), Feb. 2007, pp. 258–259.

11



Zhiyi Yu received the B.S. and M.S. degrees in elec-
trical engineering from Fudan University, Shanghai,
China, in 2000 and 2003, respectively, and the Ph.D
degree in electrical and computer engineering from
University of California, Davis, in 2007.

Dr. Yu is currently a Hardware Engineer with
IntellaSys Corporation, headquartered in Cupertino,
CA. His research interests include high-performance
and energy-efficient digital VLSI design, architec-
tures, and processor interconnects, with an emphasis
on many-core processors. He was a key designer of

the 36-core Asynchronous Array of simple Processors (AsAP) chip, and one
of the designers of the 150+ core second generation computational array chip.

Michael J. Meeuwsen received the B.S. degrees
with honors in electrical engineering and computer
engineering (both summa cum laude) from Oregon
State University, Corvallis, and the M.S. in electrical
and computer engineering from the University of
California, Davis.

He is currently a Hardware Engineer with In-
tel Digital Enterprise Group, Hillsboro, OR, where
he works on CPU hardware design. His research
interests include digital circuit design and IEEE
802.11a/g algorithm mapping.

Ryan W. Apperson received the B.S. in electrical
engineering (Magna Cum Laude) from the Univer-
sity of Washington, Seattle, and the M.S. degree
in electrical and computer engineering from the
University of California, Davis.

He is currently an IC Design Engineer with
Boston Scientific CRM Division, Redmond, WA.
His research interests include multiclock domain
systems and SRAM design.

Omar Sattari received the B.S. and M.S. degrees
in electrical and computer engineering from the
University of California, Davis.

He is currently a Software Engineer at Corner-
Turn. His research interests include FFT and DSP
algorithms and digital hardware design.

Michael Lai received the B.S. and M.S. degrees
in electrical and computer engineering from the
University of California, Davis.

He is currently a Design Engineer at Altera
Corporation working on next generation transceiver
products. His research interests include the design
of high-speed arithmetic units and control.

Jeremy W. Webb received the B.S. degree in elec-
trical and computer engineering from the University
of California, Davis.

He is currently a M.S. student in electrical and
computer engineering at the University of California,
Davis, and a hardware engineer at Centellax. His
research interests include high-speed board design
and system interfacing.

Eric W. Work received the B.S. degree from the
University of Washington, and the M.S. degree in
electrical and computer engineering from the Uni-
versity of California, Davis.

He is currently a Software Engineer at S Machine
Corporation. His research interests include the map-
ping of arbitrary task graphs to processor networks
and software tool flow.

Tinoosh Mohsenin received the B.S. degree in elec-
trical engineering from Sharif University, Tehran,
Iran, and the M.S. degree in electrical and computer
engineering from Rice University, Houston, TX. She
is currently pursuing the Ph.D. degree in electrical
and computer engineering from the University of
California, Davis.

She is the designer of the Split-Row and Multi-
Split-Row Low Density Parity Check (LDPC) de-
coding algorithms. Her research interests include
energy efficient and high performance signal pro-

cessing and error correction architectures including multi-gigabit full-parallel
LDPC decoders and many-core processor architecture design.

Bevan M. Baas received the B.S. degree in elec-
tronic engineering from California Polytechnic State
University, San Luis Obispo, in 1987, and the M.S.
and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, in 1990 and
1999, respectively.

In 2003 he became an Assistant Professor with
the Department of Electrical and Computer Engi-
neering at the University of California, Davis. He
leads projects in architecture, hardware, software
tools, and applications for VLSI computation with

an emphasis on DSP workloads. Recent projects include the Asynchronous
Array of simple Processors (AsAP) chip, applications, and tools; low density
parity check (LDPC) decoders; FFT processors; viterbi decoders; and H.264
video codecs.

From 1987 to 1989, he was with Hewlett-Packard, Cupertino, CA, where he
participated in the development of the processor for a high-end minicomputer.
In 1999, he joined Atheros Communications, Santa Clara, CA, as an early
employee and served as a core member of the team which developed the first
IEEE 802.11a (54 Mbps, 5 GHz) Wi-Fi wireless LAN solution. During the
summer of 2006 he was a Visiting Professor in Intel’s Circuit Research Lab.

Dr. Baas was a National Science Foundation Fellow from 1990 to 1993
and a NASA Graduate Student Researcher Fellow from 1993 to 1996. He
was a recipient of the National Science Foundation CAREER Award in 2006
and the Most Promising Engineer/Scientist Award by AISES in 2006. He is
an Associate Editor for the IEEE JOURNAL OF SOLID-STATE CIRCUITS and
has served as a member of the Technical Program Committee of the IEEE
International Conference on Computer Design (ICCD) in 2004, 2005, and
2007. He also serves as a member of the Technical Advisory Board of an
early stage technology company.

12


