
J Sign Process Syst
DOI 10.1007/s11265-008-0162-1

Architecture and Evaluation of an Asynchronous
Array of Simple Processors

Zhiyi Yu · Michael J. Meeuwsen ·
Ryan W. Apperson · Omar Sattari ·
Michael A. Lai · Jeremy W. Webb ·
Eric W. Work · Tinoosh Mohsenin ·
Bevan M. Baas

Received: 13 March 2007 / Accepted: 17 January 2008
© 2008 Springer Science + Business Media, LLC. Manufactured in the United States

Abstract This paper presents the architecture of an
asynchronous array of simple processors (AsAP), and
evaluates its key architectural features as well as its
performance and energy efficiency. The AsAP proces-
sor calculates DSP applications with high energy-
efficiency, is capable of high-performance, is easily
scalable, and is well-suited to future fabrication tech-
nologies. It is composed of a two-dimensional array
of simple single-issue programmable processors inter-
connected by a reconfigurable mesh network. Proces-
sors are designed to capture the kernels of many DSP
algorithms with very little additional overhead. Each
processor contains its own tunable and haltable clock
oscillator, and processors operate completely asynchro-
nously with respect to each other in a globally asyn-
chronous locally synchronous (GALS) fashion. A 6 × 6
AsAP array has been designed and fabricated in a
0.18 μm CMOS technology. Each processor occupies
0.66 mm2, is fully functional at a clock rate of 520–
540 MHz at 1.8 V, and dissipates an average of 35 mW
per processor at 520 MHz under typical conditions
while executing applications such as a JPEG encoder
core and a complete IEEE 802.11a/g wireless LAN
baseband transmitter. Most processors operate at over
600 MHz at 2.0 V. Processors dissipate 2.4 mW at
116 MHz and 0.9 V. A single AsAP processor occu-
pies 4% or less area than a single processing element

Z. Yu (B) · M. J. Meeuwsen · R. W. Apperson ·
O. Sattari · M. A. Lai · J. W. Webb · E. W. Work ·
T. Mohsenin · B. M. Baas
ECE department, UC Davis, Davis, CA 95616 USA
e-mail: zhyyu@ucdavis.edu

B. M. Baas
e-mail: bbaas@ucdavis.edu

in other multi-processor chips. Compared to several
RISC processors (single issue MIPS and ARM), AsAP
achieves performance 27–275 times greater, energy ef-
ficiency 96–215 times greater, while using far less area.
Compared to the TI C62x high-end DSP processor,
AsAP achieves performance 0.8–9.6 times greater, en-
ergy efficiency 10–75 times greater, with an area 7–
19 times smaller. Compared to ASIC implementations,
AsAP achieves performance within a factor of 2–5,
energy efficiency within a factor of 3–50, with area
within a factor of 2.5–3. These data are for varying
numbers of AsAP processors per benchmark.

Keywords array processor · chip multi-processor ·
digital signal processing · DSP · globally asynchronous
locally synchronous · GALS · many-core · multi-core ·
programmable DSP

1 Introduction

Applications that require the computation of complex
DSP workloads are becoming increasingly common-
place. These applications often comprise multiple DSP
tasks and are found in applications such as: wired and
wireless communications, multimedia, sensor signal
processing, and medical/biological processing. Many
are embedded and are strongly energy-constrained. In
addition, many of these workloads require very high
throughputs and often dissipate a significant portion of
the system power budget and are therefore of consider-
able interest.

Increasing clock frequencies and an increasing num-
ber of circuits per chip has resulted in modern chip

Yu et al.

performance being limited by power dissipation rather
than circuit constraints. This implies a new era of high-
performance design that must now focus on energy-
efficient implementations [1]. Future fabrication tech-
nologies are expected to have large variations in devices
and wires, and “long” wires are expected to significantly
reduce maximum clock rates. Therefore, architectures
that enable the elimination of long high-speed wires
will likely be easier to design and may operate at higher
clock rates [2].

The asynchronous array of simple processors
(AsAP) computes the aforementioned complex DSP
application workloads with high performance and high
energy-efficiency, and is well suited for future technolo-
gies. The AsAP system comprises a two-dimensional
array of simple programmable processors intercon-
nected by a reconfigurable mesh network. Processors
are each clocked by fully independent haltable oscil-
lators in a globally asynchronous locally synchronous
(GALS) [3] fashion. Several of AsAP’s key features
distinguish it from other broadly similar work:

• A chip multiprocessor architecture achieves high
performance through parallel computation. Many
DSP applications are composed of a collection of
cascaded DSP tasks, so an architecture that allows
the parallel computation of independent tasks will
likely be more efficient.

• Small memories and simple single-issue architecture
for each processor achieves high energy efficiency.
Since large memories—which are normally used
in modern processors [4, 5]—dissipate significant
energy and require larger delays per memory trans-
action, architectures that minimize the need for
memory and keep data near or within processing
elements are likely to be more efficient. Along with

reduced memory sizes, the datapath and control
logic complexity of AsAP are also reduced.

• GALS clocking style is suitable for future fabri-
cation technologies and can achieve high energy
efficiency due to the fact that global clock circuits
have become increasingly difficult to design and
they consume significant power.

• Nearest neighbor communication is used to avoid
global wires to make it suitable for future fab-
rication technologies, due to the fact that global
chip wires will dramatically limit performance if
not properly addressed since their delay is roughly
constant when scaled [2].

A prototype 6 × 6 AsAP chip has been implemented
in 0.18 μm CMOS and is fully functional [6]. In this
paper, we discuss AsAP’s architectural design and in-
vestigate how the key features affect system results.
In addition, we present a thorough evaluation of its
performance and energy efficiency for several DSP
applications.

2 The AsAP Processor System

2.1 Architecture of the AsAP Processor

The AsAP array consists of a large number of simple
uniform processing elements operating asynchronously
with respect to each other and connected through a
reconfigurable network. The processors are optimized
to efficiently compute DSP algorithms individually as
well as in conjunction with neighboring processors.
Figure 1 contains diagrams of the fabricated processing
array and a single AsAP processor.

Each AsAP processor is a simple single-issue proces-
sor with a 64-word 32-bit instruction memory (IMEM),

Figure 1 Block diagram of
an AsAP processor and the
6 × 6 chip. Vertical gray bars
indicate the nine pipeline
stages.

Inst

Mem

OSC

control
config

In0 clock
domain

In1 clock
domain

Source
read

FIFO0

FIFO1

DMEM

Inst.
fetch

A
L
U

EXE1 Result
select

To other
processors

DCMEM

PC

ctrl.

proc. clk

Inst.
decoder

Inst.
Decod.

Addr.
Gen.

Source
select

MAC

EXE2
WB &
Ouput

EXE3

ALU
bypass
to SRC
select

A
C
C

clk
data
valid
hold

DMEM

OSC

clk
data
valid
hold

Architecture and Evaluation of An Asynchronous Array of Simple Processors

Table 1 AsAP 32-bit instruction types and fields.

Instruction 6 8 8 8 2
type bits bits bits bits bits

General opcode dest src1 src2 NOPs
Immediate opcode dest immediate NOPs
Branch opcode – – target NOPs

a 128-word 16-bit data memory (DMEM), a dynamic
configuration memory (DCMEM), a 16×16-bit multi-
plier with a 40-bit accumulator, a 16-bit ALU, and four
address generators. It utilizes a memory-to-memory ar-
chitecture with no register file. No support is provided
for branch prediction, out of order execution, or spec-
ulative operation. During the design phase, hardware
was added only when it significantly increased perfor-
mance and/or energy-efficiency for our benchmarks. A
nine stage pipeline is implemented as shown in Fig. 1.
All control signals are generated in the instruction de-
code stage, and pipelined appropriately. Interlocks are
not implemented in hardware, so all code is scheduled
prior to execution by the compiler.

2.1.1 Instruction Set

AsAP supports 54 32-bit instructions with three broad
instruction formats. A summary of the 54 instructions
is given in Tables 1 and 2. General instructions se-
lect two operands from memories, accumulator, FIFOs,
and three ALU bypass routes; and they select one
destination from memories, accumulator and output
ports. Immediate instructions receive input from a 16-
bit immediate field. Branch instructions include a num-
ber of conditional and unconditional branch functions.
Two bits in each instruction define how many NOP
operations (from 0 to 3) should follow after instruc-
tion processing, which allows inserting NOPs to avoid
pipeline hazards without requiring additional NOP in-
structions.

Other than a bit-reverse instruction and a bit-
reverse mode in the address generators, no algorithm-
specific instructions or hardware are implemented.
While single-purpose hardware can greatly speed com-
putation for specific algorithms, it can prove detrimen-
tal to the performance of a complex multi-algorithmic
system and limits performance for future presently-
unknown algorithms—which is one of the key domains
for programmable processors.

2.1.2 Data Addressing

AsAP processors fetch data at pipeline stage Mem
Read, using the addressing modes listed in Table 3.
Three methods are supported to address data memory.

Direct memory addressing uses immediate data as the
address to access static memory locations; four address
pointers access memory according to the value in spe-
cial registers located in DCMEM; and four address
generators provide automatic addressing with special-
purpose hardware to accelerate many tasks. In addition
to the data memory, AsAP processors can also fetch
data from another six locations: (1) short immediate
data (6 bits) can be used in dual-source instructions,
(2) long immediate data (16 bits) can be used in the
move immediate instruction, (3) the DCMEM’s config-
uration information can be read or written by instruc-
tions, (4) three bypass paths from the ALU and MAC
units can be used as sources to accelerate execution,
(5) the two processor input FIFOs are available as
general instruction sources, and (6) the lowest 16 bits
of the accumulator register can also be a source for
execution.

Figure 2 shows the logic diagram for one address
generator. Each address generator contains a count
register which is used as the memory pointer, and
several inputs define how to change its value after each
memory access. Start_addr defines the start address
of the count register. When the counter is enabled
(enable = 1), it will be increased or decreased (deter-
mined by direction) by the amount of the value stride.
The count register is reloaded to the start address
when it reaches the end address (end_addr). The other
control signals are primarily used to accelerate FFTs.
Each address generator occupies about 3700 μm2 in a
0.18 μm technology, and the four address generators
occupy only 2% of the processor’s area.

2.1.3 Completely Independent Clocking and Circuits
for Crossing Asynchronous Clock Domains

Each processor has its own digitally programmable
clock oscillator which occupies only about 0.5% of
the processor’s area. There are no phase-locked loops
(PLLs), delay-locked loops (DLLs), or global fre-
quency or phase-related signals, and the system is

Table 2 Classes of the 54 supported instructions.

Instruction class Number of instructions

Addition 7
Subtraction 7
Logic 11
Shift 4
Multiply 2
Multiply–accumulate 6
Branch 13
Miscellaneous 4

Yu et al.

Table 3 Data fetch
addressing modes.

Addressing mode Example Meaning

Direct Move Obuf DMEM 0 Obuf ← DMEM[0]
Address pointer Move Obuf aptr0 Obuf ← DMEM[DCMEM]
Address generator Move Obuf ag0 Obuf ← DMEM[generator]
Short immediate Add Obuf #3 #3 Obuf ← 3+3
Long immediate Move Obuf #256 Obuf ← 256
DCMEM Move Obuf DCMEM 0 Obuf ← DCMEM[0]
Bypassing Move Obuf regbp1 Obuf ← first bypass
FIFOs Move Obuf Ibuf0 Obuf ← FIFO 0
ACC Move Obuf Acc Obuf ← ACC[15:0]

fully GALS. While impressive low clock skew designs
have been achieved at multi-GHz clock rates, the ef-
fort expended in clock tree management and layout is
considerable [7]. Placing a clock oscillator inside each
processor reduces the size of the clock tree circuit to a
fraction of a square millimeter—the size of a process-
ing element. Large systems can be made with arrays
of processing elements with no change whatsoever to
clock trees (that are wholly contained within processing
elements), simplifying overall design complexity and
scalability.

The reliable transfer of data across unrelated asyn-
chronous clock domains is accomplished by dual-clock
FIFOs [8]. The FIFO’s write clock and data are sup-
plied in a source-synchronous fashion by the upstream
processor and its read clock is supplied by the down-
stream processor—which is the host for the dual-clock
FIFO in AsAP.

>> X

10

1 0

+ / –

0

(Bit–Reversal)

enable
reset

end_addr
shr_amt

bit_rev
and_mask stridestart_addr

sml

1

direction

count

or_mask

(SHL 1)

addr_out

Figure 2 Address generator; thin lines represent one-bit wires,
and thick lines represent seven-bit wires.

Special clock control circuits enable processing ele-
ments to power down completely—dissipating leakage
power only—if no work is available for nine clock cy-
cles. The local oscillator is fully restored to full speed in
less than one cycle after work again becomes available.

2.1.4 Reconfigurable Two-Dimensional Mesh Network

Processors connect via a configurable two-dimensional
mesh. To maintain link communication at full clock
rates, inter-processor connections are made to nearest-
neighbor processors only. A number of architectures
including wavefront [9], RAW [10], and TRIPS [11],
have specifically addressed this concern and have
demonstrated the advantages of a tile-based architec-
ture. AsAP’s nearest neighbor connections result in no
high-speed wires with a length greater than the linear
dimension of a processing element. The inter-processor
delay decreases with advancing fabrication technolo-
gies and allows clock rates to scale upward. Longer
distance data transfers in AsAP are handled by routing
through intermediary processors or by “folding” the
application’s data flow graph so that communicating
processing elements are placed adjacent or near each
other—for example, the Pilot Insert processor and the
first G.I. Wind. processor in Fig. 5b.

Each AsAP processor has two asynchronous input
data ports and can connect each port to any of its
four nearest neighboring processors. Because changing

a b

single
processor

ASAP

Figure 3 Micrograph of the a 6 × 6 AsAP chip and b its test
environment.

Architecture and Evaluation of An Asynchronous Array of Simple Processors

active clock signals can cause runt clock pulses, a
processor may change its input connection only during
times when both input clocks are guaranteed to both
be low—which is normally only during power-up. On
the other hand, output port connections can be changed
among any combination of the four neighboring proces-
sors at any time through software.

2.2 AsAP Implementation

The first generation AsAP 6 × 6 processor array has
been implemented using TSMC 0.18 μm CMOS tech-
nology [6]. The left part of Fig. 3 shows the die mi-
crograph. A standard cell based design flow was used
from verilog source code. All circuits were synthesized,
except the programmable oscillator. A single processor
tile and the entire chip were placed and routed by CAD
tools.

The right part of Fig. 3 shows the test environment
for the AsAP prototype including a printed circuit
board hosting an AsAP processor and a supporting
FPGA board to interface between AsAP and a host

Table 4 Required instruction memory and data memory sizes for
various DSP tasks on a simple single-issue processor.

Task IMem DMem
size size
(words) (words)

16-Tap FIR filter 6 33
Level-shifting for JPEG 8 1
8-Point DCT 40 16
8 × 8 two-dimensional DCT 154 72
Quantization for 64 elements 7 66
Zig-zag re-ordering for JPEG 68 64
Huffman encoding for JPEG 203 334
Scrambling for 802.11a/g 31 17
Padding OFDM bitstream 49 25
Convolutional coding (k = 7) 29 14
Interleaving 1 for 802.11a/g 35 30
Interleaving 2 for 802.11a/g 51 31
Modulation for BPSK, QPSK, 53 33

16QAM, 64QAM
Pilot insertion for OFDM 47 68
Training symbol generation for 802.11a/g 31 76
64-point complex FFT 97 192
Guard interval insertion for OFDM 44 74
2× upsampling + 21-tap Nyquist FIR filter 40 128
Bubble sort 20 1
N-element merge sort 50 N
Square root 62 15
Exponential 108 32

void main() {
int i;
int a, b, c;
sat int d; /* saturating integer */
while(1) { /* loop */
a = Ibuf0; /* read value from FIFO 0 */
b = Ibuf1; /* read value from FIFO 1 */
c = (a + b) > > 1;/* AddHigh instruction */
for (i = 0; i < 10; i++) {
d = c + i; /* saturating instruction */
OBuf = d; /* OBuf is proc.'s output */

}
}

}

Figure 4 An example C language program for an AsAP
processor.

PC. AsAP’s SPI-style serial port receives configuration
information and programs for each processor.

2.3 Software

Programming the AsAP processor presents significant
challenges. Programming involves taking advantage of
all levels of parallelism easily available to simplify
the coding of small kernels, including task-level par-
allelism, data-level parallelism, and address-data paral-
lelism. Partly due to the natural partitioning of applica-
tions by task-level parallelism, we have found the task
less challenging than first expected. This is supported
by data in Table 4 showing the memory requirements
of common DSP tasks.

A high level language (which we call called AsAP-C)
and its corresponding compiler were developed to gen-
erate code for each individual AsAP processor. AsAP-
C contains most standard C language functions such
as arithmetic calculations (addition, subtraction, mul-
tiplication, etc.), logic calculations (AND, OR, NOT,
etc.), and control functions (while loops, for loops, etc.).
A saturating integer type is defined to support DSP
integer calculations which are commonly used in high
level DSP languages [12]. Additionally, the language
contains several functions specific for AsAP such as
FIFO reads and direct inter-processor communication.
Both inputs and outputs are mapped into the language
through the reserved variable names: Ibuf0, Ibuf1,
and Obuf. Figure 4 shows one example of an AsAP-C
program which fetches data from two FIFOs and sends
its result to the processor’s output port.

The job of programming processors also includes the
mapping of processor graphs to the two-dimensional
planar array. While this is normally done at compile
time, an area of current work is tools for the automatic
mapping of graphs to accommodate rapid programming
and to recover from hardware faults and extreme vari-
ations in circuits, environment, and workload.

Yu et al.

Pad

Scram

Conv.

Code
Punc

Inter-

leave 1

Inter-

leave 2

Mod.

Map

Pilot

Insert

Train

IFFT

BR

IFFT

Mem

IFFT

BF

IFFT

Output

GI/

Wind.
GI/

Wind.

IFFT

Mem
IFFT

BF
FIRFIR

IFFT

BF

IFFT

Mem

Output

Sync
IFFT

Data bits

To

D/A

converter

DC in

Huffm

DC in

Huffm

Lv-shift

1-DCT

Zigzag
Quant.

Zigzag

AC in

Huffm

1-DCT

Trans

in DCT

outputinput

AC in

Huffm

ba
Figure 5 Block diagram of the a 9-processor JPEG encoder and
b 22-processor 802.11a/g implementation. Thin arrows show all
paths and wide arrows show the primary data flow. The processor
marked with an “×” is unused and powered down.

2.4 Task and Application Implementations

In addition to the tasks listed in Table 4, we have
completed the implementation and further analysis of
several complex applications, including a JPEG en-
coder and an IEEE 802.11a/g wireless LAN baseband
transmitter as shown in Fig. 5—both are fully functional
on the fabricated chip. The JPEG encoder principally
consists of five sub-tasks: level shift, 8 × 8 discrete co-
sine transform (DCT), quantization, zig-zag scanning,
and Huffman encoding. The fully-compliant 802.11a/g
transmitter implementation operates over all 8 data
rates, includes additional upsampling and filtering func-
tions not specified by the standard [13], and sustains
transmissions at 30% of the full 54 Mb/s rate at a clock
speed of 300 MHz on 22 processors [14].

3 Analysis of the Key Features

One of the most important variables in chip multi-
processor architectures is the level of granularity of
each processing element. A wide range of granularities
are possible as shown in Fig. 6 [6, 10, 15, 16]. The coarse
grain two-core Itanium [16] contains large wide-issue
processors each close to 300 mm2 in 90 nm technol-
ogy, while the fine grain AsAP contains single-issue
processors less than 1 mm2 in 0.18 μm technology. Size
differences of factors of tens and hundreds make strong
impacts on system behavior.

Most chip multiprocessors target a broad range
of applications, and each processor in such systems
normally contains powerful computational resources—
such as large memories, wide issue processors [16],
and powerful inter-processor communication [10]—to

support widely varying requirements. Extra computa-
tional resources can enable systems to provide high
performance to a diverse set of applications, but they
reduce energy efficiency for tasks that can not make
use of those specialized resources. Most DSP applica-
tions AsAP targets are made up of computationally
intensive tasks with very small instruction and data ker-
nels, which makes it possible to use extremely simple
computational resources—small memory, simple single
issue datapath, and nearest neighbor communication—
to achieve high energy efficiency while maintaining
high performance.

In this section, we analyze these key features of the
AsAP processor which justify its fine grain architecture.
We also briefly analyze AsAP’s GALS clocking style.

3.1 Small Memory

A clear trend among all types of programmable proces-
sors is not only an increasing amount of on-chip mem-
ory, but also an increasing percentage of die area used
for memory. For example, the TI C64x [4] and third
generation Itanium processor [5] use approximately
75% and 70% of their area for memory respectively.
Since large memories dissipate more energy and re-
quire larger delays per transaction, we seek architec-
tures that minimize the need for memory and keep data
near or within processing elements.

3.1.1 Inherent Small Memory Requirement for DSP
Applications

A notable characteristic of the targeted DSP tasks is
that many have very limited memory requirements
compared to general-purpose tasks. The level of re-
quired memory must be differentiated from the amount
of memory that can be used or is typically used to
calculate these kernels. For example, an N-tap filter
may be programmed using a vast amount of memory
though the base kernel requires only 2N data words.
Table 4 lists the actual amounts of instruction and data
memory required for 22 common DSP tasks and shows
the very small required memory sizes compared to
memories commonly available in modern processors.

1001010.1
2-core

Itanium
CELLRAWAsAP

coarse

granularity

fine

granularity

(mm
2)

Figure 6 Size of a single processing element in several chip multi-
processor systems. Data are scaled to 0.13 μm CMOS technology.

Architecture and Evaluation of An Asynchronous Array of Simple Processors

This analysis assumes a simple single-issue processor
like AsAP. Although programs were hand written in
assembly code, little effort was placed on optimizing
them such as scheduling instructions for the pipeline or
using forwarding paths.

3.1.2 Finding the Optimal Memory Size for DSP
Applications

Once the amount of required instruction and data
memory is known, it is worthwhile to consider what size
of memory per processor is optimal in terms of total
processing element area. We begin our analysis with
several assumptions:

1) The non-memory processor size is 0.55 mm2 in
0.18 μm CMOS and is not a function of memory
size,

2) Memory area scales linearly with capacity and the
area is 400 μm2 for a 16-bit word and 800 μm2 for a
32-bit word,

3) A fixed partitioning overhead is added each time
a task is split onto multiple processors—this over-
head is estimated per task and varies from two
to eight instructions and from 0–30% of the total
space, and

4) Additional processors used only for routing data
may be needed for designs using a large number
of processors, but are neglected.

Figures 7 and 8 show the total circuit areas for sev-
eral representative tasks listed in Table 4, while vary-

10
1

10
2

10
3

10
4

10
0

10
1

Instruction Memory Size per Processor (words)

T
ot

al
 A

re
a

fo
r

al
l P

ro
ce

ss
or

(s
)

(m
m

2)

20–200 Inst. words

Points of minimum instruction memory for a task

1 processor

2 processors

3 processors

4 processors

6 processors

9 processors

13 processors

8–pt DCT
8x8 DCT
Huffman Encoder
FFT core
FFT output
21–tap FIR with 2x upsamp

Figure 7 Total area required for representative tasks mapped
onto one or multiple 0.18 μm CMOS simple processors, as a
function of the size of the instruction memory per processor.
Minimum total area is achieved with approximately 20–200 in-
structions per processor.

10
1

10
2

10
3

10
4

10
0

10
1

Data Memory Size per Processor (words)

T
ot

al
 A

re
a

fo
r

al
l P

ro
ce

ss
or

(s
)

(m
m

2)

10–300 Data words

Points of minimum data memory for a task

1 processor

2 processors

3 processors

4 processors

5 processors

7 processors

10 processors

13 processors 8–pt DCT
8x8 DCT
Huffman Encoder
FFT core
FFT output
Convolutional encoder, k=7

Figure 8 Analysis similar to that shown in Fig. 7 but for data
memory. The minimum total area is achieved with approximately
10–300 data words per processor.

ing the instruction memory and data memory sizes
respectively.

These analyses show that processors with memories
of a few hundred words will likely produce highly en-
ergy efficient systems due to their low overall memory
power and their very short intra-processor wires. On
the negative side, processors with very small memories
that require parallelization of tasks across processors
may require greater communication energy and present
significant programming challenges.

3.1.3 Several Architectural Features Help Reduce
Memory Requirement

In addition to the inherent small instruction memory
requirement of DSP applications, address generators
help reduce the required instruction memory for appli-
cations since they can handle many complex address-
ing functions without any additional instructions. The
upper figure of Fig. 9 shows the estimated relative in-
struction cost for a system using three addressing modes
to fulfill the same functions. Compared to systems
primarily using direct memory addressing and address
pointers, the system containing address generators re-
duces the number of required instructions by 60% and
13% respectively. Also, using address generators can
increase system performance. As shown in the lower
figure of Fig. 9, it comes within 15% of the performance
of a system using direct addressing with pre-calculated
addresses, and approximately two times higher perfor-
mance compared to a system using address pointers
alone.

Yu et al.

8x8 DCTzig–zag b–sort 64 FFT JPEG 802.11
0

0.2

0.4

0.6

0.8

1
R

el
at

iv
e

in
st

. m
em

or
y direct addr.

addr. pointer
addr. gener

8x8 DCTzig–zag b–sort 64 FFT JPEG
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
pe

rf
or

m
an

ce direct addr.
addr. pointer
addr. gener

Figure 9 Comparison of relative instruction memory require-
ments and relative performance for three different addressing
modes. Comparisons are made against the direct address case
which uses straight line code with pre-calculated addresses only.

The embedded NOP instruction field described in
Section 2.1.1 also helps reduce instruction memory
requirements since it dramatically reduces the num-
ber of explicit NOP instructions. Figure 10 shows that
instruction memory requirements are reduced by
approximately 30% for 9 applications.

In addition to the inherent small data memory re-
quirements of DSP applications, task cascading also
helps to reduce the required data memory size. As
shown in Fig. 11, a system with many processors can use
separate processors to compute individual tasks in an
application, and the intermediate data can be streamed
between processors instead of buffering them in a large
memory.

8 DCT8x8 DCTzig–zag msort b–sort matrix 64 FFT JPEG 802.11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e
in

st
. m

em
or

y

Figure 10 Relative instruction memory reductions by using a 2-
bit embedded NOP field in each instruction.

CPU

A B C

CPU CPUB CA

From traditional view to
cascading tasks view

Memory

Figure 11 Traditional large memory versus small memory cas-
cading tasks views.

3.2 Datapath—Wide Issue vs. Single Issue

The datapath, or execution unit, plays a key role in
processor computation, and also occupies a consider-
able amount of chip area. Uniprocessor systems are
shifting from single issue architectures to wide issue
architectures in which multiple execution units are
available to enhance system performance. For chip
multiprocessor systems, there remains a question
about the trade-off between using many small single-
issue processors, versus larger but fewer wide-issue
processors.

A large wide-issue processor has a centralized con-
troller, contains more complex wiring and control logic,
and its area and power consumption increase faster
than linearly along with the number of execution units.
One model of area and power for processors with dif-
ferent issues derived by J. Oliver et al. [17] shows using
wide-issue processors consumes significantly more area
and power than using multiple single-issue processors.
Their work shows a single 32-issue processor occu-
pies more than two times the area and dissipates ap-
proximately three times the power of 32 single-issue
processors.

However, chip multiprocessor systems composed of
single-issue processors will not always have higher area
and energy efficiency—much depends on specific ap-
plications. Wide-issue processors work well when in-
structions fetched during the same cycle are highly
independent and can take full advantage of functional
unit parallelism, but this is not always the case. Multiple
single-issue processors such as AsAP are less efficient
if the application is not easy to partition, but it can
perform particularly well on many DSP applications
since they are often made up of complex components
exhibiting task level parallelism so that tasks are easily
spread across multiple processors. Large numbers of
simple processors also introduce extra inter-processor
communication overhead, which we discuss further in
Section 3.3.

Figure 12 shows how throughput scales for four
single tasks relative to the throughput of a single

Architecture and Evaluation of An Asynchronous Array of Simple Processors

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

Number of processors

R
el

at
iv

e
sy

st
em

 th
ro

ug
hp

ut

8-tap FIR
8x8 DCT
Max in 100 data
64-pt comp. FFT

Figure 12 Increase in system throughput with increasing number
of processors.

processor. Programs were written in assembly by hand
but are lightly optimized and unscheduled. The mem-
ory requirement for the 8 × 8 DCT and 64-pt com-
plex FFT exceeds the available memory of a single
AsAP processor, so data points using one processor are
estimated assuming one single processor had a large
enough memory. An analysis of scaling results of a 16-
tap FIR filter implemented in 85 different designs using
from 1–52 processors shows a factor of 9 variation in
throughput per processor over this space [18].

When all processors have a balanced computational
load with little communication overhead, the system
throughput increases close to linearly with the number
of processors, such as for the task of finding the maxi-
mum value of a data set (Max in 100 data in Fig. 12).

scram.

coding

inter-

leave

mod.

map
IFFT

up-
samp
filter

up-
samp
filter

c

level

shift

8 x 8

DCT
quanti-
zation

in zig-

zag

huffm.

coding

out

in

pilots

loadfft
inter-
leave

training

scale

clip

win-

dow

d

out

b

8 x 1

butterflies

4 x 2

butterflies
2 x 4

butterflies
in0 - in15

1 x 8

butterflies
out0 - out15

Z
–1

Z

h0 h1 hn-1

...
Z y(n)

...

...

a

x(n)

–1 –1

Figure 13 Common DSP tasks and applications exhibiting their
abilities to be linearly pipelined: a transpose form FIR filter,
b 16-point radix-2 FFT, c JPEG encoder, and d IEEE 802.11a/g
wireless LAN transmitter.

AsAP Niag. BG/L RAWIntel80
0

0.1

0.2

0.3

0.4

F
ra

ct
io

n
of

 p
ro

ce
ss

or
‘s

 a
re

a

b
AsAP Niag. BG/L RAWIntel80

10
–2

10
–1

10
0

10
1

10
2

A
bs

ol
ut

e
ar

ea
 (

m
m

2)

a

AsAP Niag. BG/L RAWIntel80
0

0.1

0.2

0.3

0.4

F
ra

ct
io

n
of

 p
ro

ce
ss

or
‘s

 p
ow

er

d
AsAP Niag. BG/L RAWIntel80

10
–3

10
–2

10
–1

10
0

10
1

A
bs

ol
ut

e
en

er
gy

 (
m

W
/M

H
z)

c
Figure 14 Comparison of communication circuit area and
power dissipation for five chip multiprocessors: a absolute area,
b fraction of processor’s circuit area used for communication,
c absolute energy dissipation, and d fraction of processor’s power
dissipation due to communication circuits. Values are scaled to
0.13 μm CMOS technology.

Clearly, applications that are difficult to parallelize
show far less scalability at some point. For example,
the performance of the 8 × 8 DCT increases well up
to 10 processors where 4.4 times higher performance
is achieved, but after that, little improvement is seen
and only 5.4 times higher performance is seen using 24
processors. However, there is significant improvement
in the FIR filter and FFT after a certain number of
processors is reached. The reason for this is because in-
creasing the number of processors in these applications
avoids extra computation in some cases. For example,
the FFT avoids the calculation of data and coefficient
addresses when each processor is dedicated to one stage
of the FFT computation. On average, 10 processor and
20 processor systems achieve 5.5 times and 12.3 times
higher performance compared to a single processor
system, respectively.

Table 5 Estimates for a 13 × 13 mm AsAP array implemented in
various semiconductor technologies.

CMOS Processor Num Procs Clock Peak system
tech size per Chip freq processing
(nm) (mm2) (GHz) (Tera-Op)

180 0.66 256 0.51 0.14
130 0.34 500 0.66 0.33
90 0.16 1,050 1.02 1.07
45 0.04 4,200 2.04 8.57

Yu et al.

T
ab

le
6

A
re

a,
pe

rf
or

m
an

ce
an

d
po

w
er

co
m

pa
ri

so
n

of
va

ri
ou

s
pr

oc
es

so
rs

fo
r

se
ve

ra
l

ke
y

D
SP

ke
rn

el
s

an
d

ap
pl

ic
at

io
ns

;a
ll

da
ta

ar
e

sc
al

ed
to

0.
18

μ
m

te
ch

no
lo

gy
as

su
m

in
g

a
1/

s2

re
du

ct
io

n
in

ar
ea

,a
fa

ct
or

of
s

in
cr

ea
se

in
sp

ee
d,

an
d

a
1/

s2
re

du
ct

io
n

in
po

w
er

co
ns

um
pt

io
n.

B
en

ch
m

ar
k

P
ro

ce
ss

or
P

ro
ce

ss
or

Sc
al

ed
Sc

al
ed

C
lo

ck
Sc

al
ed

Sc
al

ed
Sc

al
ed

st
yl

e
ar

ea
cl

oc
k

fr
eq

.
cy

cl
es

ex
ec

ut
io

n
po

w
er

en
er

gy
(m

m
2
)

(M
H

z)
ti

m
e

(m
W

)
(n

J)
(n

s)

40
-t

ap
F

IR
A

sA
P

A
rr

ay
(8

pr
oc

.)
5.

28
51

0
10

20
73

0
15

fil
te

r
M

IP
S

V
R

50
00

[2
3,

28
]

R
IS

C
pr

oc
es

so
r.

N
/A

34
7

43
0

1,
23

9
2,

60
0

3,
22

2
T

I
C

62
x

[2
3,

28
]

V
L

IW
D

SP
>

10
0

21
6

20
92

3,
20

0
29

6
P

ip
eR

en
ch

[2
9]

P
ar

al
le

lp
ro

ce
ss

or
55

12
0

2.
87

24
1,

87
3

45

8x
8

D
C

T
A

sA
P

A
rr

ay
(8

pr
oc

.)
5.

28
51

0
25

4
49

8
39

0
19

4
N

M
IP

S
[3

0]
R

IS
C

pr
oc

es
so

r
N

/A
78

10
,7

72
13

7,
00

0
17

7
24

,4
00

C
D

C
T

6
[3

0]
E

nh
an

ce
d

R
IS

C
N

/A
17

8
3,

20
8

18
,0

00
10

4
1,

95
0

T
I

C
62

x
[2

3,
28

]
V

L
IW

D
SP

>
10

0
21

6
20

8
96

3
3,

20
0

3,
07

8
D

C
T

pr
oc

es
so

r
[3

1]
A

SI
C

1.
72

55
5

64
11

5
52

0
60

R
ad

ix
-2

A
sA

P
A

rr
ay

(1
3

pr
oc

.)
8.

6
51

0
84

5
16

57
73

0
1,

20
9

co
m

pl
ex

M
IP

S
V

R
50

00
[2

8]
R

IS
C

pr
oc

.
N

/A
34

7
15

,4
80

44
,6

10
2,

60
0

11
5,

98
8

64
-p

tF
F

T
T

I
C

62
x

[2
3,

28
]

V
L

IW
D

SP
>

10
0

21
6

86
0

3,
98

1
3,

20
0

12
,7

39
F

F
T

pr
oc

es
so

r
[3

2]
A

SI
C

3.
5

(c
or

e)
27

23
85

2
43

37

JP
E

G
A

sA
P

A
rr

ay
(9

pr
oc

.)
5.

94
30

0
1,

44
3

4,
81

0
22

4
1,

07
7

en
co

de
r

A
R

M
[3

3]
R

IS
C

pr
oc

es
so

r
N

/A
50

6,
37

2
12

7,
44

0
N

/A
N

/A
(8

×
8

bl
oc

k)
T

I
C

62
x

[2
8,

33
]

V
L

IW
D

SP
>

10
0

21
6

84
0

3,
90

0
3,

20
0

12
,4

00
A

R
M

+
A

SI
C

[3
3]

A
SI

C
+

R
IS

C
N

/A
50

1,
02

3
20

,4
60

N
/A

N
/A

80
2.

11
a/

g
A

sA
P

A
rr

ay
(2

2
pr

oc
.)

14
.5

2
30

0
4,

00
0

13
,2

00
40

7
5,

37
2

tr
an

sm
it

te
r

T
I

C
62

x
[2

8,
34

]
V

L
IW

D
SP

>
10

0
21

6
27

,2
00

12
6,

80
0

3,
20

0
40

5,
76

0
(1

sy
m

bo
l)

A
th

er
os

[3
5]

A
SI

C
4.

8
(c

or
e)

N
/A

N
/A

4,
00

0
24

.2
96

.8

T
he

ar
ea

is
th

e
ch

ip
co

re
ar

ea
w

he
n

av
ai

la
bl

e.

Architecture and Evaluation of An Asynchronous Array of Simple Processors

3.3 Nearest Neighbor Communication

Currently, most chip multiprocessors target broad
general purpose applications and use complex inter-
processor communication strategies [10, 19–22]. For
example, RAW [10] uses a separate complete processor
to provide powerful static routing and dynamic routing
functions, BlueGene/L [21] uses a torus network and
a collective network to handle inter-processor commu-
nication, and Niagara [22] uses a crossbar to connect
8 cores and memories. These methods provide flexible
communication abilities, but consume a significant por-
tion of the area and power in communication circuits.

The DSP applications which AsAP targets have
specific regular features and make it possible to use
a simple nearest neighbor communication scheme to
achieve high area and energy efficiency, without a large
performance loss. As can be seen from several popular
industry-standard DSP benchmarks such as TI [23],
BDTI [24], and EMBC [25], the most common tasks
include FIR and IIR filtering, vector operations, the
Fast Fourier Transform (FFT), and various control and
data manipulation functions. These tasks can normally
be linearly pipelined, as shown in the upper two exam-
ples in Fig. 13, and the result from one stage can be sent
directly to the next stage without complex global com-
munication. Complete applications containing multiple
DSP tasks also have similar features, as two examples
shown in Fig. 13c and d for the JPEG encoder and
the 802.11a/g baseband transmitter. All these examples
can be handled efficiently by nearest neighbor inter-
processor communication.

Nearest neighbor communication simplifies the
inter-processor circuitry and two dual-clock FIFOs
present the major cost in this case, which results in low
area and high energy efficiencies. Figure 14 compares
AsAP to four other chip multiprocessors (Niagara [22],
BlueGene/L [21], RAW [20], and Intel 80-core [26]).
The communication circuitry in the AsAP processor
occupies less than 0.08 mm2 in 0.18 μm CMOS, which
is approximately 8% of the processor area, and is more
than 50 times smaller than the others. Under the worst
case conditions when maximizing possible communica-
tion, the communication circuity in the AsAP processor
consumes around 4 mW at 475 MHz, which is about
4% of the processor power, and the energy efficiency
is more than 100 times higher than the others.

3.4 GALS

The GALS clocking style simplifies the clock tree
design and provides the opportunity for a joint
clock/voltage scaling method to achieve very high en-

ergy efficiency. However, at the same time, it intro-
duces an extra performance penalty since it requires
extra circuitry to handle asynchronous boundaries
which introduce additional latency. It has been shown
that the performance penalty from a GALS chip mul-
tiprocessor architecture like AsAP can be highly re-
duced, due to its localized computation and less fre-
quent communication loops. Simulation results show
the performance penalty of the AsAP processor is less
than 1% compared to the corresponding synchronous
system [27].

4 Evaluation of the AsAP Processor

This section provides a detailed evaluation and dis-
cussion of the AsAP processor including performance,
area, and power consumption.

Each processor occupies 0.66 mm2 and the 6 × 6 ar-
ray occupies 32.1 mm2 including pads. Due to its small
memories and simple architecture, each AsAP proces-
sor’s area is divided as follows: 8% for communication
circuitry, 26% for memory circuitry, and a favorable
66% for the remaining core.

Processors operate at 520–540 MHz under typical
conditions. The average power consumption for each
processor is 35 mW when processors are executing ap-
plications such as a JPEG encoder or an 802.11a/g base-
band transmitter, and they consume 94 mW when 100%
active at 520 MHz. At a supply voltage of 2.0 V, most
processors operate at clock frequencies over 600 MHz.

4.1 High Speed, Small Area, and High Peak
Performance

Small memories and simple processing elements enable
high clock frequencies and high system performance.
The AsAP processor operates at frequencies among the
highest possible for a digital system designed using a
particular design approach and fabrication technology.
The clock frequency information listed in Table 6 sup-
ports this assertion.

AsAP is also highly area efficient. AsAP has a
processing element density about 23–100 times greater
than that of other broadly-similar projects [6], and thus
each AsAP processor occupies 4% or less area com-
pared to other reported processing elements.

High clock speeds and small area result in a high
peak performance density with a fixed chip size. With
advancing semiconductor fabrication technologies, the
number of processors will increase with the square
of the scaling factor and clock rates will increase ap-
proximately linearly—resulting in a total peak system

Yu et al.

throughput that increases with the cube of the tech-
nology scaling factor. Table 5 summarizes area and
performance estimates for several technologies with
the corresponding peak performance. It shows that in
90 nm technology, an AsAP array can achieve 1 Tera-
op/s with a 13 × 13 mm chip. Real applications would
unlikely be able to sustain this peak rate, but tremen-
dous throughputs are nonetheless expected.

4.2 High Performance and Low Power Consumption
for DSP Applications

Table 6 lists area, performance, and power data for a
number of general-purpose, programmable DSP, and
ASIC processors for which we could obtain data. We
choose the TI C62x as the reference programmable
DSP processor since it belongs to the TI VLIW C6000
series which is TI’s highest performance series. The
enhanced TI C64x VLIW DSP processor [4] is also
in the C6000 series and has an architecture similar
to the C62x, but it contains substantial circuit level
optimizations that achieve more than four times higher
performance with less than half the power consumption
compared to the C62x. We feel the C62x is a fair com-
parison with the first version AsAP processor and thus
a better comparison at the architecture level, without
tainting from circuit level optimizations.

In support of our assertion that the AsAP proto-
type has significant room for improvement, we note
that measurements show approximately 2/3 of AsAP’s
power is dissipated in its clocking system. This is largely
due to the fact that we did not implement clock gating
in this first prototype. All circuits within each processor
are clocked continuously—except during idle periods
when the oscillator is halted.

The area used by AsAP, shown in Table 6, is the
combined area required for all processors including
those used for communication. Data for the FIR, 8 × 8
DCT, and FFT are deduced from measured results of

larger applications. We estimated the performance of
the JPEG encoder on the TI C62x by using the relative
performance of the C62x compared to MIPS proces-
sors [28], and a reported similar ARM processor [33].

Figure 15 compares the relative performance and
power of an AsAP processor to other processors in
Table 6. These comparisons use 8, 8, 13, 9, and 22
AsAP processors—which clearly do not make full use
of the chip’s 36 processors. Utilizing a larger numbers
of processors (through further parallelization) would
increase performance further. Nevertheless,

• AsAP achieves 27–275 times higher performance
and 96–215 times higher energy efficiency than
RISC processors (single issue MIPS and ARM);

• Compared to a high-end programmable DSP (TI
C62x), AsAP achieves 0.8–9.6 times higher perfor-
mance and 10–75 times higher energy efficiency;
and

• Compared to ASIC implementations, AsAP
achieves performance within a factor of 2–5 and
energy efficiency within a factor of 3–50 with an
area within a factor of 2.5–3.

Another source of AsAP’s high energy efficiency
comes from its haltable clock, which is greatly aided by
the GALS clocking style. Halting clocks while proces-
sors are even momentarily inactive results in power
reductions of 53% for the JPEG core and 65% for the
802.11a/g baseband transmitter.

Supply voltage scaling can be used to further im-
prove power savings. Processors dissipate an average of
2.4 mW at a clock rate of 116 MHz using a supply volt-
age of 0.9 V while executing the described applications.

5 Related Work

There have been many other styles of parallel proces-
sors. The key features of the AsAP processor are

FIR 8x8 DCT FFT JPEG 802.11
10

-2

10
0

10
1

10
3

R
el

at
iv

e
ar

ea

DSP
AsAP
ASIC

FIR 8x8 DCT FFT JPEG 802.11
10

-2

10
0

10
1

10
3

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

RISC
 DSP
AsAP
ASIC

FIR 8x8 DCT FFT JPEG 802.11
10

-2

10
0

10
1

10
3

R
el

at
iv

e
en

er
gy

RISC
 DSP
AsAP
ASIC

Figure 15 Relative area, execution time and energy for various implementations of several key DSP kernels and applications. Source
data are available in Table 6.

Architecture and Evaluation of An Asynchronous Array of Simple Processors

T
ab

le
7

C
om

pa
ri

so
n

of
ke

y
fe

at
ur

es
of

se
le

ct
ed

pa
ra

lle
lp

ro
ce

ss
or

ar
ch

it
ec

tu
re

s.

P
ro

ce
ss

or
Si

ng
le

el
em

en
t

C
lo

ck
st

yl
e

In
te

r-
pr

oc
ne

tw
or

k
A

pp
lic

at
io

ns

P
le

ia
de

s
[3

6]
H

et
er

og
en

eo
us

(A
SI

C
+

pr
oc

.)
H

an
ds

ha
ke

G
A

L
S

H
ie

ra
rc

hi
ca

ln
et

w
or

k
W

ir
el

es
s

ap
ps

P
ic

oc
hi

p
[3

7]
H

et
er

og
en

eo
us

(D
SP

+
co

pr
oc

.)
Sy

nc
hr

on
ou

s
H

ie
ra

rc
hi

ca
ln

et
w

or
k

W
ir

el
es

s
ap

ps
C

ra
dl

e
[3

8]
H

et
er

og
en

eo
us

(R
IS

C
+

D
SP

)
Sy

nc
hr

on
ou

s
G

lo
ba

lb
us

M
ul

ti
m

ed
ia

ap
ps

Im
ag

in
e

[3
9]

A
L

U
cl

us
te

r
Sy

nc
hr

on
ou

s
H

ie
ra

rc
hi

ca
ls

w
it

ch
St

re
am

ap
ps

R
aP

iD
[4

0]
M

ul
ti

pl
e

ex
ec

ut
io

n
un

it
s

Sy
nc

hr
on

ou
s

L
in

ea
r

ar
ra

y
D

SP
ap

ps
P

ip
eR

en
ch

[2
9]

E
xe

cu
ti

on
un

it
st

ri
pe

Sy
nc

hr
on

ou
s

L
in

ea
r

ar
ra

y
D

SP
ap

ps
T

R
IP

S
[1

1]
W

id
e-

is
su

e
pr

oc
es

so
r

Sy
nc

hr
on

ou
s

T
w

o-
di

m
en

si
on

al
m

es
h;

dy
na

m
ic

ro
ut

e
A

ll
ap

ps
In

te
l8

0-
co

re
[2

6]
V

L
IW

pr
oc

es
so

r
M

es
oc

hr
on

ou
s

T
w

o-
di

m
en

si
on

al
m

es
h;

dy
na

m
ic

ro
ut

e
A

ll
ap

ps
Sy

nc
hr

os
ca

la
r

[4
1]

SI
M

D
pr

oc
es

so
r

R
at

io
na

lly
re

la
te

d
G

lo
ba

li
nt

er
co

nn
ec

t
D

SP
ap

ps
C

E
L

L
[1

5]
SI

M
D

pr
oc

es
so

r
Sy

nc
hr

on
ou

s
H

ig
h-

ba
nd

w
id

th
ri

ng
bu

s
M

ul
ti

m
ed

ia
ap

ps
C

le
ar

Sp
ee

d
[4

2]
SI

M
D

pr
oc

es
so

r
Sy

nc
hr

on
ou

s
N

/A
H

ig
h

pe
rf

.a
pp

s
Sa

nd
br

id
ge

[4
3]

SI
M

D
pr

oc
es

so
r

w
it

h
ca

ch
e

Sy
nc

hr
on

ou
s

N
/A

W
ir

el
es

s
ap

ps
Sm

ar
tM

em
or

ie
s

[1
9]

Si
ng

le
-i

ss
ue

pr
oc

.w
it

h
12

8
K

B
m

em
Sy

nc
hr

on
ou

s
P

ac
ke

td
yn

am
ic

ro
ut

e
A

ll
ap

ps
R

A
W

[1
0]

Si
ng

le
-i

ss
ue

pr
oc

.w
it

h
12

8
K

B
m

em
Sy

nc
hr

on
ou

s
St

at
ic

+
dy

na
m

ic
ro

ut
e

A
ll

ap
ps

A
sA

P
Si

ng
le

-i
ss

ue
pr

oc
.w

it
h

51
2

B
m

em
G

A
L

S
2D

re
co

nfi
g.

m
es

h
D

SP
ap

ps

a small memory, a simple processor, GALS clocking
style, and reconfigurable nearest-neighbor mesh net-
work. These features distinguish it from other previous
and current parallel processors.

The transputer [44] is a popular parallel processor
originally developed in the 1980’s. It shares the philos-
ophy of using multiple relatively simple processors to
achieve high performance. The transputer is designed
for a multiple processor board, where each transputer
processor is a complete standalone system. It uses a
bit serial channel for inter-processor communication
which can support communication of different word
lengths to save hardware, but with dramatically reduced
communication speeds.

Systolic processors and wavefront processors are
two more classic parallel architectures. Systolic proces-
sors [45] contain synchronously-operating processors
which send and receive data in a highly regular man-
ner [46]. Wavefront array processors [47] are similar
to systolic processors but rely on dataflow properties
for inter-processor data synchronization. Previous de-
signs were optimized for simple and single algorithm
workloads such as matrix operations [9] and image
processing kernels [48].

More parallel processor projects have appeared re-
cently. Table 7 compares the key features of other
projects to AsAP. Most parallel processors can be
easily differentiated by their processing element ar-
chitectures which can be categorized into three broad
types—heterogeneous, multiple execution units (often
similar to classic SIMD), and multiple processors
(MIMD). A heterogeneous style such as the one used
by Pleiades [36], Picochip [37] and Cradle [38] makes
the system efficient for specific applications, but results
in a non-regular layout and difficult scaling. Recent
processors such as RAW [10], CELL [15], TRIPS [11],
and Synchroscalar [41], also use MIMD architectures,
but can be easily distinguished from AsAP by their
larger processing element granularity alone. One of the
main reasons for their increased processor granularity
is because they target a wider range of applications.
Most other projects use a fully synchronous clocking
style. Pleiades and FAUST [49] use GALS but with
handshaking flow control, which is quite different from
the source-synchronous interprocessor communication
used in AsAP that is able to sustain full-rate commu-
nication of one word per cycle at high clock rates. The
Intel 80-core chip [26] employs mesochronous clocking
where each processor has the same clock frequency
while the clock phase is allowed to vary.

Yu et al.

6 Conclusion

The AsAP platform is well-suited for the computation
of complex DSP workloads comprised of many DSP
tasks, as well as single highly-parallel computationally
demanding tasks. By its very nature of having inde-
pendent clock domains, very small processing elements,
and short interconnects, it is highly energy-efficient and
capable of high throughput.

Measured results show that on average, AsAP can
achieve several times higher performance and ten times
higher energy efficiency than a high performance DSP
processor, while utilizing an area more than ten times
smaller.

Areas of interesting future work include: mapping
a broader range of applications to AsAP; developing
algorithms and hardware for intelligent clock and volt-
age scaling; automatic software mapping tools to op-
timize utilization, throughput, and power; C compiler
enhancements; connecting large memories when more
memory is needed; and automatic fault detection and
recovery.

Acknowledgements The authors gratefully acknowledge sup-
port from Intel, UC Micro, NSF Grant 0430090 and CAREER
Award 0546907, SRC GRC Grant 1598, Intellasys, S Machines,
MOSIS, Artisan, and a UCD Faculty Research Grant; and thank
D. Truong, M. Singh, R. Krishnamurthy, M. Anders, S. Mathew,
S. Muroor, W. Li, and C. Chen.

References

1. Horowitz, M., & Dally, W. (2004). How scaling will change
processor architecture. In IEEE International Solid-State
Circuits Conference (ISSCC) (pp. 132–133) (February).

2. Ho, R., Mai, K. W., & Horowitz, M. A. (2001). The future of
wires. Proceedings of the IEEE (pp. 490–504) (April).

3. Chapiro, D. M. (1984). Globally-asynchronous locally-
synchronous Systems, PhD thesis. Stanford, CA: Stanford
University (October).

4. Agarwala, S., Anderson, T., Hill, A., et al. (2002). A 600-MHz
VLIW DSP, IEEE Journal of Solid-State Circuits (JSSC)
(pp. 1532–1544) (November).

5. Stinson, J., & Rusu, S. (2003). A 1.5 GHz third generation Ita-
nium 2 processor. In Design Automation Conference (DAC)
(pp. 706–710) (June).

6. Yu, Z., Meeuwsen, M., Apperson, R., et al. (2006). An asyn-
chronous array of simple processors for DSP applications. In
IEEE International Solid-State Circuits Conference (ISSCC)
(pp. 428–429) (February).

7. Bindal, N., et al. (2003). Scalable sub-10ps skew global clock
distribution for a 90 nm multi-GHz IA microprocessor. In
IEEE International Solid-State Circuits Conference (ISSCC)
(pp. 346–347) (February).

8. Apperson, R., Yu, Z., Meeuwsen, M., Mohsenin, T., & Baas,
B. (2007). A scalable dual-clock FIFO for data transfers
between arbitrary and haltable clock domains. IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems,
15(10), 1125–1134 (October).

9. Kung, S. Y. (1985). VLSI array processors. In IEEE ASSP
Magazine (pp. 4–22) (July).

10. Taylor, M., et al. (2003). A 16-issue multiple-program-
counter microprocessor with point-to-point scalar operand
network. In IEEE International Solid-State Circuits Confer-
ence (ISSCC) (pp. 170–171) (February).

11. Keckler, S., et al. (2003). A wire-delay scalable microproces-
sor architecture for high performance systems. In IEEE
International Solid-State Circuits Conference (ISSCC) (pp.
168–169) (February).

12. Glossner, J., Moreno, J., Moudgill, M., et al. (2000). Trends in
compilable DSP architecture. In IEEE Workshop on Signal
Processing Systems (SiPS) (pp. 181–199) (October).

13. IEEE Computer Society (1999). Wireless LAN medium ac-
cess control (MAC) and physical layer (PHY) specifications:
High speed physical layer in the 5 GHz band. In Standard for
Information Technology. Institute of Electrical and Electron-
ics Engineers.

14. Meeuwsen, M. J., Sattari, O., & Baas, B. M. (2004) A full-
rate software implementation of an IEEE 802.11a compliant
digital baseband transmitter. In IEEE Workshop on Signal
Processing Systems (SiPS) (pp. 124–129) (October).

15. Pham, D., et al. (2005) The design and implementation
of a first-generation CELL processor. In IEEE Interna-
tional Solid-State Circuits Conference (ISSCC) (pp. 184–185)
(February).

16. Naffziger, S., et al. (2005). The implementation of a 2-core
multi-threaded itanium family processor. In IEEE Interna-
tional Solid-State Circuits Conference (ISSCC) (pp. 182–183)
(February).

17. Oliver, J., et al. (2006). Tile size selection for low-power tile-
based architecture. In ACM Computing Frontiers (pp. 83–94)
(May).

18. Baas, B., (2003). A parallel programmable energy-efficient
architecture for computationally-intensive DSP systems. In
Asilomar Conference on Signals, Systems and Computers
(pp. 2185–2189) (November).

19. Mai, K., et al. (2000). Smart memories: A modular recon-
figurable architecture. In Proceedings of the International
Symposium on Computer Architecture (ISCA) (pp. 161–171)
(June).

20. Sungtae, J., et al. (2003). Energy characterization of a tiled
architecture processor with on-chip network. In International
Symposium on Low Power Electronics and Design (ISLPED)
(pp. 424–427) (August).

21. Bright, A. A., et al. (2005). Creating the BlueGene/L su-
percomputer from low-power SOC ASICs. In IEEE Interna-
tional Solid-State Circuits Conference (ISSCC) (pp. 188–189)
(February).

22. Leon, A. S., et al. (2006). A power-efficienct high-throughput
32-thread SPARC processor. In IEEE International Solid-
State Circuits Conference (ISSCC) (pp. 98–99) (February).

23. Texas Instruments, DSP platforms benchmarks, Tech. Rep.,
http://www.ti.com/.

24. Berkeley Design Technology (2000). Evaluating DSP Proces-
sor Performance. Berkeley, CA, USA.

25. The Embedded Microprocessor Benchmark Consortium
(2006). Data sheets, www.eembc.org.

26. Vangal, S., Howard, J., Ruhl, G., et al. (2007). An 80-tile
1.28TFLOPS network-on-chip in 65nm CMOS. In IEEE
International Solid-State Circuits Conference (ISSCC) (pp.
98–99) (February).

27. Yu, Z., et al. (2006). Performance and power analysis of
globally asynchronous locally synchronous multi-processor

http://www.ti.com/
www.eembc.org

Architecture and Evaluation of An Asynchronous Array of Simple Processors

systems. In IEEE Computer Society Annual Symposium on
VLSI (ISVLSI) (pp. 378–384) (March).

28. Kozyrakis, C., et al. (2002). Vector vs. superscalar and vliw ar-
chitectures for embedded multimedia benchmarks. In Micro
(pp. 283–289) (November).

29. Schmit, H., et al. (2002). PipeRench: A virtualized pro-
grammable datapath in 0.18 micron technology. In IEEE
Custom Integrated Circuits Conference (CICC) (pp. 63–66)
(May).

30. Gorjiara, B., et al. (2005). Custom processor design using
NISC: A case-study on DCT algorithm. In ESTIMedia (pp.
55–60) (September).

31. Matsui, M., et al. (1994). A 200 MHz 13 mm2 2-D DCT
macrocell using sense-amplifying pipeline flip-flop scheme. In
IEEE Journal of Solid-State Circuits (JSSC) (pp. 1482–1490)
(December).

32. Maharatna, K., et al. (2004) A 64-point fourier transform chip
for high-speed wireless LAN application using OFDM. In
IEEE Journal of Solid-State Circuits (JSSC) (pp. 484–493)
(March).

33. Lin, T., & Jen, C. (2002) Cascade—Configurable and scalable
DSP environment. In IEEE International Symposium on Cir-
cuits and Systems (ISCAS) (pp. 26–29) (May).

34. Tariq, M., et al. (2002). Development of an OFDM based
high speed wireless LAN platform using the TI C6x DSP.
In IEEE International Conference on Communications (ICC)
(pp. 522–526) (April).

35. Thomson, J., et al. (2002). An Integrated 802.11a Baseband
and MAC Processor. In IEEE International Solid-State Cir-
cuits Conference (ISSCC), 45, 126–127, 451.

36. Zhang, H., et al. (2000). A 1-V heterogeneous reconfigurable
DSP IC for wireless baseband digital signal processing. In
IEEE Journal of Solid-State Circuits (JSSC) (pp. 1697–1704)
(November).

37. Baines, R., et al. (2003). A total cost approach to evaluating
different reconfigurable architectures for baseband process-
ing in wireless receivers. In IEEE Communication Magazine
(pp. 105–113) (January).

38. Cradle Technologies, Multiprocessor DSPs: Next stage
in the evolution of media processor DSPs, Tech. Rep.,
http://www.cradle.com/.

39. Khailany, B., et al. (2002). VLSI design and verification of
the imagine processor. In IEEE International Conference on
Computer Design (ICCD) (pp. 289–294) (September).

40. Cronquist, D. C., et al. (1999). Architecture design of recon-
figurable pipelined datapaths. In Advanced research in VLSI
(ARVLSI) (pp. 23–40) (March).

41. Oliver, J., et al. (2004). Synchroscalar: A multiple clock do-
main, power-aware, tile-based embedded processor. In Pro-
ceedings of the International Symposium on Computer Archi-
tecture (ISCA) (pp. 150–161) (June).

42. ClearSpeed, CSX600: Advanced product, Tech. Rep.,
http://www.clearspeed.com/.

43. Sandbridge, The sandbridge sandblaster convegence plat-
form, Tech. Rep., http://www.sandbridgetech.com/.

44. Whitby-Strevens, C. (1990). Transputers-past, present and
future. In IEEE Micro (pp. 16–19) (December).

45. Kung, H. T. (1982). Why systolic architectures? In Computer
Magazine (pp. 37–46) (January).

46. Kung, H. T. (1988). Systolic communication. In International
Conference on Systolic Arrays (pp. 695–703) (May).

47. Kung, S., et al. (1982). Wavefront array processor: Language,
architecture, and applications. IEEE Transactions on Com-
puters, C-31(11), 1054–1066 (November).

48. Schmidt, U., & Mehrgardt, S. (1990). Wavefront array
processor for video applications. In IEEE International
Conference on Computer Design (ICCD) (pp. 307–310)
(September).

49. Lattard, D., Beigne, E., Bernard, C., et al. (2007). A tele-
com baseband circuit based on an asynchronous network-
on-chip. In IEEE International Solid-State Circuits Confer-
ence (ISSCC) (pp. 258–259) (February).

Zhiyi Yu received the B.S. and M.S. degrees in Electrical
Engineering from Fudan University, Shanghai, China, in 2000
and 2003, respectively, and the Ph.D. degree in Electrical and
Computer Engineering from University of California, Davis, in
2007.

Dr. Yu is currently a Hardware Engineer with IntellaSys Cor-
poration, headquartered in Cupertino, CA. His research interests
include high-performance and energy-efficient digital VLSI de-
sign, architectures, and processor interconnects, with an emphasis
on many-core processors. He was a key designer of the 36-core
asynchronous array of simple processors (AsAP) chip, and one of
the designers of the 150+ core second generation computational
array chip.

Michael J. Meeuwsen received the B.S. degrees with honors in
Electrical Engineering and Computer Engineering (both summa
cum laude) from Oregon State University, Corvallis, and the M.S.
in Electrical and Computer Engineering from the University of
California, Davis.

He is currently a Hardware Engineer with Intel Digital Enter-
prise Group, Hillsboro, OR, where he works on CPU hardware
design. His research interests include digital circuit design and
IEEE 802.11a/g algorithm mapping.

http://www.cradle.com/
http://www.clearspeed.com/
http://www.sandbridgetech.com/

Yu et al.

Ryan W. Apperson received the B.S. in Electrical Engineering
(magna cum laude) from the University of Washington, Seattle,
and the M.S. degree in Electrical and Computer Engineering
from the University of California, Davis.

He is currently an IC Design Engineer with Boston Scientific
CRM Division, Redmond, WA. His research interests include
multiclock domain systems and SRAM design.

Omar Sattari received the B.S. and M.S. degrees in Electrical and
Computer Engineering from the University of California, Davis.

He is currently a Software Engineer at CornerTurn. His
research interests include FFT and DSP algorithms and digital
hardware design.

Michael A. Lai received the B.S. and M.S. degrees in Electrical
and Computer Engineering from the University of California,
Davis.

He is currently a Design Engineer at Altera Corporation
working on next generation transceiver products. His research
interests include the design of high-speed arithmetic units and
control.

Jeremy W. Webb received the B.S. degree in Electrical and
Computer Engineering from the University of California, Davis.

He is currently a M.S. student in Electrical and Computer
Engineering at the University of California, Davis, and a hard-
ware engineer at Centellax. His research interests include high-
speed board design and system interfacing.

Architecture and Evaluation of An Asynchronous Array of Simple Processors

Eric W. Work received the B.S. degree from the University of
Washington, and the M.S. degree in Electrical and Computer
Engineering from the University of California, Davis.

He is currently a Software Engineer at S Machine Corpora-
tion. His research interests include the mapping of arbitrary task
graphs to processor networks and software tool flow.

Tinoosh Mohsenin received the B.S. degree in Electrical Engi-
neering from Sharif University, Tehran, Iran, and the M.S. degree
in Electrical and Computer Engineering from Rice University,
Houston, TX. She is currently pursuing the Ph.D. degree in
Electrical and Computer Engineering from the University of
California, Davis.

She is the designer of the split-row and multi-split-row low
density parity check (LDPC) decoding algorithms. Her research
interests include energy efficient and high performance signal

processing and error correction architectures including multi-
gigabit full-parallel LDPC decoders and many-core processor
architecture design.

Bevan M. Baas received the B.S. degree in Electronic Engi-
neering from California Polytechnic State University, San Luis
Obispo, in 1987, and the M.S. and Ph.D. degrees in Electrical
Engineering from Stanford University, Stanford, CA, in 1990 and
1999, respectively.

In 2003 he became an Assistant Professor with the Depart-
ment of Electrical and Computer Engineering at the University
of California, Davis. He leads projects in architecture, hard-
ware, software tools, and applications for VLSI computation with
an emphasis on DSP workloads. Recent projects include the
asynchronous array of simple processors (AsAP) chip, applica-
tions, and tools; low density parity check (LDPC) decoders; FFT
processors; viterbi decoders; and H.264 video codecs.

From 1987 to 1989, he was with Hewlett-Packard, Cupertino,
CA, where he participated in the development of the processor
for a high-end minicomputer. In 1999, he joined Atheros Com-
munications, Santa Clara, CA, as an early employee and served
as a core member of the team which developed the first IEEE
802.11a (54 Mbps, 5 GHz) Wi-Fi wireless LAN solution. During
the summer of 2006 he was a Visiting Professor in Intel’s Circuit
Research Lab.

Dr. Baas was a National Science Foundation Fellow from
1990 to 1993 and a NASA Graduate Student Researcher Fellow
from 1993 to 1996. He was a recipient of the National Science
Foundation CAREER Award in 2006 and the Most Promising
Engineer/Scientist Award by AISES in 2006. He is an Associate
Editor for the IEEE Journal of Solid-State Circuits and has served
as a member of the Technical Program Committee of the IEEE
International Conference on Computer Design (ICCD) in 2004,
2005, and 2007. He also serves as a member of the Technical
Advisory Board of an early stage technology company.

	Architecture and Evaluation of an Asynchronous Array of Simple Processors
	Abstract
	Introduction
	The AsAP Processor System
	Architecture of the AsAP Processor
	Instruction Set
	Data Addressing
	Completely Independent Clocking and Circuits for Crossing Asynchronous Clock Domains
	Reconfigurable Two-Dimensional Mesh Network

	AsAP Implementation
	Software
	Task and Application Implementations

	Analysis of the Key Features
	Small Memory
	Inherent Small Memory Requirement for DSP Applications
	Finding the Optimal Memory Size for DSP Applications
	Several Architectural Features Help Reduce Memory Requirement

	Datapath---Wide Issue vs. Single Issue
	Nearest Neighbor Communication
	GALS

	Evaluation of the AsAP Processor
	High Speed, Small Area, and High Peak Performance
	High Performance and Low Power Consumption for DSP Applications

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

