Dynamic Voltage and Frequency Scaling Circuits with Two Supply Voltages

ECE Department, University of California, Davis

Wayne H. Cheng and Bevan M. Baas
Outline

• Background and Motivation
• Implementation
• Results
DVFS Background

\[P_{dyn} = \alpha CVdd^2 f \]
\[E = CVdd^2 \]
\[t_d \approx CVdd/(Vdd-Vt)^\alpha \]

- Reducing supply voltage:
 - Reduces power and energy dissipation
 - Reduces maximum clock frequency due to increased gate delay
Other DVFS Schemes

Scheme 1: Off-chip DC-DC Converter

Scheme 2: On-chip DC-DC Converter
Presented DVFS Scheme

- Fine grain voltage scaling
 - Maximum power/energy reduction with minimum performance overhead
- Small area overhead by using an off-chip DC-DC converter, and switching between voltages on-chip
Outline

• Background and Motivation
• Implementation
• Results
- Voltage scaling with 2 discrete voltage levels
- Supply switching with PMOS power gates
- Automated DVFS based on workload
- Wrapper powered by always on power supply
Power Gate Sizing

\[V_{PG} = I_{PG} R_{PG} \]
\[R_{PG} \sim \frac{L}{W} \]
\[t_d \approx C Vdd / (Vdd - V_{PG} - Vt)^\alpha \]

Voltage drop can be reduced by making \(W/L \) as large as possible → done by adding parallel power gates
Supply Switching Scheme

- **Supply grid noise:**
 - Gradually switch between power supplies

- **Shorting between power supplies:**
 - Shut both power supplies off and wait for some time before switching

- **Data corruption:**
 - Stall the processor core before switching between power supplies
Dynamic Run-time Supply Switching Circuit

- Wait for request
- Stall core
- Shut off power
- Delay
- Supply switch
- Release stall

Diagram showing the dynamic run-time supply switching circuit with various components and signals.
Physical Implementation

- Power gates are positioned along vertical power stripes
- Core power is supplied with horizontal power stripes
Outline

• Background and Motivation
• Implementation
• Results
Implementation Results

- Implemented in 65nm CMOS technology
- DVFS circuit area is 12% of AsAP processor’s core area
- 66% of the DVFS circuit area is power gates and decoupling capacitors
- Maximum power consumption of DVFS logic is 4% of AsAP processor core’s power
Energy Consumption Metric

- $P_{\text{dyn}} = \alpha CVdd^2 f$
- $E = CVdd^2$
- Energy reduction is possible only with voltage scaling

- $EDP = E \times t_d$
- Energy delay product measures the effect of increased delay with DVFS
Measurement of Relative Energy Delay Product

$$EDP_{rel} = \left(\frac{\beta Vdd^2_{Low} + (1 - \beta) Vdd^2_{High}}{Vdd^2_{High}} \right) \left(\frac{t_{dvfs}}{t_{orig}} \right)$$

- β is the fraction of time operating on the lower voltage
- t_{dvfs} is the total run time with DVFS
- t_{orig} is the total run time without DVFS.
9 Processor JPEG Application

- Lower minimum frequency → Increase in time on lower supply
- EDP decreases as the minimum frequency decreases up until 13 MHz
- EDP increases as the performance overhead outweighs the energy savings

$V_{dd\text{high}} = 1.3V$, $V_{dd\text{low}} = 0.8V$

Maximum Frequency = 1.05 GHz
Various Applications

- EDP dependent on workload variations
- Increase in workload variation \rightarrow Increase in switching between supplies \rightarrow Increase in performance overhead \rightarrow Increase in EDP

$V_{dd\text{high}} = 1.3\text{V}$, $V_{dd\text{low}} = 0.8\text{V}$

Maximum Frequency $= 1.05\text{ GHz}$

![Bar chart showing normalized energy delay product for different applications]
Summary

- DVFS with 2 supply voltages
- Power gates sized to reduce perf. loss
- Robust supply switching circuit
- EDP is reduced by 48% on a 9 processor JPEG application
- Functional in silicon at 65nm node
Acknowledgements

• Funding
 – Intel Corporation
 – UC Micro
 – NSF Grant No. 0430090
 – CAREER award 0546907
 – SRC GRC Grant 1598,
 – IntellaSys Corporation
 – S Machines
 – Uniquify Inc.

• Special thanks
 – Members of the VCL, R. Krishnamurthy M. Anders, and S. Mathew
 – ST Microelectronics and Artisan