A Low-Area Interconnect Architecture for Chip Multiprocessors

Zhiyi Yu and Bevan Baas

VLSI Computation Lab ECE Department, UC Davis

Outline

Motivation

- Why chip multiprocessors
- The difference between chip-multiprocessor interconnect and multiple-chip interconnect
- Low-area asymmetric interconnect architecture
- High performance multiple-link architecture

Why Chip Multiprocessors

- Chip Multiprocessor challenges
 - Traditional high performance techniques are less practical (e.g., increased clock frequency)
 - Power dissipation is a key constraint
 - Global wires scale poorly in advanced technologies
- Solution: chip multiprocessors
 - Parallel computation for high performance
 - Reduce the clock freq. and voltage when full rate computation is not needed for high energy efficiency
 - Constrain wires no longer than the size of one core

Interconnect in Chip Multiprocessors vs. Interconnect in Multiple Chips

- Chip multiprocessors have relatively limited area resources for interconnect circuitry
 - Try to reduce the area of buffer with little reduction of the interconnect capability
- Chip multiprocessors have relatively abundant wire resources for inter-processor connection
 - Try to use more wire resources to increase the interconnect capability

Outline

- Motivation
- Low-area asymmetric interconnect architecture
 - Traditional dynamic Network-On-Chip
 - Statically configured Network-On-Chip
 - Proposed asymmetric architecture
- High performance multiple-link architecture

Background: Traditional Network on Chip (NoC) using Dynamic Routing

- Advantage: flexible
- Disadvantage: high area and power cost

Background: Static Nearest Neighbor Interconnect Architecture

- Low area cost
 - One buffer per processor, not four
- High latency for long distance communication
 - Data passes through each intermediate processor

Asymmetric Data Traffic in Inter-processor Communication

- Data traffic of routers in a 9-processor JPEG encoder
- 80% of traffic goes to processor core, 20% passes by core

	Network data words of input ports of router					
	East	North	West	South		
Relative	9%	26%	22%	43%		

	Network data words of output ports of router						
	Core	East	North	West	South		
Relative	80%	8%	4%	8%	0%		

Asymmetrically-Buffered Interconnect Architecture

- Large buffer only for the processing core
- Support flexible direct switch/route interconnect

Outline

- Motivation
- Low-area asymmetric interconnect architecture
- High performance multiple-link
 architecture

Design Option Exploration

- Choose static routing architecture
 - Much smaller area and power required
- Assign two buffers (ports) for each processing core
 - Natural fit with 2-input,
 1-output instructions
 (e.g., C=A+B)

Single Link vs. Multiple Links

- Why consider multi-link architectures?
 - Single link might be inefficient in some cases
 - There are many link/wire resources on chip
- Fully connected multilink architectures have huge numbers of long wires
 - Alternative simplified architectures are needed

Architectures with Multiple Links

Area and Speed of Seven Proposed Network Architectures

- All seven architectures implemented in hardware
- Four-link architectures (types 6 and 7) require almost 25% more area
- Clock rates for all are within approx. 2%

Comparing Routing Latency using Communication Models

- All architectures have the same routing latency for the one→one, one→all, and all→all communication
- Different types of architectures behave differently for the all-one communication

Summary

- Asymmetric buffer allocation topology uses 1 or 2 large buffers instead of 4 large buffers to support long distance communication
 - Provides 2 to 4 times area savings with little performance reduction
- Using 2 or 3 links per edge achieves good area/performance tradeoffs for chip multiprocessors containing simple single-issue processors
 - Provides 2 to 3 times higher all→one communication capacity with 5%-10% increased area

Acknowledgements

- Funding
 - Intel Corporation
 - UC Micro
 - NSF Grant No. 0430090
 - CAREER award 0546907
 - SRC GRC Grant 1598
 - IntellaSys Corporation
 - S Machines
- Special thanks
 - Members of the VCL, R. Krishnamurthy, M. Anders, and S. Mathew
 - ST Microelectronics and Artisan