
A Low-Area Interconnect Architecture for
Chip Multiprocessors

Zhiyi Yu and Bevan M. Baas
ECE Department, University of California, Davis

Abstract— A new inter-processor communication architecture
for chip multiprocessors is proposed which has a low area cost
and flexible routing capability. To achieve a low area cost, the
proposed statically-configurable asymmetric architecture assigns
large buffer resources only to the nearest neighbor interconnect
and much smaller buffer resources for long distance intercon-
nect. To maintain flexible routing capability, each neighboring
processor pair has two connecting links. Compared to a tra-
ditional dynamically-configurable interconnect architecture with
symmetric buffer allocation and single-links between neighboring
processor pairs, this implementation has approximately 2 times
smaller communication circuitry area with a similar routing
capability. Area and speed estimates are obtained with the
physical design of seven chips in 0.18 μm CMOS.

I. INTRODUCTION

Integrating multiple processors into a single chip (known as
chip multiprocessors) has recently become easily achievable
and common due to continuing advances in VLSI fabrication
technologies. This fact makes interprocessor communication
in chip multiprocessors an important design issue.

Researchers have proposed Network on Chip (NoC) solu-
tions which use routers for inter-processor communication.
Most research is based on dynamic packet-switched routing
architectures [1], [2]. Another approach is the statically con-
figurable nearest neighbor interconnect architecture used in the
AsAP processor [3], where each processor communicates only
with its four neighbors and long distance communication is ac-
complished by software in intermediate processors. IMESH [4]
uses both dynamic and static interconnects. Dynamic routing
architectures are flexible, but normally require relatively large
circuit area and power for communication circuity. The static
nearest neighbor interconnect architecture reduces area and
power requirements significantly, but it results in relatively
high latency for long distance communication.

We propose an asymmetric structure to obtain good trade
offs between flexibility and cost by: treating the nearest
neighbor communication and long distance communication
differently, using more buffer resources for nearest neighbor
connections, and using fewer buffer resources for long dis-
tance connections. Compared to traditional dynamic routing
architectures, the architecture reduces communication circuitry
area by approximately 2 to 4 times, while maintaining similar
communication performance and flexibility.

We also found that increasing the number of links between
processors is helpful to increase routing capability, but it
dramatically increases processor area after a certain point
which depends on implementation details. Two or three links

Route

East

North

West

South

East

North

West

South

Core

(a)

buffer

bu
ffe

r

bu
ffe

r

buffer

north in

west
in

south in

east
in

core

north out

south out

west
out

east
out

(b)

Fig. 1. (a) An illustration of interprocessor communication in a 2-D mesh,
and (b) a generalized communication routing architecture in which only
signals related to the west edge are drawn

are generally appropriate when each processor in the chip
utilizes a simple single issue processor architecture.

II. ASYMMETRIC INTERCONNECT ARCHITECTURE

A. Background: dynamic routing and static nearest neighbor
interconnect

Figure 1(a) shows the interprocessor communication in a
typical 2-D mesh-connected chip multiprocessor using a router
architecture. The router block in each processor receives data
from neighboring processors (east, north, west, and south)
and then sends data to the processor core or neighboring
processors. Since communication links are not always avail-
able due to slow data processing speeds or link congestion,
buffers are inserted at each input edge [5]. Figure 1(b) shows a
generalized diagram of the routing circuitry where only signals
related to the west edge (west in and west out) are drawn. The
communication logic includes four buffers and five muxes,
and there is some control logic to support the communication
flow control which is not shown. Other implementations are
possible; for example, each output port can also have a
buffer or each input buffer can be split into multiple virtual
channels [1] to reduce communication latency. The area of the
communication circuitry is normally dominated by the buffers
and the logic in the four input/output edges is normally the
same.

In many applications, communication in chip multiproces-
sors is localized or can be localized, which means data traffic
going into the processor core is much larger than to the output
paths. To minimize communication circuit overhead, another
interprocessor communication strategy is to implement only
the nearest neighbor interconnect logic, and the long distance

978-1-4244-1684-4/08/$25.00 ©2008 IEEE 2857

Route

East

North

West

South

Core

(a)

bu
ffe

r

north in

west
in

south in

east
in

core

north out

south out

west
out

east
out

(b)

Fig. 2. The concept and circuitry diagrams of the nearest neighbor
interconnect architecture. Data from four inputs are transfered only to the
processing core to reduce the circuitry cost.

communication is performed by software in the intermediate
processors. Figure 2(a) shows this concept of nearest neighbor
interconnect and Fig. 2(b) shows its circuit diagram. Compar-
ing Fig. 1 and Fig. 2, the nearest neighbor interconnect reduces
the number of buffers from four to one and the muxes for each
output port are all avoided; resulting in more than four times
smaller area. But clearly it has the limitation that long distance
communication places a burden on intermediate processors.

B. Asymmetrically-buffered architectures

Hu et al. have studied asymmetric data traffic patterns
in inter-processor communication and proposed using dif-
ferent buffer resources at input ports of routers to match
the traffic [6]. One limitation of this architecture is that for
different applications as well as for different processors of
individual applications, the existing asymmetric data traffic on
the router’s input ports is different, which makes the allocation
of the buffer resources application specific. Considering the
router’s output ports instead of its input ports, most of the
data from the input ports are delivered to the core and very
few are to edges, which makes the asymmetric data traffic
on the router’s output more general and universal. Allocating
asymmetric buffer resources at the output ports is applicable in
a much wider range of applications, which is important since
today, NoC architectures are used more widely than just for
specific application domains.

Table I shows the data traffic of each processor for a JPEG
encoder [3] which demonstrates the different asymmetric data
traffic on the input and output ports of routers. On the input
ports, although each processor shows a clear asymmetric com-
munication data traffic; the major input direction for different
processors are different which makes the overall traffic at the
input ports quite uniform. On the output ports, however, each
processor shows the similar asymmetric data traffic and overall
about 80% of the data are delivered to the core. Similar results
exist in other applications.

We propose an architecture which has asymmetrically-
buffered output ports as shown in Fig. 3 to achieve good trade
offs between cost and flexibility. As shown in Fig. 3(a), instead
of equally distributing buffer resources to each output port, we
allocate larger buffers to the processing core port, and smaller

TABLE I

DATA TRAFFIC OF ROUTERS IN A 9-PROCESSOR JPEG ENCODER TO

PROCESS ONE 8 × 8 BLOCK ASSUMING AN ARCHITECTURE WITH

FOUR-INPUTS AND FIVE-OUTPUTS AS SHOWN IN FIG. 1. DATA TO THE

CORE DOMINATES TRAFFIC AT THE OUTPUT PORTS.

Proc. Network data words of Network data words of
No. input ports of router output ports of router

East North West South Core East North West South
1 0 64 0 0 64 0 0 0 0
2 0 64 0 0 64 0 0 0 0
3 0 64 0 0 64 0 0 0 0
4 0 0 64 0 64 64 0 0 0
5 0 0 96 0 64 0 32 0 0
6 0 0 0 64 1 0 0 63 0
7 0 0 0 3 3 0 0 0 0
8 63 0 0 0 63 0 0 0 0
9 4 0 0 252 256 0 0 0 0

Total 67 192 160 319 643 64 32 63 0
Relative 9% 26% 22% 43% 80% 8% 4% 8% 0%

Route

East

North

West

South

East

North

West

South

Core

(a)

north in

west
in

south in

east
in

Core

north out

south out

west
out

east
out

B
uf

fe
r

(b)

Fig. 3. The concept and circuitry diagrams of the proposed inter-processor
communication architecture; it has the asymmetric buffer resource for the long
distance interconnect and the local core interconnect

buffers (one or several registers) to the other ports. Figure 3(b)
shows the circuitry diagram where only signals related to the
west edge (west in and west out) are drawn. This scheme’s
circuit area is similar to the nearest neighbor interconnect by
adding a few registers and muxes. From the point of view
of routing capability, this scheme is similar to the dynamic
routing architecture, since reducing the buffers in ports for
long distance communication does not significantly affect sys-
tem performance when the communication is localized. When
using one large buffer for the processing core, the proposed
architecture can save about 4 times the area compared to the
Fig. 1 architecture. If using two large buffers, the area savings
is about 2 times lower.

III. SINGLE LINK VS. MULTIPLE LINKS

Using the architecture shown in Fig. 3, there are still many
options for the communication logic realization. For analyses
presented in this paper, we assign two ports (buffers) for each
processing core, and use a static routing architecture due to
its low cost.

One of the key differences between on-chip and inter-
chip interconnects is that there are more wire resources on
chip, while inter-chip connections are normally limited by the

2858

to core

(a)

to switch

to switch

expensive ‘semi’
global wires

to core

(b)

to switch

in2
_W

out2
_E

to core

out1
_E

in1
_W

(d)

to switch

to switch

in1_Nin2_N

to core

(c)

to switch

in2_N

to switch

in2
_W

out2
_E

out1
_E

in1
_W

in2
_W

out2
_E

out1
_E

in1
_W

in2
_W

out2
_E

out1
_E

in1
_W

core

in2_E

in2_S

core
core

in1_E

in2_E

in1_Sin2_S

in1_Nin2_N

in1_Sin2_S

in1_E

in2_E

Fig. 4. Four inter-processor interconnect schemes utilizing double links:
(a) fully connected; (b) separated nearest neighbor link and long distance
link; (c) separated link from core and link from edges; and (d) connections
exist between ’corresponding’ links. Methods (b), (c), and (d) correspond to
options 12, 15 and 44 in Table II.

available chip IO pins. Dally and Towles [1] suggest increasing
the wordwidth of each link in NoCs to take advantage of this
fact. We explore another option in this section of increasing the
number of links at each edge to increase connection capability
and flexibility.

A. Increasing the number of links

The overhead of increasing the number of links is high not
only because of necessary control logic, but more importantly
because of semi-global wires inside each processor which
affect system area/speed/power significantly. Fig. 4(a) shows
the fully-connected two-link architecture.

Methods are available to simplify the fully connected archi-
tecture. Considering the router’s logic at the east edge which
receives data from North, West, South and Core and sends
to East output, we use in1 N, in2 N, in1 W, in2 W, in1 S,
in2 S, sig core, out1 E, and out2 E to define these signals.
A large exploration space exists at first glance since 7 inputs
and 2 outputs have 214 connection options. Since three input
edges are symmetric, we group {in1 N, in1 W, in1 S} together
as input in1 and another input group named as in2, so the
input number is reduced to 3 and the exploration space is
reduced to 26 = 64 as shown in Table II. In options 1-8, out1
does not have any connections so they are not considered as
two-links architectures. Option 9 is neglected for a similar
reasons. Option 10 only connects the processing core to the
outputs and it is essentially the same as the nearest neighbor
architecture. By examining all other options, we found that
options 12, 15 and 44 are potentially good choices, and their
corresponding circuit diagrams are shown in Fig. 4(b), (c) and
(d) respectively.

In terms of the area cost and the routing flexibility of
the four architectures shown in Fig. 4, architecture (a) has

TABLE II

INTERCONNECT ARCHITECTURE OPTIONS FOR DOUBLE LINKS. Yes MEANS

A CONNECTION EXISTS BETWEEN INPUT AND OUTPUT, No MEANS NO

CONNECTION EXISTS, AND xx MEANS DON’T CARE.

options in1-out1 in2-out1 core-out1 in1-out2 in2-out2 core-out2
1-8 No No No xx xx xx
9 No No Yes No No No
10 No No Yes No No Yes
11 No No Yes No Yes No
12 No No Yes No Yes Yes
13 No No Yes Yes No No
14 No No Yes Yes No Yes
15 No No Yes Yes Yes No
16 No No Yes Yes Yes Yes
....
43 Yes No Yes No Yes No
44 Yes No Yes No Yes Yes

45-48 Yes No Yes Yes xx xx
49-64 Yes Yes xx xx xx xx

the most flexible connection while it has the biggest cost;
architecture (b) has the most strict connection limit while it has
the smallest cost; architecture (c) has the connection flexibility
and cost in between (a) and (b). Architecture (d) has the area
cost similar with (c), and interestingly, its routing capability
is the same with architecture (a) by setting routing paths. We
investigate further the Fig. 4(d) architecture due to its routing
flexibility and moderate circuitry cost, and Fig. 4(b) due to its
small circuitry cost.

A more quantitative analysis is given in the following sub-
sections. The architectures we evaluate include the single-link
architecture, the double-links architectures shown in Fig. 4(b)
and (d), and three and four links architectures which are
enhanced versions of Fig. 4(b) and (d).

B. Area and speed estimates from seven chip designs

Increasing the number of communication links requires
additional control logic, which increases circuitry area and
affects processor speed. We have designed seven processor
chips with each containing different communication circuits
in a 0.18 μm technology, synthesizing from RTL code and
completing the physical layout using Cadence Encounter.
Standard cell area utilization is initially 70% and typically
increases to about 85% after clock tree insertion and inplace
optimization. The seven types are as follows: (1) single-link,
(2) double-link in Fig. 4(b), (3) double-link in Fig. 4(d),
(4) three-link version of Fig. 4(b), (5) three-link version of
Fig. 4(d), (6) four-link version of Fig. 4(b), and (7) four-link
version of Fig. 4(d).

Fig. 5 shows key data for the seven chip designs. Types 6
and 7 (four link architectures) have a noticeable nearly 25%
increase in area because they can not successfully complete
routing until the area utilization is reduced to 64% and 65%
respectively. This result provides interesting insight into how
many global wires can fit into a chip. For a processor with
a 0.66 mm2 area and a 0.8 mm edge, assuming a minimum
1 μm pitch between IO pins, an optimistic estimation is that
each edge can fit 800 IO pins consuming one perpendicular
metal layer; beyond this range the processor size will become

2859

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

Architecture type

A
re

a
(m

m
2)

(a)

1 2 3 4 5 6 7
0

5

10

15

20

25

Architecture type

A
re

a
in

cr
em

en
t (

%
)

(b)

1 2 3 4 5 6 7
0

100

200

300

400

500

Architecture type

M
ax

. c
lo

ck
 r

at
e

(M
H

z)

(c)

1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

Architecture type

C
lo

ck
 r

at
e

di
ffe

re
nc

e(
%

)

(d)

Fig. 5. Comparison of designed processors with the seven communication
link types showing: (a) absolute area; (b) area relative to type 1; (c) absolute
speed; and (d) speed relative to type 1

IO pin or wire dominated. This estimation can be true if these
IO pins are all connected to short wires. For global wires
used for communication routers, increasing the number of
wires will quickly result in routing congestion and increase
the processor size. In our example, each processor edge in
four-link architectures has about 160 IO pins, much less than
the optimistic 800 IO pins. Four or more communication link
architectures are less desirable due to their high area cost.

Fig. 5 (c) shows the processor’s speed and Fig. 5 (d) shows
the relative speed difference of each architecture compared to
the type 1 architecture. Each processor has similar speed and
the difference is within 2%.

C. Performance

We use basic communication patterns including one-to-one,
one-to-all, all-to-one and all-to-all to evaluate the performance
of architectures with different numbers of links.

For one-to-one or one-to-all communication, each processor
only requires one source so that the single link architecture
is sufficient and has the same communication latency with
other architectures. A little surprisingly, all architectures have
the same latency for all-to-all communication, because each
processor needs data from both horizontal and vertical neigh-
bor processors and both of the two buffers (ports) of each
processor are occupied, prohibiting the usage of the additional
links for long distance communication.

These architectures have different features in all-to-one
communication as shown in Fig. 6. For the type 1 (single link)
architecture, most or all of the link resources are occupied by
the nearest neighbor interconnect and little can be used for
the direct routing, so the latency is relatively high. Increasing
the number of links helps when the latency is limited by the
link resources. Type 2 (double links with separated nearest
neighbor link) has little advantage to type 1 with a relatively
much higher area, and type 4 (three links with separated

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

The size of array (n x n)

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

Type 1
Type 2
Type 3
Type 4
Type 5

Fig. 6. Comparing the communication latency (clock cycles) of interconnect
architectures type 1 to 5, by varying the size of the array and using all-to-one
communication. Type 6 and 7 architectures are not included in the comparison
due to their high area cost as shown in Fig. 5

nearest neighbor link) has little advantage to type 3 (double
links) but with a relatively much higher area, so that type 2
and 4 are not considered. Type 3 architecture is about two
times faster than the single link architecture, which makes it a
good candidate. Comparing type 5 (three links) architecture
with type 3, they have the same latency within a small
communication domain (2 × 2 and 3 × 3 arrays), while the
three-link architecture benefits when the array grows.

IV. CONCLUSION AND ACKNOWLEDGMENTS

An asymmetric inter-processor communication architecture
which assigns more buffer resources to the nearest neighbor
interconnect and fewer buffer resources to the long distance
interconnect is proposed. Using two or three links at each
edge achieves good area/performance tradeoffs for chip mul-
tiprocessors containing simple single issue processors; and
the optimal number of links is expected to increase if larger
processors are used.

The authors thank members of the VCL, R. Krishnamurthy,
M. Anders, and S. Mathew; and gratefully acknowledge
support from Intel, UC MICRO, NSF Grant No. 0430090
and CAREER award 0546907, SRC GRC Grant 1598, ST
Microelectronics, IntellaSys, S Machines, and Artisan.

REFERENCES

[1] W. Dally and B. Towles, “Route packets, not wires: On-chip interconnec-
tion networks,” in IEEE International Conference on Design Automation,
June 2001, pp. 684–689.

[2] S. Vangal, J. Howard, G. Rule, et al., “An 80-tile 1.28TFLPS network-
on-chip in 65nm CMOS,” in ISSCC, Feb. 2007, pp. 98–99.

[3] Z. Yu, M. Meeuwsen, R. Apperson, et al., “An asynchronous array of
simple processors for DSP applications,” in ISSCC, Feb. 2006, pp. 428–
429.

[4] D. Wentzlaff, P. Griffin, H. Hoffmann, et al., “On-chip nterconnection
architecture of the tile processor,” IEEE Micro, pp. 15–31, Sept/Oct 2007.

[5] S. Vangal, A. Singh, J. Howard, et al., “A 5.1GHz 0.34mm2 router
for network-on-chip applications,” in Symposium on VLSI Circuits, June
2007, pp. 42–43.

[6] J. Hu and R. Marculescu, “Application-specific buffer space allocation
for network-on-chip route design,” in ICCAD, 2004, pp. 354–361.

2860

