
1

A Thresholding Algorithm for Improved Split-Row
Decoding of LDPC Codes

Tinoosh Mohsenin
�
, Pascal Urard

�
and Bevan Baas

�
�

ECE Department, University of California, Davis,
�

STMicroelectronics, Crolles Codex, France

Abstract— The recently proposed Split-Row decoding algo-
rithm provides significant improvements in the throughput,
hardware efficiency and energy efficiency when compared to
existing soft decision decoding algorithms at the cost of some
error performance loss. In this paper we propose Split-Row
Threshold which outperforms the Split-Row algorithm while
maintaining the same level of complexity. Simulation results
show that the algorithm provides 0.2 dB coding gain over Split-
Row decoding and is within 0.15-0.2 dB of SPA and MinSum
normalized.

I. INTRODUCTION

Low density parity check codes first introduced by Gal-
lager [1] have recently received significant attention due
to their being near the Shannon limit error correction per-
formance and their inherently parallelizable decoder archi-
tectures. Many recent communication standards such as 10
Gigabit Ethernet (10GBASE-T) [2], digital video broadcasting
(DVB-S2) [3] and WiMAX (802.16e) [4] have adopted LDPC
codes. Implementing high throughput and energy efficient
LDPC decoders remains a challenge largely due to the high
interconnect complexity and high memory bandwidth require-
ments of existing decoding algorithms stemming from the
irregular and global communication inherent in the codes.

The recently proposed Split-Row decoder [5], [6] partitions
the row processing into two or multiple nearly-independent
partitions, where each block is simultaneously processed using
minimal information from an adjacent partition. The key idea
of Split-Row is to reduce communication between row and
column processors which has a major role in the interconnect
complexity of existing LDPC decoding algorithms such as
Sum Product (SPA) [7] and MinSum (MS) [8].

To illustrate further, Fig. 1 (a) shows the block diagram
and a parity check matrix example highlighting the first row
processing stage using MinSum decoding. The row processor
output is shown by � , and the column processor output is
shown by

�
which goes back to the row processor. The check

node ��� corresponding to the first row of the parity check
matrix is also shown at the bottom, which connects to four
variables nodes. In the Split-Row method which is shown in
Fig. 1 (b), row processing is partitioned into two blocks, where
each block is simultaneously processed almost independently.
With this partitioning, the number of inputs sent to check
node � � in each partition is reduced to half which results
in less communication between row and column processors.
In addition, each row processor’s area is reduced because it
processes only half the number of inputs.

H

Hsplit-sp0 Hsplit-sp1

100001010
010100001
001001100
001100010
100010001

10010100 001
010
010
100

001
100

0

C1sp0

V3 V5 V8 V10

C1sp1

100001010
010100001
001001100
001100010
100010001

10010100

H

001
010
010
100

001
100

0

C1

V3 V5 V8 V10

V3 V4 V8V1 V2 V5V6 V7 V9 V11V10 V12

Col

Mem

Col

Mem

Row Row

SignSp1
SignSp0

Sp0 Sp1

Mem

ColRow

C1
C2
C3
C4
C5
C6

split split

reduction
of input wires to
row processor

reduction
of row

processor
area

Fig. 1. Block diagram, a parity check matrix example highlighting the first
row processing and the check node �	� for (a) MinSum (b) MinSum Split-Row
decoding methods.

Eq. 1 and Eq. 2 show the row processing equations of
the MinSum normalized [9] and MinSum Split-Row decoding
methods. In the following equations,

�
is the input to row

processing and � is the output of row processing. In MinSum
Split-Row the sign bit is computed using the sign bit of all
messages across the whole row of the parity check matrix
(because we pass the sign to the next partition). However, the
magnitude of the � message in each partition is computed by
finding the minimum among the messages within each parti-
tion.
���
 and
�
�������� are correction factors which normalize� values in MinSum and MinSum Split-Row to improve the
error performance.

��������
���
�� �"!$#&%('��*),+-�/.
021&3(4 � �5�"!768� 9�:*;� ! #&%	'��*),+-� 4=< � ���"! < 6 (1)

�	> ?7@�ACB >�D(�E
�
��F�����G�H � ! #&%	'*��),+-�JI :�KL;
4 � ��� ! 6

� 9�:*;� ! #&%NMPO=Q R�S-'���)7+T� 4"< � �5� ! < 6 (2)

.
The chip implementation results while using the MinSum

Split-Row method show significant improvements in area,
speed and energy dissipation over the MinSum decoder. The

Global Min, Min sp1 Min sp0

H

1.50040600 000.50

H

Hsplit-sp0 Hsplit-sp1

100001010
010100001
001001100
001100010
100010001

10010100 001
010
010
100

001
100

0

(a)

(b)

Fig. 2. The parity check matrix of a 12-bit LDPC code highlighting the
first row processing using (a) original Split-Row decoding and (b) after being
initialized with channel information, where UWVYX[Z�\�]_^`UWVYX[Za\ �

(2048,1723) LDPC decoder chip that was previously imple-
mented using MinSum Split-Row with the same technology
delivers 6.1 Gbps throughput and dissipates 79 pJ/bit which is
3.6 times faster and 1.8 times more energy efficient compared
to a regular MinSum decoder.

The major drawback of Split-Row is that it suffers from a
0.4-0.7 dB error performance loss (depending on the number
of row partitions) compared to MinSum and SPA decoders.
The main reason for its error performance degradation is that
in MinSum Split-Row each partition has no information about
the minimum value of the other partition. Therefore, when the
minimum value in one partition is much larger than the global
minimum, the � values in that partition which are calculated
by that minimum are all overestimated when compared to
those in the other partition. This leads to a possible incorrect
estimation of the bits which reside in that partition. Figure 2
(a) again shows the parity check matrix example and Fig. 2 (b)
shows the values in the first row after being initialized with
the received channel data. According to the MinSum Split-
Row decoding method the local minimum in each partition is
calculated independently and is used to update the � values.
However, as shown in the figure, the local minimum in the left
side, b 023

.dc
e
, is eight times larger than the local minimum in

the right side, b 023
."c
f
, which is also the global minimum of

the entire row. This results to an overestimation of � values
for bit 3

42gJh 6 and bit 5
47gJi 6 which can possibly cause an

incorrect decision for these two bits.

II. MINSUM SPLIT-ROW THRESHOLD

A threshold decoding method is proposed for Split-Row to
compensate for the difference between minimums among the
partitions and therefore improve the error performance with
negligible additional hardware. The basic idea is that each
partition sends a signal to the next partition if its own local
minimum is smaller than a threshold

4,j 6 . Thus, the other
partition is notified if there exists a minimum smaller than
the threshold. The algorithm is explained below.

Similar to the MinSum decoder, the first and second min-
imums (b 023_f

and b 023�k
) in each partition are computed

Col

Mem

Col

Mem

Row Row

SignSp1
SignSp0

Sp0 Sp1

Threshold_ensp0
Threshold_ensp1

Fig. 3. Split-Row Threshold block diagram

locally. The proposed algorithm checks if b 0l3_f
is less than

threshold
j

, then both b 0l3_f
and b 023�k

are used to update� values. Additionally, a threshold signal
4,j�monqp

.
msrqt7u pN3 6

which goes to the next partition is asserted high, indicating
that the minimum in this partition is smaller than threshold

j
.

On the other hand, if the local b 0l3_f
is larger than the

threshold but
j�monqp

.
msrqt7u pN3

from the neighboring partition
is asserted, it uses threshold

j
to update � values in that

partition.
The last condition is when the local b 023_f

is larger than
threshold

j
and

j�monqp
.
msrqt7u pN3

is not asserted, which indicates
that b 0l3_f

in the other partition is also larger than the
threshold

j
. In this case the local b 023_f

and b 023�k
are used

to calculate � values. Figure 3 shows the block diagram of
Split-Row Threshold where

jvmonqp
.
msrqt7u pN3

signals are passed
between partitions. These two wires alongside the two sign
wires are the only wires passed between the partitions.

The MinSum Split-Row Threshold algorithm for the row
processing in the
 c

e
partition is summarized as,

If (b 0l3_fvwxjvmonqp
.
msrqt7u

)j�monqp
.
msrqt7u pN3

."c
e � f

,
if (

< � � < = b 0l3_f
)< � � < = b 0l3�k

else < � � < = b 0l3_f
else if (

j�msnqp
.
mJrqt,u pN3

."c
f � f

)< � � < = j�msnyp .
mJrqt,u

else
if (

< � � < = b 0l3_f
)< ��� < = b 0l3�k

else < ��� < = b 0l3_f
.

Column processing in MinSum, MinSum Split-Row, and
MinSum Split-Row Threshold are all identical.

III. THE DETERMINATION OF THRESHOLD AND ERROR
PERFORMANCE RESULTS

The error performance simulations presented here assume
an additive white Gaussian noise channel with BPSK modu-
lation. Simulations were made for 80 error blocks and with

2

-3 -2 -1 0 1 2 3
0

5

10

15

20

25

30

35

40

45

50

Received Values from Channel SNR=3.6, VAR=0.26

D
is

tri
bu

tio
n

of
 R

ec
ei

ve
d

V
al

ue
s

fro
m

 C
ha

nn
el

2 T

Fig. 4. The distribution of received channel values for a 2048-bit code atzq{}|�~��N� ���C�
, and noise variance ��� |�~] � ��� . The likely values of

threshold � at which the algorithm performs best is with received values of
approximately 0.1–0.2 .

either a maximum of 15 decoding iterations or earlier when
the decoder converged.

Figure 4 shows the distribution of received values from
a channel at
_�������s� � u&�

and noise variance
g�� ���e � k�� . The likely location of the threshold

j
at which the

algorithm performs is shown in the figure. To further show
the effect of choosing the optimal threshold value, Fig. 5
plots the error performance of a (6,32) (2048,1723) LDPC
code versus threshold values for different SNRs. There are
two limits for the threshold value. If threshold

j
is zero,

then local minimums are always larger than the threshold,
meaning that local minimums are used to update � . Thus, the
algorithm converges to the original MinSum Split-Row. On the
other hand, if threshold

j
is very large, local minimums are

always smaller than the threshold. This again results in using
local minimums to calculate � and therefore, the algorithm
converges to the original MinSum Split-Row. As shown in the
figure the optimal value of the threshold for this code, within
the SNR ranges of 3.5-4.3 dB, is in the interval of 0.1-0.2.
Thus, one of the benefits of the MinSum Split-Row Threshold
method is that the threshold

j
is not dependent on the SNR

and channel statistics.
Figure 6 shows the error performance results for a (6,32)

(2048,1723) LDPC code for SPA, MinSum normalized, Min-
Sum Split-Row original and MinSum Split-Row Threshold
with different threshold values

4Pj 6 . The simulation results
show that the optimal correction factor
 for MinSum is
0.5, for MinSum Split-Row original is 0.30, and for MinSum
Split-Row Threshold is 0.35. The threshold is chosen to be
fixed over different SNRs and different decoding iterations.
As shown in the figure the coding gain of MinSum Split-Row
Threshold, with

j � e � k , over the original is 0.2 dB, and it is
only 0.15 dB away from MinSum normalized.

IV. ROW PROCESSOR IMPLEMENTATION WITH SPLIT
THRESHOLD METHOD

The implementation of the row processor in MinSum Split-
Row Threshold is similar to that of the MinSum decoder
while using half of the total number of inputs (

�
) and

with some small additional hardware. The column proces-
sor implementation remains the same as in the MinSum

0 0.5 1 1.5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Threshold values

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SNR=3.5
SNR=3.7
SNR=3.9
SNR=4.1
SNR=4.3

0.20.1

Fig. 5. Determination of Threshold � for a (6,32) (2048,1723) code using
MinSum Split-Row Threshold with different SNRs. The red vertical lines
signify the optimal threshold � interval.

3.5 4 4.5
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

SNR (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SPA
Normalized MS, S=0.5
MS Split−Row Threshold,S=0.35,T=0.2
MS Split−Row Threshold,S=0.35,T=0.05
MS Split−Row Threshold,S=0.35,T=0.5
MS Split−Row Threshold,S=0.35,T=1.0
MS Split−Row Original,S=0.30

0.2 dB

0.15dB
0.2 dB

Fig. 6. BER performance of (6,32) (2048,1723) code using MinSum
normalized, MinSum Split-Row original and MinSum Split-Row Threshold
with different threshold values � .

Min

Sign (1)

Min1

Min2

1

wr/2

| 1|

SignSp1

SignSp0

Sign (wr/2)

| 1|

| wr/2 |

Sign (wr/2)

| wr/2 |

Sign (1)

Index Min1

Index Min1

Comp
Threshold_ensp0

Threshold

Min1

Threshold_ensp1

Threshold

Threshold 0

1

0

12

Threshold Logic

select

Fig. 7. The row processor implementation block diagram using MinSum
Split-Row Threshold method, the threshold logic is shown within the dashed
red line.

3

and MinSum Split-Row. Figure 7 shows the row processor

.dc
e

implementation block diagram using the MinSum Split
Threshold method. The magnitude update of � is shown on
the top and the sign calculation is shown at the bottom.
Similar to MinSum Split-Row the sign bit calculated from
partition .dc

f
is passed to ."c

e
to correctly calculate the global

sign bit according to row processing equation Eq. 2. The
threshold logic implementation is shown within the dashed
line which consists of one comparator, an OR gate and ���N� k
muxes. Assuming the row weight of the parity check matrix
is ��� , there are ���N� k inputs (

�
) to each row processor.

Similar to MinSum decoding, the first minimum
4 b 0l3_f 6 and

the second minimum
4 b 0l3�k 6 are found alongside the signal

(� 3�uLpN� b 023_f
), which indicates whether Min1 or Min2 is

chosen for this particular index � . Min1 is then compared
with the Threshold to generate

jvmonqp
.
msrqt7u pN3

."c
e
. This does

not add extra delay because Min2 is generated one comparator
delay after Min1.

jvmonqp
.
msrqt7u pN3

."c
e

and
jvmonqp

.
msrqt7u pN3

.dc
f

are combined together, based on the algorithm, to generate
the
 pNt7py�� � j�monqp

.
msrqt7u pN3

."c
f8¡¢j�monqp

.
msrqt7u pN3

."c
e

signal.
The � values are finally produced using the
 pyt,py�� and� 3�u&pN� b 0l3_f

values.

MinSum Split-Row MinSum Split-Row
Original Threshold

Row processor area (£s¤[¥) 766 805
Gate count 296 317

TABLE I
THE SYNTHESIS RESULTS FOR ROW PROCESSOR USING SPLIT-ROW

ORIGINAL AND THRESHOLD DECODING METHODS IN 65 nm CMOS

Table I summarizes the synthesis results for the row pro-
cessor implemented with the Split-Row original and Thresh-
old decoding methods in 65 nm CMOS technology using
Synopsys Design Compiler. As shown in the table the row
processor area in MinSum Split-Row Threshold is only ¦&§
larger than the row processor in MinSum Split-Row. The
(2048,1723) LDPC decoder chip that was previously imple-
mented using MinSum Split-Row with the same technology
delivers 6.1 Gbps throughput and dissipates 79 pJ/bit which is
3.6 times faster and 1.8 times more energy efficient compared
to a regular MinSum decoder. Because the MinSum Split-Row
Threshold only requires one additional global wire to pass thej�monqp

.
msrqt7u pN3

, very few additional gates to implement the
threshold logic, and one additional mux delay into the critical
path, the performance, area, and energy of the MinSum Split-
Row Threshold will be comparable to that of the MinSum
Split-Row original. .

V. CONCLUSION

The threshold decoding method is proposed to facilitate
hardware implementations capable of: high-throughput, high
hardware efficiency, and high energy efficiency. Simulation
results show that the Split-Row Threshold outperforms the
Split-Row algorithm for 0.2 dB while maintaining the same
level of complexity. Our simulation results show that for a

given LDPC code keeping threshold
j

constant at any SNR
does not cause any error performance degradation.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge support from STMi-
croelectronics, Intel, UC Micro, NSF Grant 0430090 and
CAREER Award 0546907, SRC GRC Grant 1598 and CSR
Grant 1659, Intellasys, S Machines, and a UCD Faculty
Research Grant; LDPC codes and assistance from Shu Lin and
Lan Lan; and thank Dean Truong, Jean-Pierre Schoellkopf and
Patrick Cogez.

REFERENCES

[1] R.G. Gallager, “Low-density parity check codes,” IRE Transaction
Info.Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[2] “IEEE P802.3an, 10GBASE-T task force,” http://www.ieee802.
org/3/an.

[3] “T.T.S.I. digital video broadcasting (DVB) second generation framing
structure for broadband satellite applications.,” http://www.dvb.
org.

[4] “IEEE 802.16e. air interface for fixed and mobile broadband wireless
access systems. ieee p802.16e/d12 draft, oct 2005.,” .

[5] T. Mohsenin and B. Baas, “Split-row: A reduced complexity, high
throughput LDPC decoder architecture,” in ICCD, Oct. 2006, pp. 13–
16.

[6] T. Mohsenin and B. Baas, “High-throughput LDPC decoders using a
multiple split-row method,” in ICASSP, 2007, vol. 2, pp. 13–16.

[7] D.J.MacKay, “Good error correcting codes based on very sparse matri-
ces,” IEEE Transaction Info.Theory, vol. 45, pp. 399–431, Mar. 1999.

[8] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation,”
IEEE Transaction Communications, vol. 47, pp. 673–680, May 1999.

[9] J. Chen, A. Dholakia, E. Eleftheriou, and M. Fossorier, “Reduced-
complexity decoding of LDPC codes,” IEEE Transaction Communica-
tions, vol. 53, pp. 1288–1299, Aug. 2005.

4

