
A Complete Real-Time 802.11a Baseband Receiver Implemented on
an Array of Programmable Processors

Anh T. Tran, Dean N. Truong, and Bevan M. Baas
University of California - Davis

{anhtr, hottruong, bbaas}@ucdavis.edu

Abstract—This paper reports the design and software implementation
of a real-time digital baseband receiver compliant with the IEEE 802.11a
standard on the AsAP2 platform, a DSP chip multiprocessor. The
computational platform consists of an array of programmable processors
and configurable accelerators interconnected in a 2-D mesh network
that are well matched for implementing complex DSP and embedded
systems such as wireless and video applications. The receiver has full
functionality including frame detection, timing synchronization, carrier
frequency offset compensation, and channel equalization. It supports all
eight operational modes defined in the standard: 6, 9, 12, 18, 24, 36, 48
and 54 Mbps. The implementation is optimized such that the receiver can
obtain a full 54 Mbps rate while using an array of 29 small processors
plus Viterbi and FFT accelerators configured to operate at 590 MHz.

Index Terms—WLAN, IEEE 802.11a, baseband receiver, SDR, DSP,
multiprocessing.

I. INTRODUCTION

In recent years, a wide variety of wireless communication systems
has come into widespread use. To quickly adapt with this variety the
flexibility of software-defined radio (SDR) solutions have become
increasingly attractive. Some SDR platforms were proposed and
the 802.11a system [1] is one of the wireless protocols used as
benchmarks to evaluate their efficiency.
Some real-time software implementations of the 802.11a baseband

transmitter were reported in the literature [2]–[4]. The implementa-
tions of its receiver, which is much more complicated, however, either
cannot obtain a 54 Mbps throughput [4]–[7], or ignore some nec-
essary features such as frame detection/synchronization, carrier fre-
quency offset estimation/compensation and channel equalization [8]–
[10]. Speeding up the performance can be obtained by using some
built-in dedicated hardware such as Viterbi decoder and FFT for the
core computational components. However, other components in the
system which are implemented in software become bottlenecks that
limit the throughput. We eliminate these bottlenecks to get a complete
real-time receiver by exploiting the advantage of task-level paral-
lelism on multiple small cores of the AsAP2 platform [11], a second
generation of the Asynchronous Array of Simple Processors [12].
The AsAP2 many-core platform includes an array of 164 simple

fine-grain single-issue 6-stage processors fabricated in 65 nm CMOS.
Each processor has its own 128x35-bit instruction memory, 128x16-
bit data memory and two 64x16-bit FIFOs. These processors only
support the basic 16-bit arithmetic and logic instructions. Complex
arithmetic operations such as CORDIC rotation, trigonometric and
square root functions are implemented by a sequence of many basic
instructions. The latency of these operations can be significantly
reduced by making them execute in parallel on as many processors
as possible. The simplicity keeps the processor’s area small that is
only 0.17 mm2 each.
The Viterbi and FFT accelerators were also added into the platform

to speed up the core computational components in wireless applica-
tions. The Viterbi can decode convolution codes up to a constraint
length of 10 and the FFT is capable of performing FFT/IFFT

Frame Detection /
Synchronization

CFO Estimation /
Compensation

Guard
Removing

FFT

Subcarrier
Reordering

Channel Estimation /
Equalization

De-modulationDe-interleaving

De-puncturing
Viterbi

Decoding
Descrambing

input samples

output bit sequence

Fig. 1. Block diagram of a complete 802.11a baseband receiver.

S S S S S S S S S S GI2 L L GI SIGNAL . . .

10 short-training symbols 2 long-training symbols
with GI2

Many OFDM data
symbols

Data

SIGNAL
symbol

8 μs 8 μs 4 μs N x 4 μs

GI

Fig. 2. Structure of a received frame. S: 16-sample short-training symbol;
GI2: 32-sample double guard interval; L: 64-sample long-training symbol; GI:
16-sample single guard interval; SIGNAL and DATA fields: 64 samples each.

transforms up to 4096-point. These accelerators can be configured
in run-time depending on the requirements of the applications. All
processors and accelerators are asynchronously interconnected in a
statically circuit-switched 2-D mesh network that allows them to op-
erate in different clock domains with frequencies up to 1.2 GHz. The
network also supports direct long-distance communication (further
than nearest-neighbor connections) that simplifies the mapping of
complex applications.
The outline of this paper is organized as follows. Section II

describes the design of a complete 802.11a baseband receiver. The
mapping of this receiver on the AsAP2 platform is shown in Sec-
tion III. Section IV describes the evaluation and improvement of the
receiver’s throughput. Finally, paper conclusion and our future work
are discussed in Section V.

II. ARCHITECTURE OF A COMPLETE 802.11A BASEBAND
RECEIVER

Fig. 1 shows the architecture of a complete 802.11a baseband
receiver. The baseband receiver gets signal samples from an analog-
to-digial converter (ADC) with a sampling frequency of 20 MHz.
These signal samples form a frame including training symbols and
many OFDM symbols as described in Fig. 2.
Ten periodic short-training symbols in the beginning of frame are

used for frame detection and timing synchronization. A common
timing metric, which is used for both frame detection and timing
synchronization, was proposed by Schmidl and Cox [13]:

M(n) =
|P(n)|2

Q(n)2
(1)

Where P(n) is the auto-correlation between the received frame and
a copy delayed 16 samples from itself. Q(n) is the energy of 16
consecutive samples beginning from the nth sample.

165978-1-4244-2941-7/08/$25.00 ©2008 IEEE Asilomar 2008

−50 0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

index n

M
(n

)

Thsyn

Thdet

frame detection
step

timing
synchronization
step

begin to
synchronize
frequency

Fig. 3. Plot of the timing metric M(n) with S NR = 20dB. Thdet and Thsyn are
thresholds used for frame detection and timing synchronization, respectively.

P(n) =
15∑
k=0
r(n+ k+16) · r∗(n+ k) (2)

Q(n) =
15∑
k=0
|r(n+ k)|2 (3)

With r(n) is the received samples and (.)∗ denotes the complex
conjugate operation.
Since the ten short-training (S) symbols are periodic, under the

impact of noise, the timing metric forms an amplitude plateau as
described in Fig. 3. This metric begins to increase from the first
S symbol, which then fluctuates around a high amplitude level and
then gradually decreases at the ninth S symbol. This behavior of the
timing metrics allows us to easily set constant threshold values for
frame detection and synchronization.
A frame should be detected if its timing metric is larger than a

threshold Thdet at some consecutive samples (we choose the number
of these samples to be 48, which equals the number of samples of 3
S symbols). After the frame is detected, the timing is synchronized
by locate the first sample of the timing metric M(n) which is less
than the threshold Thsyn. This sample is the first sample of the tenth
S symbol which allows us to determine all long-training, SIGNAL
and OFDM symbols in the frame from now on.
Because division is slow, we replace the frame detection’s condi-

tion M(n) = |P(n)|
2

Q(n)2 > Thdet and the timing synchronization’s condition

M(n) = |P(n)|
2

Q(n)2 < Thsyn with:

|P(n)|2 > Thdet ·Q(n)2 (4)

and

|P(n)|2 < Thsyn ·Q(n)2 (5)

respectively. In this project, we choose Thdet = 0.75 and Thsyn = 0.15
as results derived by Jiménez et al. [14] and Tang et al. [15].
Once the timing has been synchronized, the frequency synchroniza-

tion step begins. Due to the difference in the frequency between the
transmitter and the receiver, there exists a carrier frequency offset
(CFO) between them. This CFO creates a phase error which is
accumulated on every sample of the frame. Even when the CFO is
small, the phase error still make subcarriers (in the frequency domain)
rotate far from the standard constellation points as illustrated in Fig. 4.
This CFO extremely degrades the accuracy of the receiver which is
why the frequency synchronization step is necessary in a practical
receiver.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Real

Im
ag

in
ar

y

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Real

Im
ag

in
ar

y

(a) (b)

Fig. 4. The constellation of 16-QAM subcarriers in the frequency domain
with ε = 10 ppm at 5 GHz. a) Without CFO compensation. b) With CFO
compensation.

The CFO can be estimated and compensated using two long-
training symbols as proposed by Sourour [16]. The phase error caused
by CFO is estimated as follows:

α =

1
64
·∠{

63∑
k=0
L2(k) ·L∗1(k)} (6)

where L1(k) and L2(k) are kth samples of the received long-training
symbol 1 and 2, respectively.
The mth samples beginning from the first sample of symbol L1 is

corrected by rotating at an angle of {−(m+ 192)α} because the first
sample of symbol L1 is separated 192 samples from the first sample
of the frame. This rotation is implemented by using the well-known
CORDIC algorithm [17]. The CORDIC algorithm is very convenient
to implement on hardware, however, to get a high rotation accuracy,
it requires a large number of iterations which has a large latency
if implemented in software. The large number of cycles needed by
the CORDIC algorithm as well as the high complexity of other
algorithms for rotating samples explains why there are only few of
previous software-based works proposing the CFO correction step
in their receiver [6], [7]. We overcome this challenge by exploiting
the multiple cores of AsAP2 architecture to rotate many samples in
parallel. This increases overall throughput at the cost of using more
processors. We will discuss further this issue in Section IV.
After CFO compensation step, the 16-sample GI field of each

OFDM symbol are removed, then 64 data samples are transformed
to the frequency domain by a 64-point FFT. Next, subcarriers in
the frequency domain must be equalized to eliminate the effects of
the communication channel. The channel’s coefficients are estimated
using information of two long-training symbols. Let L̂ be the long-
training symbol known by both the transmitter and receiver, and L̃1
and L̃2 be two long-training symbols rotated by the CFO compen-
sation. The channel coefficient of the kth subcarrier is estimated as
follows:

H(k) =
1
2
·
L̃1(k)+ L̃2(k)

L̂(k)
(7)

This estimation of channel coefficients is used to equalize the
corresponding subcarriers of all SIGNAL and DATA symbols. For
each kth subcarrier Sm(k) of the mth symbol, it is equalized by:

Ŝ m(k) =
Sm(k)
H(k)

(8)

Above, we used two divisions to compute H(k) and Ŝ m(k). Since
the division is slow, we should eliminate one at the equalization step
by computing:

166

Data
Distribution

Auto
Correlation

Offset
Accumulation

CORDIC -
Rotation

Energy
Computation

Frame
Detection

CORDIC –
Angle

Channel
Equalization

Channel
Estimation

Subcarrier
Reordering

Timing

Synchronization

CFO
Estimation

Demodulation
Bit Rate &

Data Length
Computing

Descrambling Pad Removal

Data
Distribution

Control

Deinterleaving
1

Deinterleaving
2

Depuncturing

FFT
(Accelerator)

Viterbi
Decoding

(Accelerator)

Post - Timing
Synchronization

to MAC layer

Pre - Channel
Estimation

: Other Connections (for Control, Detection, Estimation)

: Connections on the Critical Data Path

from ADC

Guard
Removal

Fig. 5. Mapping diagram of the 802.11a baseband receiver on AsAP2. Each functional unit in Fig. 1 is mapped to one or many processors depending on
its computational complexity. The Viterbi decoder and FFT are the configurable built-in accelerators

Ŝ m(k) = Sm(k) ·C(k) (9)

where C(k) is estimated as:

C(k) =
1
H(k)

=

2L̂(k)
L̃1(k)+ L̃2(k)

(10)

to replace for estimation of H(k) in Eq. 7.
After equalization, the subcarriers of OFDM symbols are de-

modulated into binary sequences and then these binary sequences are
de-interleaved, de-punctured, decoded using Viterbi algorithm and de-
scrambled. In the end, the final obtained binary sequence is sent to the
Medium Access Control (MAC) layer. An important note is that the
information from the SIGNAL symbol after decoded will be used to
decide the modulation scheme (BPSK, QPSK, 16-QAM or 64-QAM),
interleaving patterns and puncture pattern of the convolution code
(1/2, 2/3 or 3/4) for DATA symbols corresponding to the supported
bit rates: 6, 9, 12, 18, 24, 36, 48 or 54 Mbps.

III. IMPLEMENTATION OF THE 802.11A BASEBAND RECEIVER
ON ASAP2

A. Mapping 802.11a Receiver on the AsAP2 platform

Fig. 5 shows the mapping diagram of the 802.11a baseband
receiver on AsAP2. Processors of the receiver are programmed using
AsAP’s assembly language. The following is a brief summary of each
processor’s task.
• Data Distribution: distributes input samples to other processors;
each sample is represented by two 16-bit words (real and
imaginary) in the 3.13 format.

• Auto Correlation: computes the auto-correlation function P(n)
given in Eq. 2.

• Energy Computation: computes the energy of each of 16
consecutive samples Q(n) given in Eq. 3.

• Frame Detection: detects frame based on the condition of
|P(n)|2 > 0.75Q(n)2 in 48 consecutive samples.

• Timing Synchronization: locates the first samples that satisfies
|P(n)|2 < 0.15Q(n)2 after the frame was detected.

• Post Timing Synchronization: removes input samples until
frame is synchronized.

• Data Distribution Control: controls the distribution of the
samples.

• CFO Estimation: computes part {
∑63
k=0 L2(k) ·L

∗
1(k)} of the

carrier frequency offset given in Eq. 6.

• CORDIC Angle: computes angle α given in Eq. 6 using the
CORDIC algorithm.

• Offset Accumulation: computes the angle {−(m+192)α} which
is needed to rotate the mth samples.

• CORDIC Rotation: rotates samples to compensate the carrier
frequency offset.

• Guard Removal: removes 16 prefix samples of each 80-sample
OFDM symbol.

• FFT: is FFT accelerator configured to perform a 64-point FFT
on 64 samples of each OFDM symbol.

• Subcarrier Reordering: removes 12 null subcarriers and 4
pilots of each symbol. The remaining 48 subcarriers are then
reordered as specified in the standard [1].

• Pre-Channel Estimation: computes the average value 1
2 ·

[L̃1(k)+ L̃2(k)] for each of 48 subcarriers of two long-training
symbols.

• Channel Estimation: computes the channel’s coefficients C(k)
given in Eq. 10 using the division algorithm with a small lookup
table introduced by Hung et al. [18].

• Channel Equalization: equalizes subcarriers Ŝ m(k) as given in
Eq. 9.

• De-modulation: demaps each subcarrier back into a binary se-
quence. The number of bits representing each subcarrier depends
on its modulation schemes: 1 bits, 2 bits, 4 bits and 6 bits for
BPSK, QPSK, 16-QAM and 64-QAM, respectively.

• Deinterleaving 1 and Deinterleaving 2: are two deinterleaving
steps that reverse the interleaving steps from the transmitter.

• Depuncturing: inserts dummy bits into the locations removed
by the convolution encoder of the transmitter for creating code
rate 2/3 and 3/4 from the code rate 1/2.

• Viterbi Decoding: is a built-in accelerator used to decode the
bit sequence using Viterbi algorithm.

• Descrambling: de-scrambles the decoded bit sequence using the
generator polynomial G(x) = x7+ x4 +1.

• Bit Rate & Data Length Computation: retrieves information
about bit rate and data length from the decoded SIGNAL symbol.
The bit rate tells information about the modulation scheme and
code rate of the convolution code. This information is used to
control the De-modulation, Interleaving 1, Interleaving 2 and
Depuncturing processors. The data length tells the number of
useful data bytes contained in the received frame.

• Pad Removal: removes garbage bits which include the Tail and
Pad bits before sending the final bit sequence to the MAC layer.

167

Frame

Detection

Timing
Synchronization

CFO

Estimation

Channel

Estimation

OFDM

Symbol

Processing

Begin

Fig. 6. Finite State Machine model of the receiver.

B. Critical Data Path and Reception of Multiple Frames

The dark solid lines in Fig. 5 show the connections between
processors that are on the critical data path of the receiver. These
processors processes all OFDM symbols in the form of a pipeline.
The operation and execution time of these processors determine the
throughput of the receiver. Other processors in the receiver are only
briefly active for detection, synchronization (of frame) or estimation
(of the carrier frequency offset and channel’s coefficients); then they
are forced to stop as soon as they finish their job. Consequently,
these non-critical processors only add latency to the system and do
not affect overall throughput.
After completion of a whole frame, in order for the system is

able to receive another frame all stopped processors must be woken
up. Therefore, the system is programmed to operate as a finite state
machine (FSM) that is shown in Fig. 6.
In the beginning, the system operates in the Frame Detection state.

The Data Distribution processor sends samples to both the Auto
Correlation and Energy Computation processors for computing timing
metrics P(n) and Q(n). These timing metrics are used to detect frame
by the Frame Detection processor based on Eq. 4. After the frame
has been detected, the system switches to the Timing Synchronization
state, where timing metrics are used to synchronize timing by the
Timing Synchronization processor based on Eq. 5.
Once the timing has been synchronized, the Data Distribution

Control processor is informed and then it signals the Data Distribution
processor to stop sending samples to the Auto Correlation and Energy
Computation processors. Consequently, these processors are stopped
and system is switched to the CFO Estimation state.
In the CFO Estimation state, the Post Timing Synchronization

processor sends only 128 samples of two long training symbols to
the CFO Estimation processor. Therefore, both CFO Estimation and
CORDIC Angle processors are stopped after the frequency offset is
estimated. Similarly, in the Channel Estimation state, the Subcarrier
Reordering processor only sends 96 subcarriers of two long symbols
to the Pre-Channel Estimation processor. Eventually, both the Pre-
Channel Estimation and Channel Estimation processors also stop
working after computing all 48 coefficients of channel.
Once the channel has been estimated, the system is in the OFDM

Symbol Processing state where all OFDM symbols (including the
SIGNAL and all DATA symbols) are processed by the processors on
the critical path. After the whole frame is received and processed, the
Pad Removal processor tells the Data Distribution Control processor
to allow the Data Distribution processor resending samples of the
new frame (if any) to the Auto Correlation and Energy Computation
processors. Then it also resets the Subcarrier Reordering and De-
scrambling processors. Now, the system has returned to the Frame
Detection state and is ready to receive another frame.
The architecture of AsAP2 is extremely flexible that allows to

TABLE I
EXECUTION TIME OF ALL PROCESSORS FOR PROCESSING ONE OFDM

SYMBOL WITHOUT STALL FOR WAITING INPUT AND OUTPUT
of # of Exe. On the

Processor Name Inputs Outputs Time Critical
Needed Needed (cycles) Path?

Data Distribution 80 80 320 �

Energy Computation 80 80 1360 -
Auto-correlation 80 80 4960 -
Frame Detection 80 + 80 80 1200 -
Timing Synch. 80 + 80 1 1360 -
Data Distr. Control ≤ 1 ≤ 1 5 -
Post-Timing Synch. 80 80 240 �

CFO Estimation 128 1 989 -
CORDIC Angle 1 1 183 -
Offset Accumulator 1 80 560 -
CORDIC Rotation 80 + 80 80 15120 �

Guard Removal 80 64 176 �

64-point FFT 64 64 205 �

Subcarrier Reorder 64 48 1018 �

Pre-Channel Estimation 48 48 1832 -
Channel Estimation 48 48 6960 -
Channel Equalization 48 48 1488 �

Demodulation 48 288 2352 �

Deinterleaving 1 288 288 864 �

Deinterleaving 2 288 288 1130 �

Depuncturing 288 432 576 �

Viterbi Decoding 432 216 2376 �

BR & DL Computing 24 2 95 -
Descrambling 216 216 2160 �

Pad Removal 216 ≤ 216 648 �

program the receiver for complying a dynamically complicated finite
state machine as described above. Each processor has two input
FIFOs; we can use one for data buffering and the another one for
control words. Moreover, a processor can be forced to sleep (stop
executing) by stopping sending data to it. It then will be woken up
once there are any data sent to its FIFOs.

IV. EVALUATION AND IMPROVEMENT OF THE RECEIVER’S
THROUGHPUT

To evaluate the overall throughput of the receiver, our approach
method is considering the execution time of each separate processor
first. Then, based on this information, we can determine where the
bottleneck occurs that is needed to improve for getting a higher rate.

A. Throughput Evaluation

The execution time of each processor is separately evaluated while
it runs alone without connected with other processors. This evaluation
shows the pure execution time of each processor without any stall
on input and on output caused from other processors. The execution
time (in clock cycles) of each processor is counted from the first
input word received to the last output word sent. Fairly, we evaluate
the execution time of each processor while processing one OFDM
symbol that is required to be in 4 μs to obtain full rate.
Table I shows the execution time of each processor when process-

ing one OFDM symbol in the 54 Mbps mode, the slowest operational
mode. Other seven modes are much simpler that certainly have
smaller number of execution cycles; therefore considering them is
unnecessary here. Column 2 and 3 show the number of inputs and
outputs processed by a processor in the duration of one OFDM
symbol. These inputs and outputs might be samples (represented by 2
words for real and imaginary parts) in the time domain (before FFT),
subcarriers (2 words) in the frequency domain (after FFT), bits (after
de-modulation) or control words. The ”+” sign indicates processor
which requires inputs to both FIFOs. Note that, although some other
processors have inputs to both FIFOs, only one FIFO is data while
other FIFO contains control words which are only used to control the
states of the FSM; therefore they almost do not affect the execution
time of these processors.

168

15120

D
at

a
D
is
tri

bu
tio

n

Pos
t -

 T
im

in
g

Syn
.

C
O
R
D
IC

 R
ot

at
io
n

G
ua

rd
 R

em
ov

al

64
-p

oi
nt

 F
FT

Sub
ca

rri
er

 R
eo

rd
er

in
g

C
ha

nn
el

Equ
al
iz
at

io
n

D
e-

m
od

ul
at

io
n

D
e-

in
te

rle
av

er
in
g

1

D
e-

in
te

rle
av

er
in
g

2

D
e-

pu
nc

tu
rin

g

Vite
rb

i D
ec

od
in
g

D
e-

sc
ra

m
bl
in
g

Pad
 R

em
ov

al

T
im

e
 (

c
y

c
le

s
)

Execution Stall on Input Stall on Output

Fig. 7. The overall activity of processors on the critical data path when
processing one OFDM symbol.

As mentioned in the Subsection III-B, the throughput of the
receiver will be mainly determined by the slowest processor on the
critical path. Other processors just contribute to the latency but not
the overall throughput. The execution time of processors shown in
Table I is ideal, i.e. without taking into account the stalled time while
waiting to receive an input or to send an output. The overall behavior
of processors on the critical path including both their execution and
stalled time is shown in Fig. 7.
The CORDIC Rotation processor used for CFO compensation is

shown to be the system bottleneck; it is nearly seven times slower
than the other processors. It is always busy executing and forces
other processors on the critical path to stall either on output while
sending data or on input while receiving data. However, the total of
execution time and stall time of each processor is fixed and is equal
to the execution time of the CORDIC processor (15120 cycles). As a
result all OFDM symbols are processed by the sequence of processors
on the critical path in a way that is similar to a pipeline. Therefore, to
get a real-time throughput of 54 Mbps, each processor has to process
one OFDM symbol (216 bits) in 4 μs that requires them to operate
at 3.78 GHz. This clock frequency is not supported by the AsAP2
chip. In order for the receiver can sustain real-time requirement at a
lower clock frequency, we have to reduce the execution time of the
angle rotation.

B. Optimizing Throughput

There are some good algorithms for angle rotation in the lit-
erature [17], [19]; however, all of them were originally proposed
for hardware implementation. Implementation of these algorithms in
software is either so complex or requires many iterations to get high
accuracy. We choose the CORDIC algorithm because its iterative
method is most simple. In our best effort, however, its implementation
requires 189 cycles for completing a rotation (that is 15120 cycles
to rotate 80 samples of an OFDM symbol). In a multiprocessing
platform as AsAP2, the most convenient solution for speeding this
up is by using many CORDIC processors to rotate samples in parallel.
The Fig. 8 describes a traditional solution for making three

CORDIC operations in parallel. One processor is used to distribute
samples to three CORDIC processors for rotation. The outputs from
these CORDIC processors are collected by some other processors
that then form a sequence of rotated samples to be sent to the Guard
Removal processor. The big drawback of this solution is that we
waste many processors for distribution and collection purposes only.

Distribution
CORDIC -
Rotation

CORDIC -
Rotation

CORDIC -
Rotation

Collection

Colletion

samples

rotated samples

angles

Fig. 8. Parallel operation of three CORDIC processors by the traditional
solution requires at least six processors.

CORDIC -
Rotation

CORDIC –
Rotation

1

CORDIC –
Rotation

2

CORDIC –
Rotation

3

s1s2s3s4

a1a2a3a4

s3s4s5s6

s1s2s3s4

a1a2a3a4

s1s2

a1a2

s3s4

a4

s1

a1

s4

a4

s2s3 s1s2s3s4

si
: sample i

ai
: angle i

si
: rotated sample i

each groups of 3 samples that will be rotated by 3 CORDIC processors

(a)

(b)

. . .

. . .

. . .

. . .

: rotation delay

Fig. 9. Solution of using only three processors for performing three CORDIC
rotations in parallel. a) Operation illustration of using just one CORDIC
processor. b) Illustration of three CORDIC processors.

Generally, it requires at least N processors for supporting N CORDIC
processors, that is more than 2N processors in total.
A novel solution of using exactly N processors for performing N

CORDIC rotations in parallel is shown in Fig. 9. Fig. 9(b) illustrates
the operation of three CORDIC processors. Input samples are pro-
cessed in groups of three samples each. Considering the first group of
three samples 1, 2 and 3. The first CORDIC processor passes the first
and second samples and angles to the second processor, then rotates
the third sample by the third angle. The second processor passes the
first sample and angle to the third processor and then it rotates the
second sample by the second angle. Finally, the third processor rotates
the first sample by the first angle. Because the rotation delay of each
processor is so high compared to the passing time, three samples are
almost simultaneously rotated by three processors. After finishing
rotation of the first three samples, the processors continue to process
for group of three samples 4,5 and 6; and so on. Consequently, when
looking at the output of the final CORDIC processor, their overall
throughput is three times faster than that of using just one CORDIC
as illustrated in Fig. 9(a) with a small overhead due to passing time
of samples through all three processors..
This idea is straightforward to scale for performing N CORDIC

TABLE II
PERFORMANCE OF THE RECEIVER CORRESPONDING TO THE NUMBER OF

PARALLEL CORDIC PROCESSORS
Number of Exe. time Output Frequency
CORDIC per symbol throughput to obtain
processors (cycles) (bits / cycle) 54 Mbps
1 15120 0.014 3.78 GHz ∗
2 7684 0.028 1.93 GHz ∗
3 5262 0.041 1.32 GHz ∗
4 3961 0.055 990 MHz
5 3216 0.067 800 MHz
6 2718 0.080 680 MHz
7 2376 0.091 590 MHz

*: not supported frequency

169

D
at

a
D
is
tri

bu
tio

n

Pos
t -

 T
im

in
g

Syn
.

C
O
R
D
IC

 R
ot

at
io
n

G
ua

rd
 R

em
ov

al

64
-p

oi
nt

 F
FT

Sub
ca

rri
er

 R
eo

rd
er

in
g

C
ha

nn
el

Equ
al
iz
at

io
n

D
e-

m
od

ul
at

io
n

D
e-

in
te

rle
av

er
in
g

1

D
e-

in
te

rle
av

er
in
g

2

D
e-

pu
nc

tu
rin

g

Vite
rb

i D
ec

od
in
g

D
e-

sc
ra

m
bl
in
g

Pad
 R

em
ov

al

T
im

e
 (

c
y

c
le

s
)

Execution Stall on Input Stall on Output

2376

Fig. 10. The overall activity of processors with seven CORDIC Rotation
processors in parallel for one 4 μsec-OFDM symbol

operations in parallel by using only N processors. The receiver’s
performance corresponding with the number of parallel CORDIC
Rotation processors is shown in Table II. As shown, the throughput
increases approximately proportional with the number of parallel
CORDIC Rotation processors. However, the throughput does not
change when the number of parallel CORDIC Rotation processors
is larger than seven. This happens because with more than seven
CORDIC Rotation processors, their execution time for processing
one OFDM symbol is now less than that of the Viterbi processor.
The Viterbi processor becomes the receiver’s bottleneck and therefore
determines the throughput.
Fig. 10 shows the overall receiver activity when using seven

CORDIC Rotation processors in parallel. The total processing time
for one OFDM symbol of each processors including execution time
and stall times now equals to the execution time of the Viterbi
processor which is 2376 cycles. The Viterbi processor is a built-
in accelerator on AsAP2, so no further improvement of performance
is possible by software programming. Consequently, the receiver can
obtain a 54 Mbps throughput at clock frequency of 590 MHz.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design of a complete base-
band receiver compliant with the IEEE 802.11a standard and its
software implementation on the AsAP2 platform. The processors are
programmed to realize a dynamic FSM model that maximizes the
throughput and minimizes the latency while ensuring the continuous
reception of multiple frames. The high flexibility of the AsAP2
platform allow us easily mapping the system to obtain a real-time
throughput of 54 Mbps while operating at only 590 MHz. Our
receiver was fully tested on the real AsAP2 chip and it works
accurately compared with the result of a correct Matlab model.
If processors are configured to run at their maximum frequency

of 1.2 GHz, our receiver can achieve a bit rate up to 110 Mbps.
Clearly, the AsAP2 platform has potential for implementing other
wireless applications that require much higher throughput. Its high
performance is achieved due to the task-level parallelism on as many
small processors as possible rather than using data-level parallelism
as on other SIMD or VLIW platforms.
Currently, we are focusing on optimizing the configurable accel-

erators and upgrading the AsAP platform for mapping new wireless
standards such as 802.11n WLAN and 802.16e WiMAX. We expect

that, in the future, the AsAP platform will be able to have more than
1000 small processors and accelerators that is highly feasible and
efficient to implement all complex wireless baseband applications in
software.

ACKNOWLEDGMENTS
The authors would like to thank members of VCL for discussion

and assistance. This work was supported by IntellaSys, a VEF
Fellowship, SRC GRC Grant 1598 and CSR Grant 1659, ST Mi-
croelectronics, UC Micro, NSF Grant 0430090 and CAREER Award
0546907, Intel, and S Machines.

REFERENCES
[1] 802.11a Standard, “Wireless lan medium access control (mac) and

physical layer (phy) specifications: High-speed physical layer in the 5
ghz band,” Tech. Rep., IEEE Computer Society, 1999.

[2] M. J. Meeuwsen et al., “A full-rate software implementation of an ieee
802.11a compliant digital baseband transmitter,” in IEEE Workshop on
Signal Processing Systems, SiPS, Oct 2004.

[3] Y. Tang et al., “Optimized software implementation of full-rate ieee
802.11 a compliant digital baseband transmitter on digital signal process-
ing,” in Global Telecommunications Conference, GLOBECOM, 2005.

[4] Y. Lin et al., “SODA: A high-performance DSP architecture for
software-defined radio,” IEEE MICRO, vol. 27, no. 1, pp. 114–123,
Feb. 2007.

[5] M. F. Tariq et al., “Development of an ofdm based high speed wireless
lan platform usingthe ti c6x dsp,” in Int. Conference on Communications,
ICC, Apr 2002, pp. 522–526.

[6] J. D. Bakker and F. C. Schoute, “Lart: Design and implementation
of a experimental wireless platform,” in IEEE Vehicular Technology
Conference, Sep 2000, pp. 1460–1466.

[7] S. Eberli et al., “An ieee 802.11a baseband receiver implementation on
an application specific processor,” in Midwest Symposium on Circuits
and Systems, MWSCAS, Aug 2007, pp. 1324–1327.

[8] E. Tell et al., “A programmable dsp core for baseband processing,” in
IEEE-NEWCAS Conference, Jun 2005, pp. 403– 406.

[9] A. Niktash et al., “A case study of performing ofdm kernels on a
novel reconfigurable dsp architecture,” in Military Communications
Conference, MILCOM, Oct 2005, pp. 1813–1818.

[10] K. Akabane et al., “Design and performance evaluation of ieee 802.11
a sdr software implemented on a reconfigurable processor,” IEICE
Transactions on Communications, pp. 4163–4169, Nov 2005.

[11] D. Truong et al., “A 167-processor 65 nm computational platform
with per-processor dynamic supply voltage and dynamic clock frequency
scaling,” in Symposium on VLSI Circuits, June 2008.

[12] Z. Yu et al., “Asap: An asynchronous array of simple processors,” IEEE
Journal of Solid-State Circuits (JSSC), vol. 43, no. 3, pp. 695–705, Mar.
2008.

[13] T. M. Schmidl and D. C. Cox, “Rubust frequency and timing synchro-
nization for ofdm,” IEEE Transactions on Communications, vol. 45, pp.
1613–1621, Dec. 1997.

[14] V. Jiménez et al., “Design and implementation of synchronization and
agc for ofdm-based wlan receivers,” IEEE Transactions on Consumer
Electronics, vol. 50, pp. 1016–1025, Nov. 2004.

[15] H. Tang et al., “Synchronization schemes for packet ofdm system,” in
Intl. Conference on Communications, ICC, May 2003, vol. 5, pp. 3346–
3350.

[16] E. Sourour et al., “Frequency offset estimation and correction in the
ieee 802.11a wlan,” IEEE Vehicular Technology Conference, vol. 7, pp.
4923–4927, Sept. 2004.

[17] R. Andraka, “A survey of cordic algorithms for fpga based computers,”
in ACM/SIGDA Intl Symposium on FPGA, 1998, number 6, pp. 191–200.

[18] P. Hung et al., “Fast division algorithm with a small lookup table,” in
IEEE Asilomar Conference on Signals, Systems, and Computers, Oct.
1999, vol. 2, pp. 1465–1468.

[19] Y. Song and B. Kim, “A 16b quadrature direct digital frequency
synthesizer using interpolative angle rotation algorithm,” in Symposium
on VLSI Circuits, June 2002, pp. 146–147.

170

