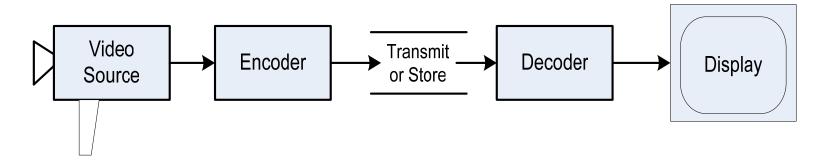
A High-Performance Parallel CAVLC Encoder on a Fine-Grained Many-core System

Zhibin Xiao and Bevan M. Baas

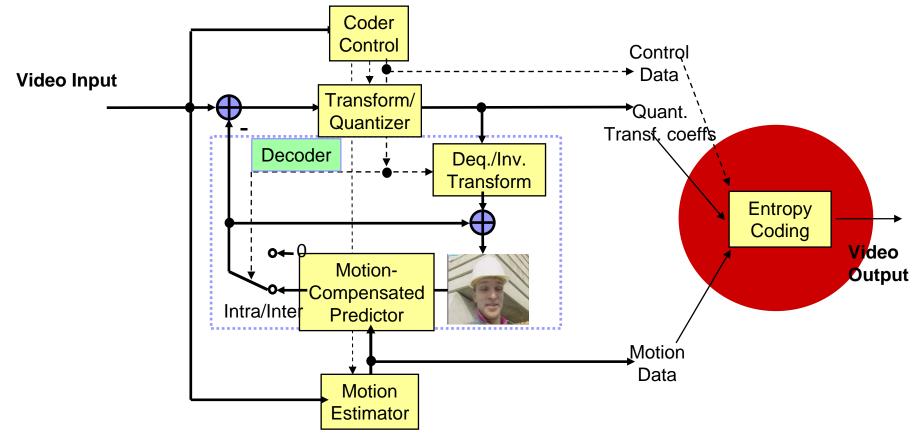

VLSI Computation Lab, ECE Department University of California, Davis

Outline

Introduction to H.264 CAVLC Encoder

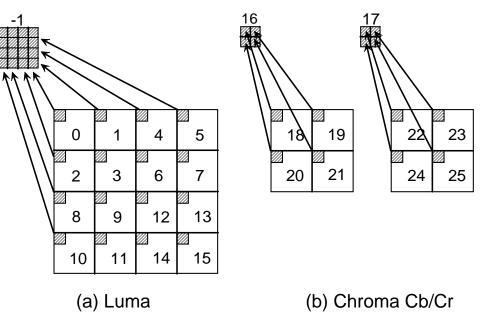
- Features of Target Fine-Grained Many-Core System
- The Proposed Parallel CAVLC Encoder
- Results and Performance Analysis
- Summary

Advanced Video Processing

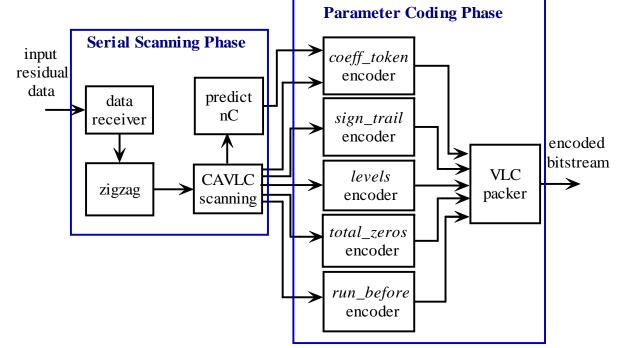


Video applications are everywhere: High definition video, realtime video conference, portable handset

Introduction to H.264/AVC Standard


- Drafted on May 2003 from JVT formed by ITU and ISO MPEG organization
- Target from high-definition TV to low-resolution mobile video
- Huge computation complexity with more data dependency and irregular processings

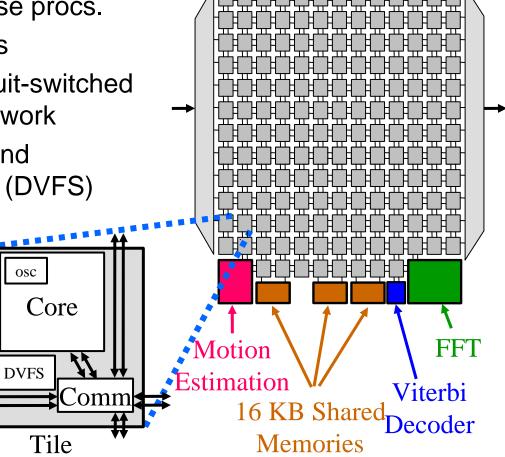
Introduction of H.264 CAVLC Encoder


- Context-adaptive variablelength coding (CAVLC)
 - Adopted in H.264 baseline profile
 - Reverse zigzag scanned runlength coding and adaptive coding table selection
 - Up to 27 4x4 or 2x2 blocks within a macroblock in order
- Less processing regularity
 - Serial in pixel level
 - SIMD approach is not feasible in this case
 - Task-level parallelism is available

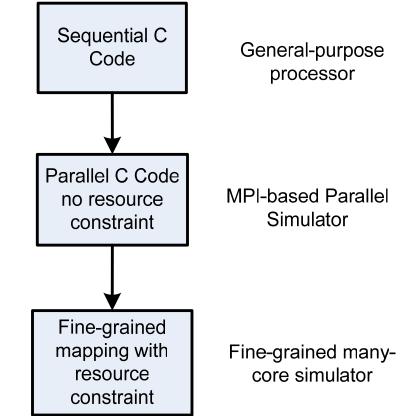
16x16 Macroblock CAVLC Processing Order

Introduction of H.264 CAVLC Encoder

- CAVLC Encoding
 - Five parameters of each 4x4 block are coded separately
 - coeff_token, Sign_trail, Levels, Total_zeros, Run_before
- CAVLC data-flow graph
 - Serial scanning phase
 - Parameter coding phase



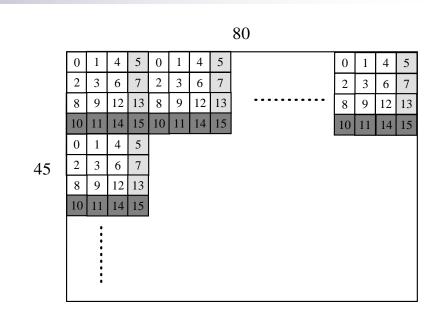
- Introduction to H.264 CAVLC Encoder
- Features of Target Fine-Grained Many-Core System
- The Proposed Parallel CAVLC Encoder
- Results and Performance Analysis
- Summary


Target Many-core System Architecture

- Key features
 - 164 Enhanced prog. procs.
 - 3 Dedicated-purpose procs.
 - 3 Shared memories
 - Long-distance circuit-switched communication network
 - Dynamic Voltage and Frequency Scaling (DVFS)

Project motivation and mapping methdology

- Fine-grained many-core system for DSP applications
 - energy efficient
 - scalable performance
 - highly flexibile
- Mapping methology
 - Sequential C code
 - Parallel C code
 - Fine-grained assembly-level code

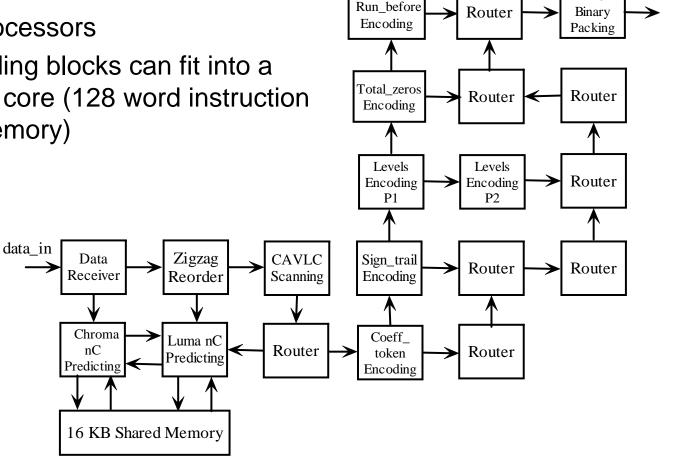


- Introduction to H.264 CAVLC Encoder
- Features of Target Fine-Grained Many-Core System
- The Proposed Parallel CAVLC Encoder
- Results and Performance Analysis
- Summary

Parallel CAVLC : Memory Optimization

Coeff_Token table selection

- Encode number of non-zero coefficients (nnz) in current 4x4 block
- The table index depends on top and left 4x4 blocks
- A row of nnz values of previous blocks has to be stored in the shared big memory

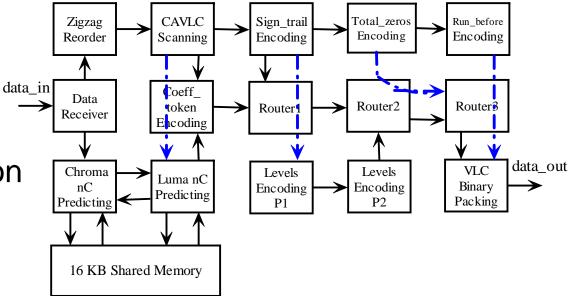


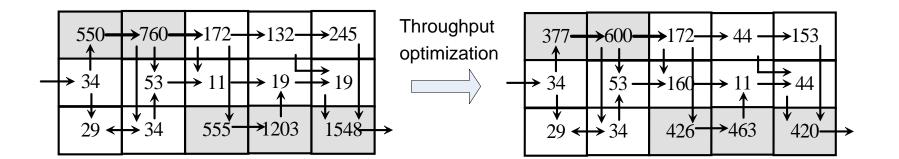
720p HDTV: 324 word memory for nnz

- Table elimination and compression
 - Levels encoded at runtime
 - Reduce more than 75% table memory for coeff_token, total_zeros and run_before
 - Width compression
 - Zero-value reduction

CAVLC Partition and Dataflow mapping

- A 20-processor mapping
 - No long-distance link
 - 8 routing processors
 - Every encoding blocks can fit into a fine-grained core (128 word instruction and data memory)

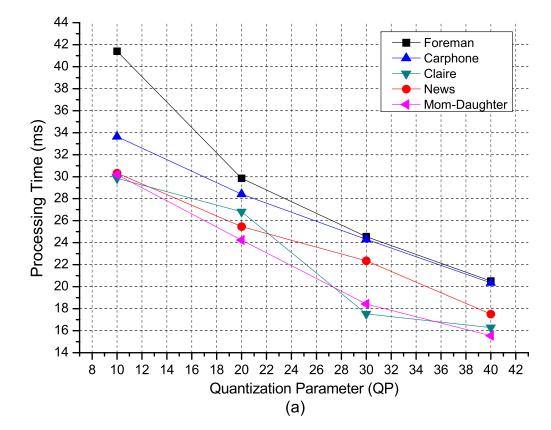



data_out

VLC

Mapping and Throughput Optimization

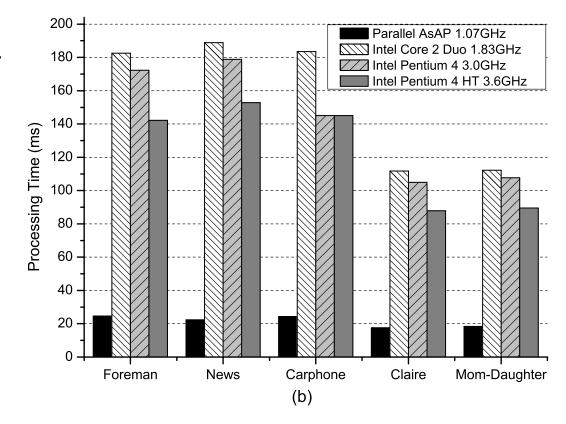
- 15-processor mapping
 - 4 long-distance link
 - Reduce 5 routing processors
- Throughput optimization
 - Readjust workload
 - Code optimization



- Introduction to H.264 CAVLC Encoder
- Features of Target Fine-Grained Many-Core System
- The Proposed Parallel CAVLC Encoder
- Results and Performance Analysis
- Summary

Parallel CAVLC Encoder Performance

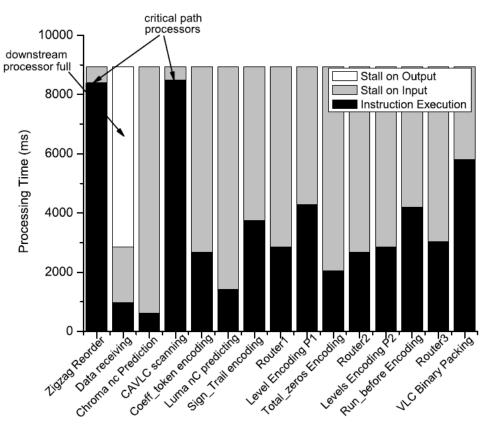
Throughput


- Five QCIF video test sequences with varying Quantization Parmeter (10-40)
- Scaled performance can achieve 30fps 720p HDTV (1280x720) processing

Performance Comparison with General CPU

Performance comparison

- Intel Core 2 Duo, Intel Pentium 4 and Pentium 4 HT
- Throughput
 - 4.86-6.83 times better
- Scaled area
 - 20.2 times smaller


Performance Comparison: traditional DSPs

- Performance estimation on DSPs
 - CAVLC takes 18.2% computation time for H.264 baseline encoder
- 1.0-6.15 higher throughput and 6.2 times smaller area compared to TI C642 DSP
 - Scaled to 65nm
 - More demanding test for our design

Platform	Target App.	Processor Type	Tech.	Area (mm²)	Freq. (MHz)	Scaled Area to 65nm (mm ²)	Scaled Freq. to 65nm (MHz)	Test Sequence	CAVLC Performance (fps 720p)
TI C642	CIF 24fps	8-way VLIW	130nm CMOS	72	600	18	1200	50 frames IPPPP QP=25	28
ADSP BF561	CIF 30fps	Dual- core DSP	130nm CMOS	N/A	600	N/A	1200	N/A	36
TI C641	QCIF 24.5fps	8-way VLIW	130nm CMOS	72	600	18	1200	100 frames IPPP P QP=28	7.4
This work AsAP	720p HDTV 30fps	Array (15 cores)	65nm CMOS	2.89*	1070	2.89*	1070	2 frames IP QP=20	36.0-41.3

Processor Activity Analysis & Power

- Processor activity type
 - Execution
 - Stalls on input or output
- Analysis
 - Data receiving stall on output
 - 7%-65% active time for most processors
 - Bottleneck: zigzag reorder and CAVLC scanning, over 94% active time
- Power estimation
 - One processor
 - 59mW@1.07GHz, 1.3V, 65nm 100% active
 - Nearly zero leakage when processor is idle
 - 323mW@1.07GHz, 1.3V, 15-processor + memory

- Introduction to H.264 CAVLC Encoder
- Features of Target Fine-Grained Many-Core System
- The Proposed Parallel CAVLC Encoder
- Results and Performance Analysis
- Summary

Summary

- Fine-grained many-core system
 - Energy efficient, scalable and flexible
 - Exploiting task-level parallelism
- The proposed parallel CAVLC encoder
 - 15-processor plus 324 word memory, 720p HDTV at 30 fps
 - 4.86-6.83 times higher scaled throughput than latest generalpurpose processor
 - 1.0-6.15 higher scaled throughput and 6.2 times smaller area compared with traditional DSPs
- Future work
 - Further power reduction using DVFS
 - A complete parallel H.264 baseline encoder

Acknowledgments

- Intellasys Inc.
- SRC GRC Grant 1598 and CSR Grant 1659
- ST Microelectronics
- NSF Grant 0430090 and CAREER Award 0546907
- Intel and S Machines Corporation
- UC Micro
- UCD Faculty Research Grant

Thank You!