
  

  

Abstract—This paper presents a high-performance parallel 
context-based adaptive length coding (CAVLC) encoder 
implemented on a fine-grained many-core system. The software 
encoder is designed for a H.264/AVC baseline profile encoder. 
By utilizing arithmetic table elimination and compression 
techniques, the data-flow of the CAVLC encoder has been 
partitioned and mapped to an array of 15 small processors. The 
parallel workload of each processor is characterized and 
balanced for further throughput optimization. The proposed 
parallel CAVLC encoder achieves the real-time processing 
requirement of 30 frames per second for 720p HDTV. Our 
experiments show that the presented CAVLC encoder has 4.86 
to 6.83 times higher throughput and requires far smaller chip 
area than the identical encoder implemented on state-of-art 
general-purpose processors. In comparison to published 
implementations on common DSP processors, the design has 
approximately 1.0 to 6.15 times higher throughput while 
requiring less than 6 times smaller area.  

I. INTRODUCTION 
H.264/MPEG-4 AVC is a video coding standard 

developed through a collaboration of the ITU-T and ISO [1].   
The new standard is proven to achieve significant video 
compression efficiency compared with prior standards. (39%, 
49% and 64% bit-rate reduction versus MPEG-4, H.263 and 
MPEG-2 respectively) [2]. This high coding gain increase 
comes mainly from a combination of new coding techniques 
such as inter-prediction with quarter pixel accuracy, 
intra-prediction, multiple reference pictures, variable block 
size and context-based adaptive entropy coding. The video 
visual quality is further increased by an in-loop de-blocking 
filter to reduce edge effects of block-based video coding [3]. 
However, all of these new techniques come with a cost of 
high computation complexity which makes a software 
approach of a real-time HDTV encoder almost impossible in 
current general-purpose processors and DSPs.  

In the baseline profile of H.264/AVC, the context-based 
adaptive length coding (CAVLC) is used for coding 
quantized transform coefficients of the residual images [4]. In 
CAVLC, the reverse zigzag scanned run-length coding, and 
adaptive VLC tables are used to encode 4x4 or 2x2 block 
residual data. Many hardware CAVLC encoding 
architectures have been proposed for real-time video 
encoding [5-7]. The drawback of hardware design is that it is 
dedicated and not flexible. The emerging multi-core approach 
has proven to be a possible solution for real-time H.264 video 
encoding. Many multi-core processors have been proposed 

for video applications which are composed of 
general-purpose cores [8-10]. However, the granularity of the 
cores is still very coarse which does not fully explore the 
essential property of current video processing algorithms: a 
transformation-based small block data-flow processing. This 
paper presents an implemented and highly parallel CAVLC 
encoder running on a fine-grained many-core system which 
contains 164 simple and small processors [11].  

    The rest of this paper is organized as follows. Section II 
introduces the CAVLC encoding process and the features of 
the targeted many-core system. In Section III, we describe the 
proposed CAVLC encoder in terms of partitioning, mapping 
and optimization. Section IV shows the performance analysis 
and results. Section V concludes the paper. 

II. CAVLC ENCODING AND THE TARGETED MANY-CORE 
SYSTEM ARCHITECTURE 

A. CAVLC Encoding 
The CAVLC encoder is used for encoding transformed and 

quantized residual coefficients of one video macroblock with 
the processing order as shown in Fig. 1. A maximum of 27 
blocks must be encoded within one macroblock. Block “-1” 
contains 16 Luma DC coefficients if the current macroblock 
is encoded in 16x16 intra mode. Blocks 16 and 17 are formed 
by the DC coefficients of two Chroma components.  

The CAVLC encoder can be partitioned into two phases, 
scanning phase and encoding phase. In the scanning phase all 
of the blocks are scanned in zigzag order. In the encoding 
phase, five different types of statistic symbols are encoded 
sequentially using look-up tables as Table 1 shows. The 
complexity of CAVLC mainly comes from the 
context-adaptive encoding of the 1st and 3rd elements, 
coeff_token and levels. The coeff_token is encoded for the 
total number of nonzero coefficients and trailing ones. Five 
different VLC tables are available for coeff_token encoding 
and the choice of table depends on the number of nonzero 
coefficients in the neighboring left and top blocks. This data 
dependency requires a large memory to store the number of 
nonzero coefficients for high quality video encoding. The 
levels are the nonzero coefficients (excluding trailing ones) 
encoded in reverse zigzag order. The levels code is made up 
of an all 0 prefix followed by a symbol 1 and suffix. The 
length of the suffix is initialized to 0 unless there are more 
than 10 nonzero coefficients and less than 3 trailing ones, in 
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Table 1.  Elements of CAVLC Encoding per Block 

Elements Description 

coeff_token 
Encodes the number of nonzero coefficient and 
number of signed trailing ones – one per block 

Sign_trail Encodes the sign of trailing ones –one per trailing 
ones maximum 3 per block 

levels Encodes the remaining nonzero coefficients – one 
per level excluding trailing ones 

Total_zeros Encodes the total number of zeros before the last 
coefficient – one per block 

Run_before Encodes the number of run zeros preceding each 
nonzero levels in reverse zigzag order 

which case it is initialized to 1. The length of the suffix can be 
adaptively incremented if the current level magnitude is 
larger than a certain threshold. A maximum of 6-bits are used 
for suffix encoding [4].  

B. Highlights of Many-Core Processor Array Architecture 
A high-level diagram of the targeted many-core chip 

architecture is shown in Fig. 2. The system is composed of 
164 simple 16-bit DSP processors, three hardware 
accelerators, and three 16-KB integrated big memories, all 
connected by a reconfigurable mesh network [11]. Processors 
can directly communicate with their four nearest-neighbor 
processors, or distant processors using long-distance-capable 
configurable links.  

Every processor core is a pipelined single issue DSP 
processor, supporting instructions that are commonly found 
in commercial DSPs. The fixed-point datapath contains one 
ALU and one MAC unit. Each processor contains a 128 word 
instruction memory and a 128-word by 16-bit data memory. 
Specialized address generation hardware is added to ease the 
implementation of algorithms requiring sequential, stride or 
bit-reversed access to data memory. Each processor occupies 
an area of 0.17 mm2 and operates at a maximum frequency of 
1.1 GHz in 65 nm CMOS technology. 

III. THE PROPOSED PARALLEL CAVLC ENCODER 
Fig. 3 shows the data flow of the proposed CAVLC 

encoder. The input residual coefficients are sent to the zigzag 
and CAVLC scanning block for the 1st phase processing. 

Then corresponding data elements are distributed to five 
different encoding units in parallel. The final codes are 
assembled and packed by the packing unit. An efficient 
parallel mapping of this architecture on a fine-grained 
architecture requires overcoming a lot of challenges in terms 
of memory usage algorithm mapping and throughput 
optimization. This section describes our approach to these 
problems.  

A. Coeff_token Table Selection 
The coeff_token symbol is encoded with a table look-up 

based on the number of nonzero coefficients (TotalCoeff) and  
trailing +/-1 values (TrailingOnes). In the H.264 standard, 
five different look-up tables are used for this purpose and the 
choice of table depends on a parameter nC which is the 
average of the number of nonzero coefficients of the 
neighboring left and upper blocks named nA and nB 
respectively. Fig. 4 shows the organization of macroblocks 
within a QCIF frame. The 4x4 blocks within a macroblock 
are numbered as shown in Fig. 1.  The gray and dark gray 
blocks are data-dependent blocks between neighboring 
macroblocks. As macroblocks are processed in raster scan 
order, a large memory is needed to store the number of the 
nonzero coefficients of those data-dependent blocks. 
However, as each macroblock needs only the nA and nB from 
neighboring 4x4 blocks, the memory requirement can be 
reduced by maintaining a global memory of upper_nA and 

16 KB Mem
FFTMotion

Estimation

12 cores
one column

13 cores
   one row

16 KB Mem 16 KB Mem Viterbi
 

                         Fig. 2.  Architecture of targeted many-core system 
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Fig. 1. Scanning order of residual blocks within a macroblock 
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Fig. 3. Data flow diagram of the CAVLC encoder 
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Fig. 5.   CAVLC mapping without long-distance interconnections 

Table 2.  Size of compressed VLC look-up table 

VLC table 
Original 

memory size  
(16-bit word) 

Compressed 
memory size 
(16-bit word) 

Coeff_token 448 111 

Total_zeros 504 123 

Run_before 224 55 

left_nB in one 16-KB on-chip memory of AsAP architecture. 
For 720p HDTV Luma frames, the upper_nA contains 320 
parameters and left_nB contains 4 parameters. As each 
parameter uses no more than 5 bits, the upper_nA and left_nB 
can be further compressed to save half of the memory. The 
process to generate nC of one macroblock can be described as 
follows. 

First, at the beginning of processing one macroblock, the 
program checks the availability of the neighboring top and 
upper macroblocks. If any of them are available, the program 
performs an update of upper_nA_local or left_nB_local both 
of which contain 4 parameters. The upper_nA_local and 
left_nB_local are stored in local processor data memory.           

Second, the 4x4 blocks are processed in the order as 
illustrated in Fig. 1. The upper_nA_local and left_nB_local is 
updated locally for each 4x4 block so that the neighboring 
4x4 blocks within one macroblock can use the up-to-date nA 
and nB values to generate corresponding nC values.  

Third, after the final 4x4 bock of the current macroblock is 
processed, the current upper_nA_local and left_nB_local are 
written back to the global shared memoryso that subsequent 
macroblocks can use them as a starting point for nC 
generation.  

    The above approach of generating nC minimizes 
memory usage and proves to be an efficient method.  

B. Arithmetic Table Elimination and Compression 
1) Level Encoding:  Instead of using seven large VLC 

tables, the arithmetic table elimination (ATE) technique is 
used to encode level information. The level encoding starts 
from the last nonzero coefficient (excludes trailing ones). 
Two parameters, levels and vlcnum, are sent to the encoding 
unit in each iteration. Vlcnum is initialized to 0 or 1 and will 
be updated for the next level encoding depending on the 
current level magnitude. The encoding unit encodes VLC0 
and VLC1-6 separately with simple shift and addition 
operations. Due to the limit of the instruction memory, level 
encoding has been implemented on two processors as shown 
in Fig. 5. The P1 processor receives level information, sends 
level and vlcnum to P2 and updates the vlcnum each time.  

2) Table Compression: The other symbols: coeff_token, 
total_zeros and run_before can be encoded by adopting ATE. 
However, if the tables can fit into one processor, table 

look-up operations will be much faster than computations. 
We use a compression technique based on the structure of the 
VLC tables. The width of processor data memory is 16 bits 
and most of the data of the VLC tables are less than 4 bits 
except for some data inside the coeff_token when the number 
of total nonzero coefficients is larger than 12. Moreover, the 
VLC table used to encode total_zeros has a triangular 
structure, where most of data are zeros. Based on the above 
observation, we can divide the tables into smaller compressed 
tables and then determine which table to use at run-time with 
little extra computation. Table 2 compares the size of the 
compressed VLC tables and the uncompressed ones. A 
compression ratio of more than 4 has been achieved so that 
the encoding tasks of relative symbols can take place in one 
processor.  

C. Partitioning and Dataflow Mapping 
As Fig. 3 shows, the CAVLC encoder can be easily 

partitioned into a number of independent serial and parallel 
tasks. When implementing the encoder on the array processor, 
each task is first mapped to a single processor to allow 
parallel execution. If either more memory or high 
performance is required than can be provided by a single 
processor, the task is mapped to multiple processors. Code for 
each processor is implemented independently, considering 
only its inputs and outputs. For many applications, including 
the CAVLC encoder presented here, writing the individual 
programs for the application’s tasks is significantly easier 
than writing a single large sequential program, largely due to 
the encapsulation of complexity and the automatic handling 
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Fig. 6.  CAVLC mapping with long-distance interconnections 
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Fig. 7.  Processor workload non-optimized versus optimized coding 

of inter-processor communication. 
The major advantage of the fine-grain multiple-instruction 

multiple-data (MIMD) array over conventional 
programmable platforms is its capability of efficient stream 
processing. An application level pipeline can be created that 
allows the serial part of the CAVLC encoder (the scanning 
phase) to run in parallel. As data flow through the system, 
they are operated upon as soon as they are available. Each 
processor must store only a small amount of data (up to a 4x4 
block data) for local computation. 

As Fig. 3 shows, the CAVLC scanning and VCL packing 
unit need to distribute symbols and collect codes in parallel 
respectively. Parallel distribution is inefficient on a single 
processor because it needs to configure the output port at 
runtime and thus wastes many clock cycles. Fig. 5 shows a 
20-processor parallel mapping using only nearest-neighbor 
connections. The CAVLC scanning unit sends statistical 
information only to the coeff_token encoding unit and the 
coeff_token encoding unit passes the information 
immediately to the next sign_trail encoding unit. This takes 
place for every encoding unit before it begins to operate on its 
own portion of data. This approach simplifies the mapping 
and will not degrade the throughput since the code produced 
by each unit needs to be collected in sequential order by the 
VLC packing unit anyway. In Fig. 5, the nC prediction unit is 
implemented on two processors for Luma and Chroma 
separately. The large memory supports two independent 
interfaces, which is ideal for this case.  

The mapping in Fig. 5 is not as efficient as possible due to 
the constraints of a maximum of two input ports per processor 
and only nearest-neighbor processor communication. Eight 
routing processors are required to pass data around the graph. 
Fig. 6 shows a compact 15-processor mapping using 
long-distance interconnections. The four dashed lines 
represent long-distance links. The length of all the links are 
less than two processors. A savings of five routing processors 
shows the efficiency of the low overhead long-distance 
interconnection architecture. 

D. Throughput Optimization 
The throughput of the 15-processor mapping can be further 

optimized by characterizing the workload of each processor 
and remapping the workload for a better balance. The 

throughput of the design depends on the 4x4 block processing 
time of each processor which can be calculated by counting 
the time interval between the reception of the first input data 
and the transmission of the last output data. Fig. 7(a) shows 
an approximate clock cycle counts for each processor to 
process one 4x4 block of an intra-coding frame with the 
non-optimized codes. The blocks in gray are in the critical 
path of the encoding flow, which includes zigzag reorder, 
CAVLC scanning, level encoding P1&P2, and VLC binary 
packing, respectively. We adopted two approaches to 
optimize the mapping.  

First, all programs are optimized using explicit pipeline 
data forwarding and hardware memory address generators in 
the programs. Pipeline data forwarding can reduce 
non-necessary NOPs used to deal with read-after-write 
(RAW) data hazards. Hardware memory address generation 
coupled with block repeat instructions also eliminate 
unnecessary cycles.  

Second, the workload of VLC packing is remapped onto 
two routing processors. The codes can be packed as soon as 
they are produced by each encoding unit. Processors are 
labeled with an (x, y) row-column address beginning from the 
leftmost top processor labeled as (0,0). Notice the routing 
processor (3,1) is not used for VLC packing of level codes 
from processor (3,2) because it would block the bypassing of 
other coded data to processor (4,1). Fig. 7(b) shows the 
optimized workload on the same array of processors. Since 
the throughput depends mainly on the slowest block, the 
optimized encoder throughput is 2.57 times higher than the 
throughput of the non-optimized one. 

IV. RESULTS AND PERFORMANCE ANALYSIS 
The JM H.264 reference software [12] supplied the starting 

point for our CAVLC encoder implementation. Then we 
partition and rewrite the encoder in C on a parallel simulator 
based on MPI library. The encoder was then translated into 
assembly code running directly on the RTL model of the 
many-core chip. All processors including the 16 KB memory 
operate at a clock frequency of 1.07 GHz. The following 
performance analysis is based on the optimized 15-processor 
mapping shown in Fig. 6. 

A. Performance Analysis and Comparison 
The throughput of the software encoder is highly 

dependent on specific test video sequences and encoder 
parameters. In the H.264 standard, the coded block patterns 
(CBP) are used to determine the all-zero residual blocks 
which are not necessary to be encoded. Considering the CBP 
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Table 3.  Specs of general-purpose computers for comparison 

Machine CPU Freq. 
(GHz) 

Cache 
(Byte)* 

Memory 
(GByte) 

Operating
System 

Lenovo 
Thinkpad 

T60 

Intel Core 
2 Duo 
T2400 

1.83 32K/32
K/2M 2 Windows 

XP SP2

Dell 
OptiPlex 
GX620 

Intel 
Pentium 4 3.0 32K/32

K/2M 1 Windows 
XP SP2

Dell 
GX280 

Intel 
Pentium 4 

HT 
3.6 32K/32

K/2M 1 Windows 
XP SP2

*L1instruction cache/L1 Data cache/L2 shared cache 

   
  Fig. 8   Processing time (one 720p HDTV frame)  of  (a) the proposed CAVLC with varying QP (b)  the CAVLC on different platforms with QP=30 

effects, we performed simulations using five QCIF sequences 
including Foreman, News, Carphone, Claire and 
Mom-Daughter with different quantization parameters. 
Simulation results are calculated by averaging the processing 
time of one I type and one P type frame. Fig.8 (a) shows the 
scaled time for the proposed CAVLC encoder to process one 
720p (1280x720) HDTV frame. The results indicate that the 
encoder meets the real time requirement of processing 720p 
HDTV at 30 frames per second (processing time of 33.3 ms) 
when QP is larger than 18 (QP normally is chosen as 28).  

   In order to compare the performance of this design on the 
many-core chip [11] with other software platforms, we 
implemented and measured a version of the exact same 
encoder written in C from JM software and compiled with 
Visual C++ 6.0 on different state-of-the-art general purpose 
computers whose specifications are summarized in Table 3.  
All implementations are sequential and multi-threading is not 
utilized. Although these processors support single-instruction 
multiple-data (SIMD) instructions, they are of little use in 
speeding up a CAVLC implementation due to the serial 
nature of the CAVLC algorithm. 

Fig.8(b) shows the scaled processing time of one 720p 
HDTV frame (QP = 30) using the many-core chip AsAP, 
Intel Core 2 Duo, Intel Pentium 4, and Intel Pentium 4 HT 

machines. All of the general-purpose machines are far from 
achieving real time 720 HDTV processing requirements. The 
throughput of the proposed parallel CAVLC encoder on the 
1.07 GHz many-core chip is 4.86 to 6.83 times the throughput 
of the 3.6 GHz Pentium 4 HT machine which is the fastest 
among the three general-purpose machines. AsAP processors 
are very small in silicon area in comparison—the scaled area 
of the 112 mm2  90 nm Pentium 4 HT processor is about 20.2 
times larger than our CAVLC design including the area of 15 
processors and one large memory [13].  
 The H.264 baseline encoder has also been implemented on 
different DSP platforms. The CAVLC requires about 18.2% 
of the H.264 baseline encoder computation for one reference 
picture encoder [14]. Based on this loading fraction, we can 
estimate the CAVLC encoder performance of published 
software H.264 baseline encoders on various DSP platforms. 
To make a fair comparison, the frequency of DSPs has been 
scaled to the same technology as AsAP. Table 4 summarizes 
the estimated performance of CAVLC encoders on common 
DSP platforms in terms of frame rate of 720p HDTV. The 
throughput of the presented CAVLC design on AsAP is about 
1.0 to 6.15 times higher than the scaled published software 
encoders on common DSP platforms despite the fact our 
design uses a much more demanding test sequence. A smaller 
value QP=20 and two IP sequences will generate more 
non-zero residual data than other test sequences with larger 
QP value and more P frames. In addition, the scaled areas of 
the other processors are about 6.2 times larger than the area of 
our complete CAVLC encoder [15]. 

B. Processor Activity Analysis 
A more detailed analysis of processor execution reveals 

some interesting insights into the bottleneck of our design. 
Fig. 9 illustrates processor activity and stall frequency for a 
macroblock encoding. The activity of each processor (the 
amount of time spent executing, instead of stalling), is 
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Table 4.  Estimated performance of CAVLC encoder on common DSP platforms 
 

Platform Target 
App. 

Processor 
Type Technology Area 

(mm2)
Freq. 

(MHz)

Scaled Area
to 65nm 
(mm2) 

Scaled Freq. 
to 65nm 
(MHz) 

Test  
Sequence 

CAVLC  
Performance 

(fps 720p) 

TI C642 
[16] 

QCIF 
30-40 fps 

8-way 
VLIW 

130nm 
CMOS 72 600 18 1200 

60 frames 
IPPP…P 
QP=24 

9-12 

TI C642 
[17] CIF 24fps 8-way 

VLIW 
130nm 
CMOS 72 600 18 1200 

50 frames 
IPPP...P 
QP=25 

28 

ADSP 
BF561 [18] CIF 30fps Dual-core 

DSP 
130nm 
CMOS N/A 600 N/A 1200 N/A 36 

TI C641 
[19] 

QCIF 
24.5fps 

8-way 
VLIW 

130nm 
CMOS 72 600 18 1200 

100 frames 
IPPP… P 
QP=28 

7.4 

This work 
AsAP 

720p 
HDTV 
30fps 

Array 
(15 cores) 

65nm  
CMOS 2.89* 1070 2.89* 1070 

2 frames 
IP 

QP=20 
36.0-41.3 

*This value includes the area of 15 AsAP cores and one 16 KB shared memory 

Fig. 9.  Processor Activity of the CAVLC encoding one macroblock 

indicated by the black bar in the figure. The white bar 
indicates the time stalled on output, while the gray bars 
indicate the time spent waiting for input to arrive. Fig. 9 
shows that the Zigzag Reorder and CAVLC scanning 
processors are running most of the time and they are both 
bottlenecks of our design because the two algorithms are 
block-oriented and need to serially scan all the incoming data. 
The data receiving processor stalls most of time on output 
which indicates the downstream processor is full because the 
destination processor is not fast enough. All other processors 
stall most of the time on input which indicates the source 
processors are not providing data at an adequate rate. The 
large amount of stall cycles in Fig. 9 indicate a large slack for 
most of the processors, which provides a potential to run 
other tasks if multithreading is supported, or to reduce the 
clock rate and supply voltage to increase energy efficiency. 

V. CONCLUSION 
In this paper, a high-performance parallel CAVLC encoder 

for H.264/AVC is implemented on a fine-grained many-core 
system. The proposed software encoder employs arithmetic 
table elimination and compression techniques to map the 
data-flow of the CAVLC encoder onto an array of 15 small 
processors plus a large shared memory. The parallel 
workload of each processor is characterized and balanced for 
further throughput optimization. A utilization of 
long-distance interconnection reduces the number of required 
processors by 25%. This CAVLC design is the first software 
implementation on a fine-grained many-core system that can 
support real time 720p HDTV encoding to our best 
knowledge. The design achieves much higher throughput and 
much lower silicon area requirements compared with other 
software implementations on state-of-art general-purpose 
processors and DSPs. Our experiments show that the 
throughput of the proposed CAVLC encoder is 4.86 to 6.83 
times higher than the throughput of the same design 
implemented on the state-of-art general-purpose processors 
and requires far less circuit area. The throughput is 
approximately 1.0 to 6.15 times higher than the throughput of 
published software encoders on common DSP platforms, and 
it requires approximately 6.2 times less area.  
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