

Abstract—This paper presents a high-performance parallel
context-based adaptive length coding (CAVLC) encoder
implemented on a fine-grained many-core system. The software
encoder is designed for a H.264/AVC baseline profile encoder.
By utilizing arithmetic table elimination and compression
techniques, the data-flow of the CAVLC encoder has been
partitioned and mapped to an array of 15 small processors. The
parallel workload of each processor is characterized and
balanced for further throughput optimization. The proposed
parallel CAVLC encoder achieves the real-time processing
requirement of 30 frames per second for 720p HDTV. Our
experiments show that the presented CAVLC encoder has 4.86
to 6.83 times higher throughput and requires far smaller chip
area than the identical encoder implemented on state-of-art
general-purpose processors. In comparison to published
implementations on common DSP processors, the design has
approximately 1.0 to 6.15 times higher throughput while
requiring less than 6 times smaller area.

I. INTRODUCTION
H.264/MPEG-4 AVC is a video coding standard

developed through a collaboration of the ITU-T and ISO [1].
The new standard is proven to achieve significant video
compression efficiency compared with prior standards. (39%,
49% and 64% bit-rate reduction versus MPEG-4, H.263 and
MPEG-2 respectively) [2]. This high coding gain increase
comes mainly from a combination of new coding techniques
such as inter-prediction with quarter pixel accuracy,
intra-prediction, multiple reference pictures, variable block
size and context-based adaptive entropy coding. The video
visual quality is further increased by an in-loop de-blocking
filter to reduce edge effects of block-based video coding [3].
However, all of these new techniques come with a cost of
high computation complexity which makes a software
approach of a real-time HDTV encoder almost impossible in
current general-purpose processors and DSPs.

In the baseline profile of H.264/AVC, the context-based
adaptive length coding (CAVLC) is used for coding
quantized transform coefficients of the residual images [4]. In
CAVLC, the reverse zigzag scanned run-length coding, and
adaptive VLC tables are used to encode 4x4 or 2x2 block
residual data. Many hardware CAVLC encoding
architectures have been proposed for real-time video
encoding [5-7]. The drawback of hardware design is that it is
dedicated and not flexible. The emerging multi-core approach
has proven to be a possible solution for real-time H.264 video
encoding. Many multi-core processors have been proposed

for video applications which are composed of
general-purpose cores [8-10]. However, the granularity of the
cores is still very coarse which does not fully explore the
essential property of current video processing algorithms: a
transformation-based small block data-flow processing. This
paper presents an implemented and highly parallel CAVLC
encoder running on a fine-grained many-core system which
contains 164 simple and small processors [11].

 The rest of this paper is organized as follows. Section II
introduces the CAVLC encoding process and the features of
the targeted many-core system. In Section III, we describe the
proposed CAVLC encoder in terms of partitioning, mapping
and optimization. Section IV shows the performance analysis
and results. Section V concludes the paper.

II. CAVLC ENCODING AND THE TARGETED MANY-CORE
SYSTEM ARCHITECTURE

A. CAVLC Encoding
The CAVLC encoder is used for encoding transformed and

quantized residual coefficients of one video macroblock with
the processing order as shown in Fig. 1. A maximum of 27
blocks must be encoded within one macroblock. Block “-1”
contains 16 Luma DC coefficients if the current macroblock
is encoded in 16x16 intra mode. Blocks 16 and 17 are formed
by the DC coefficients of two Chroma components.

The CAVLC encoder can be partitioned into two phases,
scanning phase and encoding phase. In the scanning phase all
of the blocks are scanned in zigzag order. In the encoding
phase, five different types of statistic symbols are encoded
sequentially using look-up tables as Table 1 shows. The
complexity of CAVLC mainly comes from the
context-adaptive encoding of the 1st and 3rd elements,
coeff_token and levels. The coeff_token is encoded for the
total number of nonzero coefficients and trailing ones. Five
different VLC tables are available for coeff_token encoding
and the choice of table depends on the number of nonzero
coefficients in the neighboring left and top blocks. This data
dependency requires a large memory to store the number of
nonzero coefficients for high quality video encoding. The
levels are the nonzero coefficients (excluding trailing ones)
encoded in reverse zigzag order. The levels code is made up
of an all 0 prefix followed by a symbol 1 and suffix. The
length of the suffix is initialized to 0 unless there are more
than 10 nonzero coefficients and less than 3 trailing ones, in

A High-Performance Parallel CAVLC Encoder on a
Fine-Grained Many-Core System

Zhibin Xiao and Bevan Baas
ECE Department, University of California, Davis

 {zxiao, bbaas}@ucdavis.edu

978-1-4244-2658-4/08/$25.00 ©2008 IEEE 248

Table 1. Elements of CAVLC Encoding per Block

Elements Description

coeff_token
Encodes the number of nonzero coefficient and
number of signed trailing ones – one per block

Sign_trail Encodes the sign of trailing ones –one per trailing
ones maximum 3 per block

levels Encodes the remaining nonzero coefficients – one
per level excluding trailing ones

Total_zeros Encodes the total number of zeros before the last
coefficient – one per block

Run_before Encodes the number of run zeros preceding each
nonzero levels in reverse zigzag order

which case it is initialized to 1. The length of the suffix can be
adaptively incremented if the current level magnitude is
larger than a certain threshold. A maximum of 6-bits are used
for suffix encoding [4].

B. Highlights of Many-Core Processor Array Architecture
A high-level diagram of the targeted many-core chip

architecture is shown in Fig. 2. The system is composed of
164 simple 16-bit DSP processors, three hardware
accelerators, and three 16-KB integrated big memories, all
connected by a reconfigurable mesh network [11]. Processors
can directly communicate with their four nearest-neighbor
processors, or distant processors using long-distance-capable
configurable links.

Every processor core is a pipelined single issue DSP
processor, supporting instructions that are commonly found
in commercial DSPs. The fixed-point datapath contains one
ALU and one MAC unit. Each processor contains a 128 word
instruction memory and a 128-word by 16-bit data memory.
Specialized address generation hardware is added to ease the
implementation of algorithms requiring sequential, stride or
bit-reversed access to data memory. Each processor occupies
an area of 0.17 mm2 and operates at a maximum frequency of
1.1 GHz in 65 nm CMOS technology.

III. THE PROPOSED PARALLEL CAVLC ENCODER
Fig. 3 shows the data flow of the proposed CAVLC

encoder. The input residual coefficients are sent to the zigzag
and CAVLC scanning block for the 1st phase processing.

Then corresponding data elements are distributed to five
different encoding units in parallel. The final codes are
assembled and packed by the packing unit. An efficient
parallel mapping of this architecture on a fine-grained
architecture requires overcoming a lot of challenges in terms
of memory usage algorithm mapping and throughput
optimization. This section describes our approach to these
problems.

A. Coeff_token Table Selection
The coeff_token symbol is encoded with a table look-up

based on the number of nonzero coefficients (TotalCoeff) and
trailing +/-1 values (TrailingOnes). In the H.264 standard,
five different look-up tables are used for this purpose and the
choice of table depends on a parameter nC which is the
average of the number of nonzero coefficients of the
neighboring left and upper blocks named nA and nB
respectively. Fig. 4 shows the organization of macroblocks
within a QCIF frame. The 4x4 blocks within a macroblock
are numbered as shown in Fig. 1. The gray and dark gray
blocks are data-dependent blocks between neighboring
macroblocks. As macroblocks are processed in raster scan
order, a large memory is needed to store the number of the
nonzero coefficients of those data-dependent blocks.
However, as each macroblock needs only the nA and nB from
neighboring 4x4 blocks, the memory requirement can be
reduced by maintaining a global memory of upper_nA and

16 KB Mem
FFTMotion

Estimation

12 cores
one column

13 cores
 one row

16 KB Mem 16 KB Mem Viterbi

 Fig. 2. Architecture of targeted many-core system

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

-1 16 17

18 19

20 21

22 23

24 25

Fig. 1. Scanning order of residual blocks within a macroblock

zigzag

predict
nC

coeff_token
encoder

sign_trail
encoder

levels
 encoder

total_zeros
 encoder

run_before
 encoder

 input
residual
 data

encoded
 bitstream

VLC
packer

data
receiver

CAVLC
scanning

Fig. 3. Data flow diagram of the CAVLC encoder

249

Data
Receiver

Zigzag
Reorder

 Chroma
nC

Predicting

16 KB Shared Memory

Coeff_
token

Encoding

Sign_trail
Encoding

VLC
Binary

Packing

Levels
Encoding

P1

Levels
Encoding

P2

Total_zeros
Encoding

Run_before
Encoding

Router Router

Router

Router

Router

Router

Router
 data_out

CAVLC
Scanning

Luma nC
Predicting Router

 data_in

Fig. 5. CAVLC mapping without long-distance interconnections

Table 2. Size of compressed VLC look-up table

VLC table
Original

memory size
(16-bit word)

Compressed
memory size
(16-bit word)

Coeff_token 448 111

Total_zeros 504 123

Run_before 224 55

left_nB in one 16-KB on-chip memory of AsAP architecture.
For 720p HDTV Luma frames, the upper_nA contains 320
parameters and left_nB contains 4 parameters. As each
parameter uses no more than 5 bits, the upper_nA and left_nB
can be further compressed to save half of the memory. The
process to generate nC of one macroblock can be described as
follows.

First, at the beginning of processing one macroblock, the
program checks the availability of the neighboring top and
upper macroblocks. If any of them are available, the program
performs an update of upper_nA_local or left_nB_local both
of which contain 4 parameters. The upper_nA_local and
left_nB_local are stored in local processor data memory.

Second, the 4x4 blocks are processed in the order as
illustrated in Fig. 1. The upper_nA_local and left_nB_local is
updated locally for each 4x4 block so that the neighboring
4x4 blocks within one macroblock can use the up-to-date nA
and nB values to generate corresponding nC values.

Third, after the final 4x4 bock of the current macroblock is
processed, the current upper_nA_local and left_nB_local are
written back to the global shared memoryso that subsequent
macroblocks can use them as a starting point for nC
generation.

 The above approach of generating nC minimizes
memory usage and proves to be an efficient method.

B. Arithmetic Table Elimination and Compression
1) Level Encoding: Instead of using seven large VLC

tables, the arithmetic table elimination (ATE) technique is
used to encode level information. The level encoding starts
from the last nonzero coefficient (excludes trailing ones).
Two parameters, levels and vlcnum, are sent to the encoding
unit in each iteration. Vlcnum is initialized to 0 or 1 and will
be updated for the next level encoding depending on the
current level magnitude. The encoding unit encodes VLC0
and VLC1-6 separately with simple shift and addition
operations. Due to the limit of the instruction memory, level
encoding has been implemented on two processors as shown
in Fig. 5. The P1 processor receives level information, sends
level and vlcnum to P2 and updates the vlcnum each time.

2) Table Compression: The other symbols: coeff_token,
total_zeros and run_before can be encoded by adopting ATE.
However, if the tables can fit into one processor, table

look-up operations will be much faster than computations.
We use a compression technique based on the structure of the
VLC tables. The width of processor data memory is 16 bits
and most of the data of the VLC tables are less than 4 bits
except for some data inside the coeff_token when the number
of total nonzero coefficients is larger than 12. Moreover, the
VLC table used to encode total_zeros has a triangular
structure, where most of data are zeros. Based on the above
observation, we can divide the tables into smaller compressed
tables and then determine which table to use at run-time with
little extra computation. Table 2 compares the size of the
compressed VLC tables and the uncompressed ones. A
compression ratio of more than 4 has been achieved so that
the encoding tasks of relative symbols can take place in one
processor.

C. Partitioning and Dataflow Mapping
As Fig. 3 shows, the CAVLC encoder can be easily

partitioned into a number of independent serial and parallel
tasks. When implementing the encoder on the array processor,
each task is first mapped to a single processor to allow
parallel execution. If either more memory or high
performance is required than can be provided by a single
processor, the task is mapped to multiple processors. Code for
each processor is implemented independently, considering
only its inputs and outputs. For many applications, including
the CAVLC encoder presented here, writing the individual
programs for the application’s tasks is significantly easier
than writing a single large sequential program, largely due to
the encapsulation of complexity and the automatic handling

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7
8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15
0 1 0 1
2 3 2 3
0 1

2 3

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15
0 1

2 3

11

9

11

9

 (a) (b)
Fig. 4. Macroblocks in a QCIF frame (a) Luma (b) Chroma Cb/Cr

250

16 KB Shared Memory

 Chroma
nC

Predicting

Luma nC
Predicting

Data
Receiver

CAVLC
Scanning

Zigzag
Reorder

Coeff_
token

Encoding

Sign_trail
Encoding

Levels
Encoding

P1

Router3

Levels
Encoding

P2

Total_zeros
Encoding

Run_before
Encoding

VLC
Binary

Packing

Router2Router1
 data_in

 data_out

Fig. 6. CAVLC mapping with long-distance interconnections

550 760 172 132 245

34 53 11 19 19

29 34 555 1203 1548

377 600 172 44 153

34 53 160 11 44

29 34 426 463 420

 (a) non-optimized coding (b) optimized coding
Fig. 7. Processor workload non-optimized versus optimized coding

of inter-processor communication.
The major advantage of the fine-grain multiple-instruction

multiple-data (MIMD) array over conventional
programmable platforms is its capability of efficient stream
processing. An application level pipeline can be created that
allows the serial part of the CAVLC encoder (the scanning
phase) to run in parallel. As data flow through the system,
they are operated upon as soon as they are available. Each
processor must store only a small amount of data (up to a 4x4
block data) for local computation.

As Fig. 3 shows, the CAVLC scanning and VCL packing
unit need to distribute symbols and collect codes in parallel
respectively. Parallel distribution is inefficient on a single
processor because it needs to configure the output port at
runtime and thus wastes many clock cycles. Fig. 5 shows a
20-processor parallel mapping using only nearest-neighbor
connections. The CAVLC scanning unit sends statistical
information only to the coeff_token encoding unit and the
coeff_token encoding unit passes the information
immediately to the next sign_trail encoding unit. This takes
place for every encoding unit before it begins to operate on its
own portion of data. This approach simplifies the mapping
and will not degrade the throughput since the code produced
by each unit needs to be collected in sequential order by the
VLC packing unit anyway. In Fig. 5, the nC prediction unit is
implemented on two processors for Luma and Chroma
separately. The large memory supports two independent
interfaces, which is ideal for this case.

The mapping in Fig. 5 is not as efficient as possible due to
the constraints of a maximum of two input ports per processor
and only nearest-neighbor processor communication. Eight
routing processors are required to pass data around the graph.
Fig. 6 shows a compact 15-processor mapping using
long-distance interconnections. The four dashed lines
represent long-distance links. The length of all the links are
less than two processors. A savings of five routing processors
shows the efficiency of the low overhead long-distance
interconnection architecture.

D. Throughput Optimization
The throughput of the 15-processor mapping can be further

optimized by characterizing the workload of each processor
and remapping the workload for a better balance. The

throughput of the design depends on the 4x4 block processing
time of each processor which can be calculated by counting
the time interval between the reception of the first input data
and the transmission of the last output data. Fig. 7(a) shows
an approximate clock cycle counts for each processor to
process one 4x4 block of an intra-coding frame with the
non-optimized codes. The blocks in gray are in the critical
path of the encoding flow, which includes zigzag reorder,
CAVLC scanning, level encoding P1&P2, and VLC binary
packing, respectively. We adopted two approaches to
optimize the mapping.

First, all programs are optimized using explicit pipeline
data forwarding and hardware memory address generators in
the programs. Pipeline data forwarding can reduce
non-necessary NOPs used to deal with read-after-write
(RAW) data hazards. Hardware memory address generation
coupled with block repeat instructions also eliminate
unnecessary cycles.

Second, the workload of VLC packing is remapped onto
two routing processors. The codes can be packed as soon as
they are produced by each encoding unit. Processors are
labeled with an (x, y) row-column address beginning from the
leftmost top processor labeled as (0,0). Notice the routing
processor (3,1) is not used for VLC packing of level codes
from processor (3,2) because it would block the bypassing of
other coded data to processor (4,1). Fig. 7(b) shows the
optimized workload on the same array of processors. Since
the throughput depends mainly on the slowest block, the
optimized encoder throughput is 2.57 times higher than the
throughput of the non-optimized one.

IV. RESULTS AND PERFORMANCE ANALYSIS
The JM H.264 reference software [12] supplied the starting

point for our CAVLC encoder implementation. Then we
partition and rewrite the encoder in C on a parallel simulator
based on MPI library. The encoder was then translated into
assembly code running directly on the RTL model of the
many-core chip. All processors including the 16 KB memory
operate at a clock frequency of 1.07 GHz. The following
performance analysis is based on the optimized 15-processor
mapping shown in Fig. 6.

A. Performance Analysis and Comparison
The throughput of the software encoder is highly

dependent on specific test video sequences and encoder
parameters. In the H.264 standard, the coded block patterns
(CBP) are used to determine the all-zero residual blocks
which are not necessary to be encoded. Considering the CBP

251

Table 3. Specs of general-purpose computers for comparison

Machine CPU Freq.
(GHz)

Cache
(Byte)*

Memory
(GByte)

Operating
System

Lenovo
Thinkpad

T60

Intel Core
2 Duo
T2400

1.83 32K/32
K/2M 2 Windows

XP SP2

Dell
OptiPlex
GX620

Intel
Pentium 4 3.0 32K/32

K/2M 1 Windows
XP SP2

Dell
GX280

Intel
Pentium 4

HT
3.6 32K/32

K/2M 1 Windows
XP SP2

*L1instruction cache/L1 Data cache/L2 shared cache

 Fig. 8 Processing time (one 720p HDTV frame) of (a) the proposed CAVLC with varying QP (b) the CAVLC on different platforms with QP=30

effects, we performed simulations using five QCIF sequences
including Foreman, News, Carphone, Claire and
Mom-Daughter with different quantization parameters.
Simulation results are calculated by averaging the processing
time of one I type and one P type frame. Fig.8 (a) shows the
scaled time for the proposed CAVLC encoder to process one
720p (1280x720) HDTV frame. The results indicate that the
encoder meets the real time requirement of processing 720p
HDTV at 30 frames per second (processing time of 33.3 ms)
when QP is larger than 18 (QP normally is chosen as 28).

 In order to compare the performance of this design on the
many-core chip [11] with other software platforms, we
implemented and measured a version of the exact same
encoder written in C from JM software and compiled with
Visual C++ 6.0 on different state-of-the-art general purpose
computers whose specifications are summarized in Table 3.
All implementations are sequential and multi-threading is not
utilized. Although these processors support single-instruction
multiple-data (SIMD) instructions, they are of little use in
speeding up a CAVLC implementation due to the serial
nature of the CAVLC algorithm.

Fig.8(b) shows the scaled processing time of one 720p
HDTV frame (QP = 30) using the many-core chip AsAP,
Intel Core 2 Duo, Intel Pentium 4, and Intel Pentium 4 HT

machines. All of the general-purpose machines are far from
achieving real time 720 HDTV processing requirements. The
throughput of the proposed parallel CAVLC encoder on the
1.07 GHz many-core chip is 4.86 to 6.83 times the throughput
of the 3.6 GHz Pentium 4 HT machine which is the fastest
among the three general-purpose machines. AsAP processors
are very small in silicon area in comparison—the scaled area
of the 112 mm2 90 nm Pentium 4 HT processor is about 20.2
times larger than our CAVLC design including the area of 15
processors and one large memory [13].
 The H.264 baseline encoder has also been implemented on
different DSP platforms. The CAVLC requires about 18.2%
of the H.264 baseline encoder computation for one reference
picture encoder [14]. Based on this loading fraction, we can
estimate the CAVLC encoder performance of published
software H.264 baseline encoders on various DSP platforms.
To make a fair comparison, the frequency of DSPs has been
scaled to the same technology as AsAP. Table 4 summarizes
the estimated performance of CAVLC encoders on common
DSP platforms in terms of frame rate of 720p HDTV. The
throughput of the presented CAVLC design on AsAP is about
1.0 to 6.15 times higher than the scaled published software
encoders on common DSP platforms despite the fact our
design uses a much more demanding test sequence. A smaller
value QP=20 and two IP sequences will generate more
non-zero residual data than other test sequences with larger
QP value and more P frames. In addition, the scaled areas of
the other processors are about 6.2 times larger than the area of
our complete CAVLC encoder [15].

B. Processor Activity Analysis
A more detailed analysis of processor execution reveals

some interesting insights into the bottleneck of our design.
Fig. 9 illustrates processor activity and stall frequency for a
macroblock encoding. The activity of each processor (the
amount of time spent executing, instead of stalling), is

252

Table 4. Estimated performance of CAVLC encoder on common DSP platforms

Platform Target
App.

Processor
Type Technology Area

(mm2)
Freq.

(MHz)

Scaled Area
to 65nm
(mm2)

Scaled Freq.
to 65nm
(MHz)

Test
Sequence

CAVLC
Performance

(fps 720p)

TI C642
[16]

QCIF
30-40 fps

8-way
VLIW

130nm
CMOS 72 600 18 1200

60 frames
IPPP…P
QP=24

9-12

TI C642
[17] CIF 24fps 8-way

VLIW
130nm
CMOS 72 600 18 1200

50 frames
IPPP...P
QP=25

28

ADSP
BF561 [18] CIF 30fps Dual-core

DSP
130nm
CMOS N/A 600 N/A 1200 N/A 36

TI C641
[19]

QCIF
24.5fps

8-way
VLIW

130nm
CMOS 72 600 18 1200

100 frames
IPPP… P
QP=28

7.4

This work
AsAP

720p
HDTV
30fps

Array
(15 cores)

65nm
CMOS 2.89* 1070 2.89* 1070

2 frames
IP

QP=20
36.0-41.3

*This value includes the area of 15 AsAP cores and one 16 KB shared memory

Fig. 9. Processor Activity of the CAVLC encoding one macroblock

indicated by the black bar in the figure. The white bar
indicates the time stalled on output, while the gray bars
indicate the time spent waiting for input to arrive. Fig. 9
shows that the Zigzag Reorder and CAVLC scanning
processors are running most of the time and they are both
bottlenecks of our design because the two algorithms are
block-oriented and need to serially scan all the incoming data.
The data receiving processor stalls most of time on output
which indicates the downstream processor is full because the
destination processor is not fast enough. All other processors
stall most of the time on input which indicates the source
processors are not providing data at an adequate rate. The
large amount of stall cycles in Fig. 9 indicate a large slack for
most of the processors, which provides a potential to run
other tasks if multithreading is supported, or to reduce the
clock rate and supply voltage to increase energy efficiency.

V. CONCLUSION
In this paper, a high-performance parallel CAVLC encoder

for H.264/AVC is implemented on a fine-grained many-core
system. The proposed software encoder employs arithmetic
table elimination and compression techniques to map the
data-flow of the CAVLC encoder onto an array of 15 small
processors plus a large shared memory. The parallel
workload of each processor is characterized and balanced for
further throughput optimization. A utilization of
long-distance interconnection reduces the number of required
processors by 25%. This CAVLC design is the first software
implementation on a fine-grained many-core system that can
support real time 720p HDTV encoding to our best
knowledge. The design achieves much higher throughput and
much lower silicon area requirements compared with other
software implementations on state-of-art general-purpose
processors and DSPs. Our experiments show that the
throughput of the proposed CAVLC encoder is 4.86 to 6.83
times higher than the throughput of the same design
implemented on the state-of-art general-purpose processors
and requires far less circuit area. The throughput is
approximately 1.0 to 6.15 times higher than the throughput of
published software encoders on common DSP platforms, and
it requires approximately 6.2 times less area.

ACKNOWLEDGMENT
The authors gratefully acknowledge support from Intellasys,
SRC GRC Grant 1598 and CSR Grant 1659, ST
Microelectronics, UC Micro, NSF Grant 0430090 and
CAREER Award 0546907, Intel and S Machines; assistance
from D. Truong and A. Tran; and thank Jean-Pierre
Schoellkopf and Patrick Cogez.

REFERENCES
[1] “Draft ITU-T Recommendation and Final Draft International Standard

of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10
AVC),” Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,
JVT-G050r1, Fairfax, VA, 2003.

253

[2] A. Joch, et al, “Performance comparison of video coding standards
using Lagrangian coder control,” in Proc. IEEE Int. Conf. on Image
Processing, 2002, pp. 501-504.

[3] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC Video Coding Standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no.7, 2003, pp. 560-576.

[4] G. Bjøntegaard and K. Lillevold, “Context-Adaptive VLC(CVLC)
Coding of Coefficients,” Doc. JVT C028r1.doc, May 2002.

[5] Y. K. Lai, C. C. Chou, and Y. C. Chung, “A simple and cost effective
video encoder with memory reducing CAVLC,” in IEEE Int. Sym. on
Circuits and Systems (ISCAS), May 2005, vol. 1, pp. 432–435.

[6] C. D. Chien, et al, “A high performance CAVLC encoder design for
MPEG-4 AVC/H.264 video coding applications,” in IEEE Int. Sym. on
Circuits and Systems (ISCAS), May 2006, pp. 3838–3841.

[7] Rahman, C.A. Badawy, W.B., “CAVLC Encoder Design for
Real-Time Mobile Video Applications”, in IEEE Transactions on
Circuits and Systems II: Express Briefs, Oct. 2007, vol.64 pp. 873-877.

[8] M. Taylor et al., “A 16-issue multiple-program-counter microprocessor
with point-to-point scalar operand network,” in IEEE International
Solid-State Circuits Conference (ISSCC), Feb. 2003, pp. 170-171.

[9] D. Pham et al., “The design and implementation of a first-generation
CELL processor,” in IEEE International Solid-State Circuits
Conference (ISSCC), Feb. 2005, pp. 184-185.

[10] S. Keckler et al., “A wire-delay scalable microprocessor architecture for
high performance systems,” in IEEE International Solid-State Circuits
Conference (ISSCC), Feb. 2003, pp. 168-169.

[11] Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney
Jacobson, Gouri Landge, Michael Meeuwsen, Christine Watnik,
Paul Mejia, Anh Tran, Jeremy Webb, Eric Work, Zhibin Xiao, Bevan
Baas, “A 167-processor 65 nm Computational Platform with
Per-Processor Dynamic Supply Voltage and Dynamic Clock Frequency
Scaling,” Symposium on VLSI Circuits, June 2008.

[12] JVT H.264/AVC Reference Software Version JM 12.4,
http://iphome.hhi.de/suehring/tml/

[13] Darrell Boggs, et al, “The Microarchitecture of the Intel Pentium 4
Processor on 90nm Technology,” in Intel Technology Journal, Feb.
2004.

[14] W.I.Choi, et al, “Fast motion estimation with modified diamond search
for variable motion block sizes,” in IEEE Trans. on Image Processing,
Sept. 2003, vol.3, pp.371-374.

[15] Sanjive Agarwala,et al, “A 600-MHz VLSI DSP,” in IEEE Journal of
Solid-State Circuits, vol.37, no.11, pp.1532-1544, Nov. 2002.

[16] Hong-Jun Wang, et al, "H.264/AVC Video Encoder Implementation
Based on TI TMS320DM642", International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP), pp.
503-506, Dec., 2006.

[17] Li Zhuo, Qiang Wang, Feng, D.D., Lansun Shen, "Optimization and
Implementation of H.264 Encoder on DSP Platform," in IEEE Int. Conf.
on Multimedia and Expo (ICME), July 2007, pp. 232-235.

[18] Kant S. et al, “Real time H.264 video encoder implementation on a
programmable DSP processor for videophone applications”, in Int.
Conf. on Consumer Electronics (ICCE), Jan., 2006, pp. 93-94.

[19] Zhe Wei, Canhui Cai, “Realization and optimization of DSP based
H.264 encoder,” in IEEE Int. Sym. on Circuits and Systems (ISCAS),
May, 2006.

254

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

