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Abstract—The design of a highly configurable continuous flow

mixed-radix (CFMR) Fast Fourier Transform (FFT) processor

is presented. It computes fixed-point complex FFTs and inverse

FFTs (IFFTs), and utilizes a flexible addressing scheme to enable

runtime configuration of the FFT length from 16-points to 4096-

points. A configurable block floating point (BFP) unit increases

numerical performance. Compared to a floating point Matlab

FFT function, the accuracy of the proposed architecture is 80 dB

for a 64-point FFT and 74 dB for a 1024-point FFT with random

complex input data.

I. INTRODUCTION

Applications such as 802.11a/g/n [1], and 802.16 (WiMAX) [2],

which use OFDM modulation, require real-time high data throughput

as well as increased flexibility to adapt to real life communication

environments [3]. Moreover, digital audio/video broadcasting [4],

[5], and asymmetrical digital/very-high-speed digital subscriber line

(ADSL/VDSL) [6] standards have also adopted OFDM modula-

tion [7]. Because OFDM makes heavy use of FFTs, efficient FFT

implementations are becoming requirements in many DSP systems.

To achieve the high throughput necessary for these standards,

pipelined FFT architectures have been proposed which rely on

additional processing elements (PEs) in lieu of memory banks [8], [9].

Generally, this comes at the cost of increased area and power [10].

For larger FFTs, the additional number of PEs needed increases by

a factor of (r− 1) ∗ logr(N) multipliers, where r is the radix, and N

is the number of points of the FFT (i.e., size) [11].

With memory-based architectures, only a single radix-r processing

element is present. It takes N/r iterations to complete a full N-point

FFT. Thus, higher frequencies are necessary to process large FFT

sizes while meeting the same throughput requirements, although the

area is smaller when compared to pipelined architectures.

Memory architectures can have reduced data storage requirements

through an “in-place” addressing scheme where output data are

written to the same memory locations from where input data are

read [12]. Furthermore, a continuous flow architecture improves

the throughput of memory-based FFTs, where the PE is kept busy

regardless of the memory contention between the PE and processor

I/O. In-place addressing allows continuous flow architectures to need

only two main memory banks, each of size N for a total of 2N

complex memory locations. This architecture was first introduced

using addresses that alternate between Decimation In Frequency

(DIF) and Decimation In Time (DIT) FFTs [13]. An alternate in-

place address generation method using modulo arithmetic has also

been devised [14].

The primary computational unit of the FFT processing element

is the butterfly, which performs both the complex multiplication of

the data with a set of constants called “twiddle factors” (WN ), and

the addition & subtraction of these products as seen in Fig. 1. The

butterfly diagram in the figure depicts a radix-4 DIT butterfly. Because
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U = A + BWb + CWc + DWd

V = A -iBWb – CWc + iDWd

X = A – BWb + CWc - DWd

Y = A + iBWb – CWc - iDWd

Fig. 1. A radix-4 Decimation in Time (DIT) butterfly

25% fewer complex multiplications are needed when performing

radix-4 computations [15], recent efficient FFT implementations often

use radix-4 butterflies rather than radix-2 to reduce the number

of computational iterations for memory-based FFT architectures.

Higher-radix PEs further reduce the number of iterations, and thus

lower the number of computations and memory read and write ac-

cesses. On the other hand, PE area, address generation, and datapath

control become large and complex, which limit practical designs to

lower radices [11].

Radix-r implementations are limited to rn-point FFTs, and there-

fore radix-2 computation must also be employed for a radix-4

processor to cover all 2n-point FFTs. A mixed-radix FFT (MRFFT)

architecture combines multiple radices—typically radix-2 and radix-

4—and has been utilized in previous FFT processors [7], [14].

In this paper, we present a dedicated, runtime configurable complex

FFT processor capable of performing variable-size FFTs, from 16-

to 4096-point. It combines recent advancements to continuous flow

memory-based FFT processors, with a dual-memory architecture

and configurable addressing scheme. The FFT processor utilizes a

single mixed radix-2/4 in-place butterfly, along with a symmetrically-

reduced, twiddle-factor ROM. Section II provides an overview of the

architecture. Details of the address generation and datapath control

are given in Section III. The twiddle-factor ROM is presented in

Section IV. Section V summarizes the performance results, and

Section VI concludes the paper.

II. ARCHITECTURAL OVERVIEW

Figure 3 highlights the basic memory-based continuous flow archi-

tecture where data streams are multiplexed between the processor I/O

and the PE whose core computational unit is the mixed-radix FFT

butterfly. As an example, I/O communicating to Memory Bank 1 will

block communication between the FFT PE and Memory Bank 1.

The FFT PE reads and writes to Memory Bank 2 instead. When

Memory Bank 1 is full of new data, the FFT PE can begin reading

and working on the data stored there. The I/O is then blocked from

writing to Memory Bank 1 and must now write to Memory Bank 2.

The FFT processing element thus alternates between memory banks,

and as long as new data are sent to the non-active memory bank (i.e.,
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Fig. 2. FFT processor block diagram

the bank not being used by the PE), memory starvation is avoided and

continuous operation of the PE occurs, maximizing the throughput

of the FFT processor [16].

Notice that in order for the butterfly to read input data and

write output data simultaneously, dual-port SRAMs are required.

Similarly, the same argument can be said for the processor I/O.

Continuous operation on a memory bank of only size N necessitates

that the address generation and control guarantee that no address

conflicts occur during simultaneous read/writes. The in-place address

generation scheme adopted by the processor is further described in

Section III.

For a radix-r butterfly, we require r memory subbanks to read and

write data to and from the butterfly. As shown in Fig. 1, a radix-4

butterfly must read its four inputs A, B, C, and D from the memory

bank while writing to memory its four outputs: U, V , X, and Y .

Our processor contains a single radix-4/-2 mixed-radix (MR)

butterfly composed of three complex multipliers, 12 complex adders,

and rounding logic. The butterfly input and output utilizes 16-bit real

and 16-bit imaginary data, for a combined 32-bit complex FFT word

width. The processor calculates FFTs varying in size from 16- to

4096-point. Thus, for FFTs of length N = 2r with r even (i.e., integer

powers of 4), the butterfly performs standard radix-4 computations

throughout the entire FFT. For r odd (i.e., N = 32, 128, 512, 2048)

the butterfly functions as a radix-4 butterfly for the first (r − 1)/2

stages, and then switches mode to a radix-2 butterfly for the final

stage. The base radix-4 butterfly can be easily turned into a radix-2

butterfly if we take the following two equations from Fig. 1,

X = A−BWb +CWc −DWd (1)

Y = A+ iBWb −CWc − iDWd (2)

and set inputs B and D to zero [15].

In theory, radix-4 computations like those shown in Eq. 1 and

Eq. 2 can grow larger than a factor of four due to the possibility

of the input data having a range outside the unit circle on the real-

imaginary complex plane. The butterfly by default only shifts the

output data by two, but the user can chose to configure the butterfly

to be conservative and shift the output data by four. This, however,

causes a potential reduction in accuracy. Over the course of several
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Fig. 3. A continuous flow memory based FFT processor architecture

thousand simulations with random data, overflow has not occurred, so

the possibility of overflow will likely appear only under degenerate

cases. If overflow does occur while in the default shift-by-2 mode,

the data are then saturated accordingly.

The architecture also supports block floating point (BFP) tracking.

Therefore, by grouping data to one “exponent,” the maximum number

of bits is preserved by shifting away the minimum number of

redundant bits within that group of data. With BFP, the Signal to

Quantization Noise Ratio (SQNR) of a 1024-point FFT can improve

over 200%.

Figure 2 shows the final architecture of our FFT processor, which

is composed of an I/O subgroup and a FFT subgroup, both centered

around two memory banks. The I/O subgroup mainly contains the I/O

controllers. The FFT half consists of the address generator, twiddle

factor ROM (W-ROM), and the MR butterfly. Each memory bank is

composed of simple mux logic and four 1024-word SRAM modules.

III. ADDRESS GENERATION AND DATAPATH CONTROL

A. Processor Input and Output Control

For an FFT, bit reversal must take place either within the FFT, or

at the I/O for correct operation. Our architecture does bit reversal

initially, which simplifies the output of processor data. For N = 2n

where n is even, bit reversal is done as follows for a data word m:

mn−1mn−2...m3m2m1m0 ⇒ m1m0m3m2...mn−1mn−2 (3)

For r odd, where radix-2 computations are done at the final FFT

stage, bit reversal is done as follows:

mn−1mn−2...m4m3m2m1m0 ⇒ m0m2m1m4m3...mn−1mn−2 (4)



TABLE I

FFT INPUT DATA INDEX ADDRESSING SCHEME, POST BIT REVERSAL

Data Memory Memory Memory Memory
Index Subbank 0 Subbank 1 Subbank 2 Subbank 3

0 0 1 2 3
1 7 4 5 6
2 10 11 8 9
3 13 14 15 12
4 19 16 17 18
5 22 23 20 21
6 25 26 27 24

.
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.
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.
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An incrementer is used to identify each piece of data for bit

reversal. For example, N data points will each have an assigned index

chosen from 0 to N−1. Each data word m will be given the following

index:

indexData = mn−1mn−2 ... m3m2 m1m0 (5)

The only difference between computing a FFT vs. an IFFT is that the

incrementer increments the data index for an FFT, and decrements for

an IFFT. Thus, the architecture is identical for both FFT and IFFT.

For continuous in-place FFT operation, a scheme for mapping

addresses with data indices was developed (similar to one by Jo [7]).

A portion of the address pattern this scheme generates is shown in

Table I. Such an addressing ensures that, regardless of the current

stage within the FFT, each of the four required input data will be

accessed from different subbanks of memory.

To summarize, the resulting memory addresses are found as

follows:

addressMem = mn−1mn−2...m3m2 (6)

The memory subbank is chosen using modulo arithmetic:

subbankMem = (mn−1mn−2 + ...+m3m2 +m1m0) mod 4 (7)

Implementing both Eq. 6 and Eq. 7 in hardware is relatively simple.

Data is read out of the processor similarly. Since bit reversal has

already taken place, address generation for data reads is identical to

that of Eqs. 6 and 7.

B. FFT Address Generation

When a valid configuration word is received, the address generator

is configured to operate on a user selected FFT/IFFT size. It is

responsible for controlling memory read and writes to and from the

butterfly, as well as provide the index needed to access the appropriate

twiddle factor values from the W-ROM.

Each stage of an FFT has a unique group counter and butterfly

counter. The values of these counters are derived from the value of

a primary address. The first stage of an N-point FFT is composed

of N/4 radix-4 butterflies within a single group; the second stage

consists of N/16 radix-4 butterflies for each of the four groups; and

so forth. The decomposition of the primary address into group and

butterfly counters is shown in Table II.

Addresses rotate in groups of four after the first FFT stage, and

butterfly inputs are addressed in such a way as to avoid memory

access conflicts. To simplify address generation, a group of butterflies

have a common prefix, which is assigned to a group number. The

remainder of the address is given a base value for the first butterfly

input with an offset added to the other butterfly inputs outside of the

first stage. The address thus takes the form:

addressBt f ly = {group number, (base+offset)} (8)

TABLE II

DECOMPOSITION OF THE PRIMARY ADDRESS

Stage Primary Address decomposition

0 grgr−1...g1g0
1 gr−2...g1g0b1b0
2 gr−4...g0b3...b0
.
.
.

.

.

.

x-2 g1g0bs−2...b1b0
x-1 bsbs−1...b1b0

The offset added to each base value is determined by the memory sub-

bank being accessed. This addressing scheme operates independently

of the length of the FFT being performed. As the FFT progresses

from one stage to the next, the appropriate adjustments to the length

of the base values, offsets, and butterfly and group counters are made.

Recall that the outputs of the butterfly are written to the same memory

locations as the input data so the addresses for memory writes are

the same as that for reads.

Besides input/output data addresses, the correct twiddle factor

values have to be obtained for a particular butterfly computation.

The twiddle factor ROM address is dependent on the butterfly count

signal, and as a result is dependent on the current stage of the FFT.

This address takes the form:

addressW−ROM = {bsbs−1...b1b0,000...} (9)

A slight modification to this address is required to obtain twiddle

factors for a radix-2 computation.

IV. TWIDDLE-FACTOR ROM

Obtaining twiddle factors can be done through LUTs/ROMs or

direct calculation. The CORDIC algorithm presents one efficient

method of direct calculation which has been reported to be of lower

power and area than ROM implementations [17]. However, a similar

memory-based implementation utilizing CORDIC [17] with the same

SRAM size as the processor reported here is approximately 5x larger

when scaled to the same fabrication technology.

Theoretically, a 4096-point FFT/IFFT needs 4096 distinct complex

twiddle factors. In practice the size of this ROM can be reduced

considerably by manipulating the symmetry of the twiddle factors

between 0 and 2π. A ROM storing the twiddle factors from 0 to π/2

was used by Chang [18]. Symmetry can be further exploited by only

storing twiddle factor values from 0 to π/4 [19]. Thus, a ROM of

512 complex twiddle factors along with decoding logic is enough

to compute a 4096-point FFT—our processor’s maximum supported

FFT configuration.

For a radix-4 butterfly, the twiddle factors Wb, Wc, and Wd , can

be represented by Eq. 10, where θN = 2π/N.

W
y

N
= e−iyθN (10)

Wc and Wd can be calculated via Wb through the following relation-

ships [20]:

Wc =W
2
b (11)

Wd =W
3
b (12)

Based on these equations, the Wc ROM address is found simply

by doubling the Wb address, and similarly Wd is found by tripling

the Wb address, which correlates to squaring and cubing Wb itself,

respectively.

When combined, these optimizations result in a ROM implemen-

tation that is only 3.4% of the total processor area.



TABLE III

PROCESSOR PERFORMANCE SUMMARY

FFT Size N SQNR (dB) Cyles per FFT

16 82.94 13
32 82.08 37
64 80.17 58
128 79.24 170
256 77.65 271
512 76.59 783
1024 74.13 1305
2048 72.54 3609
4096 71.90 6174

V. RESULTS

Compared to other architectures, the presented design is most

similar to the one proposed by Jo [7]. The defining feature of our

processor is its high SQNR, reconfigurability, and relatively high

throughput. A reconfigurable “ring” FFT/IFFT processor obtains a

high SQNR of 61 dB [21]; however, it needs 5280 cycles to complete

a 1024-pt FFT. The FFT processor of [7] has a throughput of one

512-pt FFT per 640 cycles, and one 1024-pt FFT per 1280 cycles.

For a 64-pt FFT it achieves an SQNR of 65 dB. Our implementation

requires 783 and 1305 cycles while having a high SQNR of 76.59

and 74.13 for a 512-pt and 1024-pt FFT, respectively (see Table III).

In contrast, fixed N high-speed architectures have achieved only a

modest SQNR of 27 dB [22] and 32.7 dB [23].

This FFT processor was fabricated in 65 nm and occupies a 1 mm2

area. Initial results show that at 866 MHz, it dissipates on average

of 35 mW at 1.3 V [24]. The performance results are summarized in

Table III. This processor has been successfully integrated into a 167-

processor platform and has been used in software radio applications

such as a 54 Mbps 802.11a receiver [25].

VI. CONCLUSION

This paper introduces a runtime configurable, continuous-flow,

mixed-radix memory based FFT processor. FFTs and IFFTs of size

16- to 4096-point can be performed on 32-bit (16+16) fixed-point

complex data. High throughput is achieved through an in-place radix-

2/4 butterfly computational unit. While running at 866 MHz, the

processor requires 1.5 µs to compute a 1024-pt complex FFT (thus

achieving a throughput of over 680 Msamples/sec) while having an

average SQNR of 74 dB.
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