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Abstract—The recently introduced Split-Row Threshold algorithm
significantly improves the error performance when compared to the non-

threshold Split-Row algorithm while requiring a very small increase in

hardware complexity. The Multi-Split-Row Threshold decoding algorithm

presented in this paper enables further reductions in routing complexity
for greater throughput and smaller circuit area implementations. Several

Multi-Split-Row Threshold decoder designs have been implemented in

65 nm CMOS and the impact of the different levels of partitioning on
error performance, wire interconnect complexity, decoder area, and speed

are investigated. The Split-Row-16 Threshold decoder occupies 3.8 mm ,

runs at 100 MHz, delivers a throughput of 13.8 Gbps at 15 iterations and

is only 0.28 dB and 0.22 dB away from SPA and MinSum Normalized.

I. INTRODUCTION

Low density parity check codes were first introduced by Gal-

lager [1] in 1962. Due to their excellent error performance, LDPC

codes have recently received significant attention and have been

adopted by many recent communication standards such as 10 Gigabit

Ethernet (10GBASE-T) [2], digital video broadcasting (DVB-S2) [3]

and WiMAX(802.16e) [4]. However, due to the high interconnect

complexity and high memory bandwidth requirements of existing de-

coding algorithms, implementing high throughput and energy efficient

LDPC decoders remains a challenge.

A regular LDPC code is a block code defined by

a binary parity check matrix with code length , information length

, column weight which is the number of ones per column, and

row weight which is the number of ones per row.

LDPC codes are commonly decoded by an iterative message

passing algorithm consisting of two sequential operations (or two-

phases): check node update (row processing) and variable node

update (column processing). A simple illustration of this algorithm is

shown in Fig. 1 (a). The parity check matrix defines the assignment

(i.e. dependency) between which check nodes to which variable

nodes, and vice versa. In row processing, check nodes receive

messages ( ) from their assigned variable nodes, perform parity

check operations and send their results ( ) back to the variable nodes.

For column processing, the variable nodes update their estimates of

the decoded bits using the messages ( ) from their assigned check

nodes and the channel data ( ) and send their results ( ) back to

the check nodes. This process continues iteratively until all errors

are corrected or the number of iterations reaches a user defined

maximum.

Sum-Product (SPA) [5], MinSum (MS) [6] and MinSum Normal-

ized [7] are near-optimum decoding algorithms which are widely used

in LDPC decoders and are considered as standard decoders. These

algorithms propose different check node processing methods but use

the same variable node update.

The major drawback of standard decoding algorithms is that they

require variable nodes to send their messages to all their assigned

check node for a single check node update. This communication

leads to greater global interconnect complexity for large row weight

codes ( ) and for large parity check matrices. Considering

the fact that even if a decoding message is represented by a few

bits (e.g. ), the interconnect complexity will sharply increase

with every increment in row weight resulting in larger and slower

circuits [8], [9]. Previous studies for reducing wire interconnect

complexity are based on reformulating the message passing algo-

rithm [10], [11], [12].

This paper introduces Multi-Split-Row Threshold decoding which

significantly reduces wire interconnect complexity and considerably

improves the error performance compared to non-threshold Multi-

Split decoding [13]. The paper is organized as follows: Section II

reviews the Split-Row and Split-Row Threshold decoding algorithms.

Multi-Split-Row Threshold and its error performance results are pre-

sented in Section III. In Section IV, the results of several Multi-Split-

Row Threshold decoder designs have been implemented highlighting

the impact of the different levels of partitioning on wire interconnect

complexity, decoder area, and decoder speed.

II. SPLIT-ROW AND SPLIT-ROW THRESHOLD DECODING

ALGORITHMS

Recall that a standard message passing two-phase algorithm con-

sists of a check node update followed by a variable node update as

shown in Fig. 1 (a). For Split-Row [14], [13] and Split-Row Thresh-

old [15], [16], their decoders partition the check node processing

into two or multiple nearly-independent partitions, where each check

node processor simultaneously computes a new message while only

using minimal information from its adjacent partitions. Split-Row is

illustrated in Fig. 1 (b) showing how the check node processing is

partitioned into two blocks. A single bit of information ( ) for

each check node processor must be sent between partitions to improve

error performance.

The major drawback of Split-Row is that it suffers from a 0.5–

0.7 dB error performance loss, when compared to MinSum Normal-

ized and SPA decoders. This degradation in performance is dependent

on the number of check node partitions, and is the key obstacle in

practical Multi-Split implementations. For MinSum Split-Row each

partition has no information of the minimum value of the other

partition, and a signal is sent to minimize the error due to

incorrect sign information of the true check node output .

The Split-Row Threshold algorithm mitigates the error caused by

incorrect magnitude by providing a signal, , which

indicates whether a partition has a minimum less than a given

threshold ( ). This causes all check nodes to take the min of their

own local minimum or . Thus, any large deviations from the true

minimum because of the partitioning is reduced, which then makes

Multi-Split implementations feasible.

Figure 1 (c) shows the additional single bit signal ( )

added to the original Split-Row architecture by the Split-Row Thresh-

old algorithm. This signal allows the Split-Row to remain essentially

unchanged while adding some extra logic and minimal wiring to

improve error significantly [15].

Therefore, the Split-Row architectures reduce the communication

between check node and variable node processors, which is the
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Fig. 1. Block diagram of (a) standard two-phase decoding (b) Split-Row (c)
Split-Row Threshold block diagram

major cause of the interconnect complexity found in existing LDPC

decoder implementations. In addition, the area of each check node

processor, because of the reduction of inputs going into each check

node, reduces. This is elaborated further in Section IV. However, note

that the variable node operation in the SPA, MinSum, Split-Row and

Split-Row Threshold algorithms are all identical. Thus, the logic of

the variable node processor is left unchanged.

III. MULTI-SPLIT-ROW THRESHOLD

Multi-Split-Row Threshold is similar to Multi-Split-Row [13] where

the parity check matrix is divided into partitions and each one

is processed simultaneously. However, unlike Multi-Split-Row, each

partition of Multi-Split-Row Threshold sends the status of its local

minimum against a threshold to the next partition with a single

wire, called .

The block diagram of Multi-Split-Row Threshold decoding with

Spn partitions, highlighting the and passing

signals, is shown in Fig. 2. These are the only wires passing between

the partitions. In each partition, local minimums are generated and

compared with a threshold simultaneously. If the local minimum is

smaller than then the signal is asserted high. The

magnitude of the check node outputs are finally computed using local

minimums and the signal from neighboring partitions.

If a local partition’s minimums are larger than , and at least one

of the signals is high, then is used to update its

check node outputs. Otherwise, local minimums are used to update

check node outputs.

The check node outputs are normalized with a correction factor

which is in the range of 0.4-0.2 (depending on the level of split)

before being sent to the variable nodes. The optimal values of

correction factor and threshold are found empirically through

simulation [16].

Unlike Multi-Split-Row decoding whose error performance is

not acceptable beyond a certain level of splitting, Multi-Split-Row

Threshold partitioning can be arbitrary so long as there are two

variable nodes per partition and the error performance loss is less

than 0.3 dB. For example, Fig. 3 shows the error performance results

for a (6,32) (2048,1723) LDPC code for SPA, MinSum Normalized,

and MinSum Split-Row Threshold Improved with different levels of

splitting and with optimal correction factors. The error performance

simulations assume an additive white Gaussian noise channel with
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Fig. 3. BER comparison of Multi-Split-Row Threshold Improved with SPA
and MinSum Normalized
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Fig. 4. Check node processor implementation block diagram for partition
using the MinSum Split-Row Threshold Improved method.

BPSK modulation. Simulations were made for 80 error blocks and

with either a maximum of 15 decoding iterations or less when the

decoder converged early. As the figure shows, MinSum Split-Row-2

Threshold is about 0.13 dB and 0.07 dB away from SPA and MinSum

Normalized, respectively. From Split-2 Threshold through Split-4,

Split-8 and Split-16 Threshold the error performance loss are less

than 0.05 dB and total loss from Split-Row-16 Threshold to Split-

Row-2 Threshold is 0.15 dB at . Also shown in the

plot is the Split-Row-2 original algorithm which is still 0.12 dB away

from Split-Row-16 Threshold algorithm.

IV. MULTI-SPLIT-ROW THRESHOLD HARDWARE

IMPLEMENTATION

In theory we can arbitrarily split a standard MinSum decoder into

any partitions. However, there are practical limitations to the

level of partitioning that can be done in hardware. For a given ,

the split-number, must satisfy: , where

is the number of input signals and output signals to and from

a check node processor, respectively. Having this, going below two

represents splitting below the logic of a comparator.

A. Delay Analysis

Figure 4 shows an example check node processor’s mag-

nitude calculation logic using Multi-Split-Row Threshold MinSum

decoding. Given , the critical path of a check node processor

is essentially a function of the depth of comparator stages ( ),

which lies along a path from input to output. Thus, for

, the critical path of a check node processor,
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Fig. 2. Block diagram of Multi-Split-Row Threshold decoding with partitions, highlighting sign and threshold passing signals between partitions.

, is:

(1)

where , , and are the worst case de-

lays through a comparator, the threshold select logic, and a

/ / mux, respectively.

When using original Multi-Split-Row, the critical path was most

often the path along a partition’s local logic and wire consisting of

the longest path through the check node and variable node processors.

Thus, the main advantage of the original Multi-Split-Row is the fact

that the critical path decreases proportionally with the area of a single

split. In this case the critical path for an original Multi-Split-Row,

, is:

(2)

where is given by Eq. 1, and , ,

are the worst case delays through a variable node processor and wire,

respectively. Note that the delay of a check node processor and wire

delay is dependent on the number of splits ( ) while the variable

node processor’s delay is largely unchanged.

When compared with the original Multi-Split-Row, the Multi-

Split-Row Threshold’s local delay is increased due to the select

logic as depicted in Fig. 4. But notice that since the select logic

is also dependent on the neighboring signals from

and , one possible critical path is from a

signal that finally propagates to and changes the mux select bits

influencing check node output . For large , the Multi-Split-Row

method becomes heavily dependent on the worst case propagation

of signals to and from distant processors. Thus, the

critical path for the Multi-Split-Row Threshold decoding is calculated

as follows:

(3)

(4)

In summary, the final critical path of a Multi-Split-Row Thresh-

old decoder, , is the worst (i.e. largest) of the two

possible critical paths: threshold propagate path ( ), or

the original local check and variable processor path ( ).

The term represents the critical path required

to generate a signal that is sent to other parti-

tions; is the total propagation delay of the

signal across intermediate partitions, while

is the sum of the miscellaneous wire and gate delays along

the path; is the total delay from the

select logic to final variable node output .
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Fig. 6. Post route maximum delay in MinSum Normalized and Multi-Split-
Row Threshold decoders, partitioned into interconnect and gate delay.

To illustrate the two possible critical paths, Fig. 5 highlights both

worst case paths in bold. The propagation of the

signal passing through partitions in one direction is shown

next to the dotted lines labeled as Path 1. While Path 2 shows

the original delay path through the check and variable processors.

For small , Path 2 (see Eq. 2) is dominant but, typically,

Path 1 is the dominant critical path for Multi-Split-Row Threshold

as quantified by Eq. 3. This path is indicative of one possible worst

case propagation path beginning from the leftmost partition’s ( )

check node processor, through wire delays, and finally to

the variable node processor of the rightmost partition ( ).

To further investigate the impact on the hardware implementation

due to partitioning, several Multi-Split-Row Threshold full-parallel

decoders are implemented for the (6,32) (2048,1723) LDPC code

in 65 nm CMOS. Figure 6 summarizes the critical path of MinSum

Normalized and various Multi-Split-Row Threshold implementations,

partitioned into interconnect and gate delay. For , the

threshold propagate path begins to dominate due to the overwhelming

contribution of the term in Eq. 3. So even

though as the level of partitioning increases, where the delay inside

a check node processor decreases, the propagation term negates this

benefit. The figure shows that for MinSum Normalized and Split-2

Threshold the interconnect delay is largely dominant. This is due

to the fact that as the number of check nodes, variable nodes and

interconnection increase, the wire interconnect complexity increases

nonlinearly which results in larger delays.

B. Area Analysis

Figure 7 shows the decoder area after synthesis and layout.

Notice that for the MinSum Normalized decoder the area of the

layout deviates significantly from the synthesized area. The reason is

because of the inherent interdependence between the many number

of check and variable nodes for large row weight LDPC codes, the

number of timing critical wires that the automatic place and route

tool must constrain becomes an exponentially challenging problem.



Normalized Split-2 Threshold Split-4 Threshold Split-8 Threshold Split-16 Threshold

MinSum MinSum MinSum MinSum MinSum

Logic Utilization 25 40 85 95 98

Area (mm 18.2 8.9 5 4.5 3.8

Avg. wire length per sub-block 142.5 88.1 59.1 27.1 20.3

Worst case speed (MHz) 17 40 53 112 100

Throughput @ 15 iterations (Gbps) 2.3 5.5 7.7 15.2 13.8

TABLE I

COMPARISON OF FULL-PARALLEL DECODERS IN 65 nm CMOS, FOR A (6,32) (2048,1723) CODE IMPLEMENTED USINGMINSUM NORMALIZED AND

MINSUM SPLIT-ROW THRESHOLD WITH DIFFERENT LEVELS OF SPLITTING.
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Fig. 5. Critical path and the pipeline diagram for Multi-Split-Row Threshold decoding method
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Fig. 7. The core area from synthesis and layout for MinSum Normalized
and Multi-Split-Row Threshold decoders. The effect of wire interconnect
complexity is shown by the area difference between layout and synthesis
results for MinSum Normalized decoder.

Typically, the layout algorithm will try to spread standard cells apart

because of the increased metal density between gate, drain and source

connections of transistors and the upper metal layers. This results in

a lower logic (i.e. silicon/transistor) utilization and a larger overall

area.

For instance, wire complexity is exemplified by the very low uti-

lization percentage (25%) and large average wire length (142.5 )

of MinSum Normalized as shown in Table I. The table also summa-

rizes the chip implementation results of Multi-Split-Row Threshold

decoders. For a high such as Split-16 the utilization is 98%

which is about 4 times higher, while its average wire length is 7

times shorter than MinSum. It occupies 3.8 mm which is 4.8 times

smaller, it runs at 100 MHz and with 15 decoding iterations, it

delivers 13.8 Gbps which is 6 times higher than MinSum. Thus,

although Split-16 runs slightly slower than Split-8, it is still the

smallest decoder; this represents the inflection point along the tradeoff

curve between area and speed.

V. CONCLUSION

In this work we have analyzed the benefits and costs of Multi-Split

implementations using the recently proposed Split-Row Threshold

architecture. This has allowed us to achieve a better error performance

for a chip that has a high level of partitioning when compared to the

Split-Row original algorithm. Indeed, even Split-16 Threshold out-

performs an original Split-2 by as much as 0.12 dB while being only

0.22 dB from MinSum Normalized. Apart from error performance, in

Split-16 Threshold, the throughput improves 6 times and 2.5 times,

while area improves 4.8 times and 2.4 times when compared to

MinSum Normalized and Split-2 Threshold, respectively. The highest

throughput is obtained by a Split-8 implementation with a throughput

of at least 15.2 Gbps at 15 iterations. This shows that we can meet the

demands of high speed applications while obtaining very low areas

when compared to standard decoding methods.
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