
A Low-Cost High-Speed Source-Synchronous Interconnection
Technique for GALS Chip Multiprocessors

Anh T. Tran, Dean N. Truong, and Bevan M. Baas
University of California - Davis

{anhtr, hottruong, bbaas}@ucdavis.edu

Abstract—The globally asynchronous locally synchronous (GALS)
design style for a large area chip has become increasingly attractive
due to the difficulty of designing global clocking circuits at high clock
frequencies in the GHz range. In this paper, we present a high-speed
interconnect network for a GALS multiprocessing system composed
of a 2-D mesh array of processors. Processors are locally clocked by
their own oscillators and communicate together using a static circuit-
switched technique combined with a source-synchronous communication
scheme. A technique to maximize the timing reliability on long-distance
interconnects at high clock rates is proposed that is area and power
efficient with low latency and allows a sustained ideal peak throughput
of one word per cycle.

I. INTRODUCTION

In deep submicron CMOS, the parasitic effects of wire
interconnects—resistive, capacitive, and inductive—on system per-
formance are no longer negligible. Clocking circuits have become
increasingly difficult to design for large chip sizes and at high
clock rates. Additionally, high speed global clock trees continue to
consume a significant portion of the power budget. At worst, its power
consumption can be up to 40% of the total power dissipation of a
whole system [1]. To minimize these issues, Globally Asynchronous
Locally Synchronous (GALS) architectures have shown promise [2].
With GALS, a large chip architecture is partitioned into multiple
frequency domains with each domain clocked synchronously while
inter-domain communication is achieved asynchronously.

There are two well-known techniques for inter-domain com-
munication: clockless handshaking and source-synchronous. Hand-
shaking technique uses multiple phases of exchanging re-
quest/confirm/valid/ack signals to transfer data across clock domains.
Unfortunately, its round-trip latency is high. Besides that, asyn-
chronous handshaking circuits have complex control circuits which
are difficult to verify in traditional CAD flows, and also demand a
comparatively larger area and energy requirement [3], [4]. On the
other hand, source synchronous communication architectures only
need a source clock signal to be sent along with the data to the
destination. In this method, a dual-clock FIFO at the destination is
used to buffer and synchronize data between two clock domains. This
method achieves high efficiency by obtaining a peak throughput of
one data word per cycle with lower power consumption [5], [6].

A source synchronous communication link can also be scaled,
allowing long-distance interconnection between two arbitrary pro-
cessors over a large many-core chip. However, at high clock rates,
stability and reliability through long interconnect wires is difficult to
achieve [7]. One low cost solution is by pipelining long-distance wires
using several intermediate registers [8]. However, without careful
design considerations, this method is likely to encounter metastability
due to timing violations along the interconnect link.

In this paper, we investigate the timing requirements for successful
data transfer using a source synchronous network on a GALS many-
core platform. After considering the various methods for ensuring
and/or increasing reliable data transfer, we propose a solution which
achieves increased communication robustness at a low area cost. The

Processor

Switch

Processor

Switch

Core

clock

data

C
or

e

W
es

t
South

E
as

t

North

Osc Osc

Core

Fig. 1. Circuit-switched interconnect architecture for a processor simplified
to highlight communication along the West port

outline of this paper is as follows: Section II discusses the causes
of timing violations during a source synchronous transfer of data.
Then we analyze current possible solutions for avoiding violations in
Section III. Our proposed low cost solution is presented in Section IV.
Section V quantitatively evaluates solutions and, finally, Section VI
concludes the paper.

II. SOURCE-SYNCHRONOUS INTERCONNECT ARCHITECTURE

FOR GALS CHIP MULTIPROCESSORS AND ITS TIMING ISSUE

We will consider the issue of reliable source synchronous commu-
nication at high clock frequencies in the GHz range on a GALS many-
core computational platform comprised of an array of processors;
each processor is clocked by its own local oscillator. Processors are
interconnected by a 2-D mesh circuit-switched network supporting
source synchronous communication [9].

Since each processor has its own clock domain, data between
two processors are transferred asynchronously. Due to its advantages
over clockless communication as briefly explained in Section I,
source synchronous communication is adopted by our platform with
pipelined long-distance interconnect links [8].

Figure 1 depicts the interface between two neighboring processors
in the platform. The switch inside each processor has five ports:
the Core port which is connected to its local core, and the North,
South, West, and East ports which are connected to its four nearest
neighbors. As shown in the figure, an input from the West port
can be configured to go out to any port among the Core, North,
South, East ports and vice versa. For simplicity, Fig. 1 only shows
full connections to and from the West port; all the other ports are
connected in a similar fashion.

The multiplexers of the switch are pre-configured before runtime
which fixes the communication link among the processors. Thus,

978-1-4244-3828-0/09/$25.00 ©2009 IEEE 996

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 6, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

Osc

Proc. BProc. A

Osc

Proc. C

Osc

Proc. D

to Core
from Core

clock mux

data mux dual-clock FIFO

Osc

Fig. 2. Long-distance source synchronous communication through two
intermediate processors

source clock

source data dest. data

mux + wire delays
(inherent delay)

Fig. 3. A simplified illustration of the communication link of Fig. 2

the circuit-switched link is guaranteed to be independent and never
shared. So long as the destination processor’s FIFO is not full, a
one data word per cycle throughput can be sustained. This compares
favorably to a packet-switched network whose runtime network
congestion can significantly degrade communication performance [6].
Our interconnect architecture is well suited for DSP applications with
fixed interconnect requirements among processors.

Figure 2 shows an example of a communication link that is
configured to connect two long-distance processors. This link passes
through two intermediate processors, Proc. B and Proc. C, which are
in between the source and destination processors, Proc. A and Proc.
D, respectively. The figure also shows both clock and data being
multiplexed by the circuit-switched architecture. The destination
processor (Proc. D) uses a dual-clock FIFO to buffer the received
data before processing. Its FIFO’s write port is clocked by the source
clock of Proc. A, while its read port is clocked by its own oscillator,
and thus supporting GALS communication [10].

Figure 3 is a simplified version of Fig. 2 focusing only on the
impact of delay on source synchronous timing. The dotted lines
represent the boundary between two nearest processors. In order
to meet timing, the clock and data links should have nearly equal
wire and multiplexer (i.e. gate) delays. These delays are combined
and denoted as an inherent delay. We can constrain the difference
between the inherent delays of the clock and data links to be small
in the synthesis and the place and route phases of the backend
implementation.

Data and clock are sent by the source processor to the destination
processor through a sequence of intermediate multiplexers and reg-
isters, and each data word is valid for one cycle. All registers are
latched by the rising clock edges. Because the delay of the clock and
data is generally close, a timing violation can occur as illustrated
by the waveform in Fig. 4. Also, the data bus can have mismatches
due to variations and crosstalk, and the clock can have jitter that

timing violation potential

at output of
source processor

at the first register

inherent delay

Fig. 4. Timing waveforms of source synchronous communication from the
source to the next register

clock

data

configurable delay

Fig. 5. Configurable delays on the data bus of a long-distance link

good timing

at output of
source processor

at the first register

inherent delay

inherent + configured
delays

timing violation potential

at output of
source processor

at the first register

inherent delay

inherent + configured
delays

(a)

(b)

Fig. 6. Timing waveform after adding configurable delays on the data
bus. (a) Correct timing when delay is appropriately set corresponding to a
specific clock frequency. (b) Timing violation when changing frequency while
retaining the previous setting.

causes unreliable communication in actual chip implementations.
This issue is more pronounced when several data words are sent
in the consecutive clock cycles. In the next sections, we will analyze
possible solutions used to mitigate or eliminate the issue with source
synchronous on-chip communication, and then present our simple yet
novel low cost solution.

III. RELATED WORK

A. Configurable Delay Method

An intuitive way to avoid the timing violation presented in the
previous section is to purposefully add delay to the data or clock
signal such that the rising edge is sufficiently far from the region
where the data bits change. This ensures that the data is stable
within the setup and hold time window of a master-slave latch or D
flip-flop [5]. Fig. 5 shows a long-distance interconnect architecture
where a configurable delay circuit is added along the data bus at
each processor. The basic idea is that we delay the data so as to
latch it correctly at the following register on the next rising clock
edge. Depending on experimental testing of actual silicon, the delay
is configured for every link in order for the following setup time and
hold time constraints

D + tclk−q + tsetup < T (1)

thold < D + tclk−q (2)

to be satisfied. Here, D is the configured delay; tclk−q, tsetup and thold

are the clock-to-output delay, setup time and hold time of the register,
respectively; and T is the source clock cycle time.

Figure 6(a) illustrates the case when the configurable delay is set
appropriately in order to meet both constraints. Equation (2) shows
that when satisfying the hold time, D is independent of the source
clock period. However, after we fix a value for D, setup time violation
will occur once the frequency increases to a point where T is small
enough to make Eq. (1) false as pictured in Fig. 6(b). This situation

997

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 6, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

Adaptive
Delay

clock

data

Phase
Adjusting

clock

data

(a) (b)

Fig. 7. (a) Adaptive delay of the data bus through clock signal capturing.
(b) Adaptive clock phase matching using through self correction.

is more serious for a GALS multiprocessing system that utilizes
Dynamic Voltage and Frequency Scaling (DVFS).

For high speed digital communication, both constraints become
even harder to satisfy when we further consider VLSI issues in sub-
micron technology such as clock jitter, data crosstalk, and variations.

When considering clock jitter, in the worst-case, the clock cycle
time can be as small as T − 2t jitter [11], so Eq. (1) becomes:

T > D + tclk−q + tsetup + 2t jitter (3)

When further considering the effects of variations and crosstalk, D,
tclk−q, tsetup, and thold all become probabilistic variables that makes the
range of safe clock frequencies more limited. This type of analysis
will be left to future work.

B. Other Methods

To deal with a dynamic source clock frequency, a method is by
adjusting the delay of the data bus adaptively corresponding to clock
frequency in order for the Eq. (3) is always satisfied (Fig .7(a)) [12].

Other methods use clock recovery schemes, typically found in off-
chip applications (e.g. PCI Express). So far PLLs and delay lines have
been the most popularly implemented solutions [13], [14]. These
circuits readjust the phase of the clock (i.e. delay of the clock) to
only latch at the stable region of data (see Fig .7(b)). They require
feedback circuits that often contain complicated processing blocks,
which have much greater difficulty when designed to operate on high
frequency systems.

Although these adaptive solutions largely guarantee correct data
transfer, the dynamic nature requires complicated circuitry with
higher power consumption, larger area, and greater verification com-
plexity. Additionally, as shown in Fig. 6(a), the latency added on each
intermediate processor by these methods (or by the configurable delay
solution) is T plus an inherent delay.

Another method to deal with metastability is through the use of a
synchronizer consisting of multiple registers on the data bus instead
of single register for each intermediate processor [15]. Again, this
method has high area cost and latency.

IV. PROPOSED SOLUTION

A. Initial Observations

In Section II we have observed that naı̈vely implementing a source
synchronous communication architecture results in potential timing
violations (Fig. 4). Furthermore, static configurable delay along the
data or clock links only mitigates the problem while requiring that the
designer meet timing constraints that are unpredictable until tape-out
and testing.

In order to develop a better solution without resorting to costly
adaptive circuits, we note that the data word’s stable region at the
first register will always lie at the falling edge of the source clock
signal. This is illustrated in Fig. 8 with an assumption of a 50% duty
cycle clock. With the same observation, the second register should be
latched by a following rising edge as seen in the figure. Inevitably,
this method requires that all registers along the interconnect link be
clocked by either rising or falling clock edges in an alternating fashion

source clock

clock at the first register

inherent delay

good timing

source data

data before the first register

data after first register

inherent delay

good timing

clock at second register
data before the second register

Fig. 8. Timing using alternating clock edges along two registers

clock

data

falling edge
triggered register

rising edge
triggered register

Fig. 9. Alternating rising and falling edge-triggered registers along the long-
distance link

as depicted in Fig. 9. To make this method operate correctly, we must
satisfy the following timing constraints:

tclk−q + tsetup <
T
2

(4)

T
2
+ thold < T + tclk−q. (5)

When these are combined while considering jitter, these constraints
become:

T > 2 · max{tsetup + tclk−q, thold − tclk−q} + 2t jitter. (6)

So long as setup time, hold time, jitter, and clock-to-output delay are
small, the interconnect will be able to reliably operate at very high
clock frequencies.

A side benefit when compared with the previous solutions is that
the latency between neighboring processors is now just T/2 plus an
inherent delay instead of T plus an inherent delay when using the
configurable/adaptive delay methods, or even multiple cycles when
using synchronizer circuits.

To implement this method, however, there are two issues that we
must consider. First, since rising and falling edge-triggered registers
alternate along the interconnect, it appears that we will have to design
two versions of communication links, which adds more difficulties
for the backend design. Second, a processor may be configured to
be a source, a destination or an intermediate processor depending on
the application(s) mapped, so it should support both types of edge-
triggered registers.

Figure 10 shows a possible design to make all the links identical
while supporting both edge-triggered registers. Multiplexers are pre-
configured before runtime to establish a long-distance interconnect
set with the correct alternation of rising and falling edge-triggered
registers. Unfortunately, this method is area inefficient requiring more
multiplexers and registers along the data bus.

B. A Low Cost Solution

From the initial idea above, we derive a simple solution by placing
an inverter along the clock path before each register as shown in
Fig. 11. This ensures that no matter which processor is a source,
destination, or intermediate, the clock edges always alternate correctly
at all the registers. Since the inverter adds a delay to the clock path,
the data path should have near identical buffers in terms of delay
along the data bus to match their delays as seen in Fig. 12.

998

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 6, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

clock

data

select

Fig. 10. Alternating edge-triggered registers using configuration along a
long-distance link

clock

data

Fig. 11. Adding an inverter before each rising edge-triggered register along
the clock path

V. EVALUATION

To quantitatively evaluate the effectiveness of the various ap-
proaches, we modeled and simulated a static C2MOS edge-triggered
register [16] at the conventional operating condition using HSPICE.
Table I lists the simulation result of average setup time, hold time,
clk-to-output delay and one FO4 gate delay corresponding to some
CMOS nodes specified by the Predictive Technology Model [17].

For the configurable delay method described in Section III-A, to
achieve the safest margins for satisfying hold time, D is normally
set between 5 FO4 and 10 FO4 [5]. Fig. 13(a) shows the maximum
frequency curves over several technology processes (ignoring clock
jitter). Our solution can sustain a very high clock frequency that is
about 4.6 GHz in 65 nm and 6.8 GHz in 45 nm technology. If we
assume that clock jitter is approximately 10% of the total clock cycle,
an interconnect link can run at a max frequency of about 3.7 GHz
in 65 nm and 5.4 GHz in 45 nm.

This solution also has a much lower communication latency
compared to the configurable delay method illustrated in Fig. 13(b).
Since the latency of other methods are equal to or larger than that of
the configurable delay method, our proposed solution clearly has the
lowest communication latency regardless of the distance between the
source and destination. Moreover, our solution is very simple without
complicated circuits, therefore, it invariably will consume less power
and area than known alternative methods.

VI. CONCLUSION

In this paper, we have just presented a circuit-switched inter-
connect network for GALS chip multiprocessors. The interconnect
links of the network use source synchronous clocking to sustain
a peak throughput of one word per cycle. Our proposed solution
for dealing with the inherent timing problems on these high-speed
pipelined interconnects offers a more robust method to meet source
synchronous timing requirements in a simple yet effective manner.

clock

data

Fig. 12. Adding buffers on data links to balance the delay with inverters on
clock links

TABLE I
SIMULATED TIMING

Technology clk-to-output setup time hold time FO4
(nm) (ps) (ps) (ps) (ps)
130 142 28 29 34
90 121 21 23 26
65 89 19 17 19
45 58 15 11 12

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

Distance (No. of Processors)

D
el

ay
 (n

s)

130 90 65 45
0

1

2

3

4

5

6

7
8

Technology Process (nm)

M
ax

 F
re

qu
en

cy
 (G

H
z)

this work
D = 5 FO4
D = 10 FO4

configurable delay
this work

(a) (b)

Fig. 13. (a) Maximum frequency sustained corresponding to the technology.
(b) Communication latency versus the distance between two processors with
clock frequency of 2 GHz and an inherent delay of 5 FO4 in 65 nm.

This allows us to more safely guarantee successful data transfers
at high clock frequencies while under the real-world uncertainties
that future high-speed communication on submicron technologies will
inevitably incur.

ACKNOWLEDGMENTS

This work was supported by IntellaSys, a VEF Fellowship, SRC
GRC Grant 1598 and CSR Grant 1659, ST Microelectronics, UC Mi-
cro, NSF Grant 0430090 and CAREER Award 0546907, Intel, and
SEM.

REFERENCES

[1] V. Tiwari, D. Singh, et al., “Reducing power in high-performance
microprocessors,” in Design Automation Conference (DAC), June 1998,
pp. 732–737.

[2] M. Krstić, E. Grass, et al., “Globally asynchronous, locally synchronous
circuits: Overview and outlook,” IEEE Design and Test of Computers,
vol. 24, no. 5, pp. 430–441, Sept. 2007.

[3] B. R. Quinton, M. R. Greenstreet, and S. J.E. Wilton, “Asynchronous ic
interconnect network design and implementation using a standard ASIC
flow,” in IEEE International Conference of Computer Design (ICCD),
Oct. 2005, pp. 267–274.

[4] E. Beigne and P. Vivet, “Design of on-chip and off-chip interfaces for
a GALS NoC architecture,” in IEEE Intl. Symposium on Asynchronous
Circuits and Systems (ASYNC), Mar. 2006.

[5] Z. Yu and B. M. Baas, “Implementing tile-based chip multiprocessors
with GALS clocking styles,” in IEEE International Conference of
Computer Design (ICCD), Oct. 2006.

[6] Y. Hoskote, S. Vangal, et al., “A 5-GHz mesh interconnect for a teraflops
processor,” IEEE Micro, vol. 27, no. 5, pp. 51–61, Sept. 2007.

[7] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,”
Proceedings of the IEEE, pp. 490–504, Apr. 2001.

[8] Z. Yu and B. M. Baas, “Low-area interconnect architecture for chip
multiprocessors,” in IEEE International Symposium on Circuits and
Systems (ISCAS), May 2008, pp. 2857–2860.

[9] D. Truong, W. Cheng, et al., “A 167-processor 65 nm computational
platform with per-processor dynamic supply voltage and dynamic clock
frequency scaling,” in Symposium on VLSI Circuits, June 2008.

[10] R. Apperson, Z. Yu, et al., “A scalable dual-clock FIFO for data transfers
between arbitrary and haltable clock domains,” IEEE TVLSI, vol. 15,
no. 10, pp. 1125–1134, Oct. 2007.

[11] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated
Circuits: A Design Perspective, chapter 10, Prentice-Hall, New Jersey,
U.S.A, second edition, 2003.

[12] M. E. S Elrabaa, “An all-digital clock frequency capturing circuitry for
NRZ data communications,” in IEEE Intl. Conference on Electronics,
Circuits, and Systems, Aug. 2006, pp. 106–109.

[13] M. Kihara, S. Ono, and P. Eskelinen, Digital Clocks for Synchronization
and Communications, Artech House, Inc, Norwood, MA, U.S.A, 2003.

[14] S. W. Moore, G. S. Taylor, et al., “Self calibrating clocks for globally
asynchronous locally synchronous systems,” in IEEE Intl. Conf. on
Computer Design (ICCD), Sept. 2000, pp. 73–78.

[15] W. J. Dally and J. W. Poulton, Digital Systems Engineering, Cambridge
University Press, New York, U.S.A, 1998.

[16] D. Marković, B. Nikolić, and R. Brodersen, “Analysis and design of
low-energy flip-flops,” in IEEE ISLPED, Aug. 2001, pp. 52–55.

[17] W. Zhao and Y. Cao, “Predictive technology model for nano-CMOS
design exploration,” ACM JETC, vol. 3, no. 1, pp. 1–17, Apr. 2007.

999

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 6, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

