An Improved Split-Row Threshold Decoding
Algorithm for LDPC Codes

Tinoosh Mohsenin, Dean Truong and Bevan Baas

ECE Department, University of California, Davis

Abstract— We present an improved thresholding LDPC de-
coding algorithm which outperforms the Split-Row and original
Split-Row Threshold decoders with a small increase in hard-
ware. Simulation results show that the algorithm provides 0.27—
0.50 dB coding gain over Split-Row, 0.10-0.20 dB over Split-Row
Threshold, and is within 0.08-0.13 dB of SPA. Compared with
the original Threshold algorithm the check node processor’s gate
count is increased by 3% while total chip area is kept the same.

Index Terms—low density parity check, LDPC, iterative de-
coder, VLSI, CMOS, 10GBASE-T, reduced complexity decoder,
interconnect complexity, Split-Row

I. INTRODUCTION

Low density parity check codes have been shown to per-
form very close to the Shannon limit when decoded itera-
tively [1], [2]. Thus, the codes have been considered by many
recent communication standards such as 10 Gigabit Ethernet
(10GBASE-T) [3], digital video broadcasting (DVB-S2) [4],
WIiMAX (802.16e) [5], WiFi (802.11n) [6] and WPANSs
(802.15.3c) [7]. Unfortunately, hardware implementation for
high throughput LDPC decoders with typical code lengths and
row weights suffers from large interconnect complexity and
low area utilization, which result in high cost, large power
dissipation, and low performance.

A (W.,W,) (N,K) regular LDPC code is a block code
defined by a binary parity check matrix with code length IV,
information length K, column weight W, which is the number
of ones per column, and row weight W,. which is the number
of ones per row.

LDPC codes are commonly decoded by an iterative message
passing algorithm which consists of two sequential operations:
row processing or check node update and column processing
or variable node update. In row processing, all check nodes
receive messages from their assigned variable nodes, perform
parity check operations and send the results back to the vari-
able nodes. For column processing, the variable nodes update
their estimates of the decoded bits using the information
passed from the check nodes, and send new updates back to
the check nodes. This process continues iteratively until all
parity check equations are checked.

Sum-Product (SPA) [8], MinSum (MS) [9] and MinSum
normalized [10] are near-optimum decoding algorithms which
are widely used in LDPC decoders. These algorithms are
proposed for different check node processing methods but use
the same variable node update.

The major drawback of standard decoding algorithms is that
they require communication between a check node and its

assigned variable nodes for a single check node update. This
communication leads to a greater global interconnect com-
plexity for large row weight codes (W, > 16). Considering
the fact that even if a decoding message is represented by a
few bits (e.g. 6 bit), the interconnect complexity will sharply
increase with every additional row weight resulting in larger
and slower circuits [11], [12].

The recently proposed Split-Row decoding algorithm pro-
vides significant improvements in the throughput, hardware
cost and energy efficiency when compared to existing soft
decision decoding algorithms at the cost of some error per-
formance loss [13], [14]. In this paper we propose Split-
Row Threshold Improved which outperforms the Split-Row
algorithm while maintaining the same level of complexity.

The paper is organized as follows: Section 2 reviews Stan-
dard MinSum and MinSum Split-Row decoding algorithms.
In Section 3, Split-Row Threshold Improved is introduced.
Further analysis of threshold and the error performance com-
parisons for different codes with Split-Row Threshold Im-
proved are shown in Section 4. The hardware complexity and
synthesis results for check node processors implemented with
different algorithms are presented in Section 5.

II. STANDARD MINSUM AND SPLIT-ROW DECODING
ALGORITHMS

A. MinSum Decoding

MinSum (MS) is a reduced complexity decoding algorithm
which simplifies the check node processing of the SPA itera-
tive decoder by using a minimum function in the check node
operation. In MinSum normalized [10], a correction factor
is applied to the check node processing outputs to improve
the error performance. In the following equations, «;; is the
message from check node ¢ to variable node j, 3;; is the
message from variable node j to check node i, and JA; is the
information received from the channel. We define V' (i)\j as
the set of variable nodes connected to check node C; excluding
variable node j. Similarly, we define the C'(¢)\j as the set of
check nodes connected to variable node V; excluding check
node j. The two phases of message passing algorithm steps
for MinSum are described as follows:

1) Row processing or check node update:

Qj = SMS X H sign(ﬂij/) X

eV

min
J'eV()\i

(1Bijr]) (1)

where Sjss is the correction factor for MinSum normal-
ized. For each row ¢, the magnitude of @ messages can
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also be calculated using the least minimum (M+¢n1) and
the second least minimum (Min2) of the entire set of
messages as,

Minl; = min (|8;; 2

in jglvlr(li)(lﬂjl) )
Min2; = 2nd min (|8;; 3
in n jre%)(lﬂjl) 3)

Then,

Min2;, if j == Minl_Zindex
|evij| = ) e L (4)
Minl;, if j # Minl_indezx

2) Column processing or variable node update:
The MinSum variable node operation is the same as in
the standard SPA:

Bii =X+ > aij (%)

i'eC(j)\i

B. Split-Row Decoding

The recently proposed Split-Row decoder [13], [14] parti-
tions the check node processing into two or multiple nearly-
independent partitions, where each block is simultaneously
processed using minimal information from an adjacent par-
tition. The key idea of Split-Row is to reduce communication
between check node and variable node processors which is
shown to have a major role in the interconnect complexity of
existing LDPC decoding implementations.

To illustrate further, Fig. 1 (a) shows the block diagram of
a standard two-phase decoder. In Split-Row which is shown
in Fig. 1 (b), check node processing is partitioned into two
blocks, where each block is simultaneously processed almost
independently. With this partitioning, the number of inputs
sent to the check processor of each partition is reduced to
half which results in less communication between check and
variable processors. To improve the error performance the sign
computed from each partition is sent to the next partition with
a single wire.

Split-Row can be implemented on both MinSum and SPA
algorithms. In MinSum Split-Row the check node processing
is modified to Eq. 6:

Qijsplit = Ssplit X H sign(Bijr)
J'EV(i)\j

i (184 1) (6)

X min
J'€Vepris (1)\J

The sign bit is computed using the sign bit of all messages
across the whole row of the parity check matrix (because we
pass the sign to the next partition). However, the magnitude
of a messages in each partition is computed by finding the
minimum among W, /2 messages within each partition. Sgps
is a correction factor which normalizes a values in MinSum
Split-Row to improve the error performance.

The major drawback of Split-Row is that it suffers from a
0.4-0.7 dB error performance loss (depending on the number
of row partitions) compared to MinSum and SPA decoders.
The main reason for its error performance degradation is that
in MinSum Split-Row each partition has no information about
the minimum value of the other partition. Therefore, when the
minimum value in one partition is much larger than the global
minimum, the a values in that partition which are calculated
by its local minimum are all overestimated when compared to
those in the other partition. This leads to a possible incorrect
estimation of the bits which reside in that partition.

The recently proposed Split-Row Threshold [15] whose
block diagram is shown in Fig. 3, improves the error per-
formance of Split-Row by 0.15-0.2 dB through an additional
signal passed between each partition. The main drawback of
Split-Row Threshold decoding is that it only compares the
local least minimum (M4¢n1) with the threshold. To correctly
compute the check node messages, both Minl and Min2 of
the entire set in each partition must be compared with the
threshold.

To illustrate the errors caused by the various Split-Row
decoding algorithms, Fig. 2 shows the first three rows of the
parity check matrix for an LDPC code with W, = 4, and
N = 12 along with the check node messages (a) updated after
the first iteration using (b) MinSum (c) MinSum Split-Row
and (d) MinSum Split-Row Threshold. The entries with the
largest deviations from MinSum are underlined. For example,
in the second row of the Split-Row matrix in (c), the local
minimum (M+énl) in the right side is ‘2°, which is 20 times
larger than the local minimum in the left side, ‘0.1°, which is
also the global minimum of the entire row. This results in an
overestimation of a values for the bits on the right side of the
second row, possibly causing an incorrect decision for these
two bits. Although Split-Row Threshold in (d) can correct
these errors, it cannot correct the major errors in the first and
third rows, since it does not compare Min2 with threshold 7.

III. PROPOSED MINSUM SPLIT-ROW THRESHOLD
IMPROVED

The proposed Improved Threshold algorithm further im-
proves the error performance while adding negligible hardware
to the check node processor, and without the need of any
additional global wires to the Split-Row Threshold decoder.
In the algorithm, both Minl and Min2 are compared with a
given threshold (7). Based on this, four conditions will occur:
Condition 1 occurs when both Minl and Min2 are less
than threshold 7', thus they are used to calculate & messages
according to Eq. 4. Additionally, a signal (T"hreshold_en)
which goes to the next partition is asserted high, indicating
that the least minimum (M4nl) in this partition is smaller
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than T'. Condition 2 occurs when only M1inl is less than T'.
Again, the T'hreshold_en signal going to the next partition
is asserted high. If the T'hreshold_en signal from the neigh-
boring partition is also high, indicating that local minimum
in the other partition is less than 7', then we use Minl and
T to update the o messages, while using Eq. 4, in place of
Minl and Min2, respectively. Otherwise, use Eq. 4 as is.
Condition 3 occurs when the local Minl is larger than T'
and the T'hreshold_en signal from the neighboring partition
is high; thus, we only use T" to compute all & messages for the
partition. Condition 4 occurs when the local Minl is larger
than T and T hreshold_en signal from neighboring partition
is low; thus, we again use Eq. 4 unchanged.

The Improved Threshold algorithm for check node update
in each row of the Sp0 partition is summarized as:
Compute Minl and Min2 for the entire W,./2 messages:
Condition 1: if (Minl < T & Min2 < T)

Threshold_ensp0 = 1,

Propagate Minl and Min2to V;, j =1,..., W, /2.
Condition 2: else if (Minl < T & Min2 > T)

Threshold_ensp0 =1,

if (Threshold_enspl == 1)

Propagate Minl and T to Vj, j =1,...,W, /2.
else
Propagate Minl and Min2 to V;, j =1,...,W, /2.
Condition 3: else if (Minl > T &
Threshold_enspl == 1)
Threshold_ensp0 = 0,
Propagate T to V;, j = 1,.. W, /2.
Condition 4: else
Threshold_ensp0 = 0,
Propagate Minl and Min2to V;, j =1,...,W, /2.

Note that the variable node operation in Split-Row Thresh-
old Improved is identical to the MinSum and Split-Row
algorithms.

The updated check node messages (o) after one iteration
using Split-Row Threshold Improved are shown in Fig. 2 (e).
Condition 1 and Condition 4 lead to the original MinSum
Split-Row decoding, while Condition 2 corrects the large
errors left uncorrected by the original Threshold algorithm.
Note that this is a simplistic representation of the improvement
that the Threshold Improved decoding will have over Split-
Row and Split-Row Threshold decoding methods for larger
parity check matrices.

IV. ANALYSIS AND IMPACT OF THRESHOLD SELECTION

A. Impact of SNR and Decoding Iterations on Threshold

Clearly, the error performance highly depends on the choice
of threshold values. If the threshold 7' is chosen to be very
large, then most local Minl and Min2 will be smaller than T'.
This causes only Condition 1 to be met, which results in the
algorithm behaving just as the original MinSum Split-Row.
On the other hand if the threshold value is very small, the
local minimums will be generally larger than 7" and only
Condition 4 is met which is again the original Split-Row
algorithm.

To further illustrate the impact on error performance when
choosing the optimal threshold value, Fig. 4 plots the er-
ror performance of a (6,32) (2048,1723) RS-based LDPC
code [16], which has been adopted for the 10 Gigabit Eth-
ernet (10GBASE-T) standard [3] versus threshold values for
different SNRs. As shown in the figure, there are two limits
for the threshold value which lead the algorithm to converge to
the error performance of the original Split-Row. Also shown
is the optimum value for the threshold (7' = 0.2) in which the
algorithm performs best.

In addition, to investigate the impact of decoding iterations
on choosing the optimum threshold, Fig. 5 shows the error
performance of the same code versus threshold values for
different decoding iterations at SNR=4.0 dB, with optimum
threshold value of 0.2. Thus, one of the benefits of the MinSum
Split-Row Threshold Improved method is that the threshold T'
is not only independent of the SNR and channel statistics, but
is also independent of the number of decoding iterations.
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B. Error Performance Results

The error performance simulations presented here assume
an additive white Gaussian noise channel with BPSK modu-
lation. Simulations were made for 80 error blocks and with
either a maximum of 15 decoding iterations or earlier when
the decoder converged.

Figure 6 shows the error performance results for a (6,32)
(2048,1723) LDPC code for SPA, MinSum normalized, Min-
Sum Split-Row, MinSum Split-Row Threshold, and MinSum
Split-Row Threshold Improved with optimal threshold value
T = 0.2. The threshold is fixed over different SNRs and
different decoding iterations. As shown in the figure, the
coding gain of MinSum Split-Row Threshold Improved over
the original Split-Row is 0.27 dB, and it is only 0.07 dB
away from MinSum normalized and 0.13 dB from SPA at
BER =2 x 1077

The error performance of a (4,16) (1536,1155) LDPC code
is shown in Fig. 7 for different decoding algorithms. As shown
in the figure, Split-Row Threshold Improved with optimal
threshold 7" = 0.3 performs about 0.5 dB better than original
Split-Row and is only 0.04 dB away from MinSum normalized
and 0.08 dB away from SPA at BER = 2 x 107,

Bit Error Probability

—A—SPA
—6— MS Normalized

107’ }.| —#— MS Split Threshold Improved
—&— MS Split Threshold
—>— MS Split

-8 i i i
25 3 35 4 45
SNR (dB)

Fig. 6. Error performance results for (6,32) (2048,1723) LDPC code using
various decoding algorithms.
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V. HARDWARE IMPLEMENTATION ANALYSIS

The logical implementation of a check node processor in
the Sp0 partition for our improved threshold algorithm is
depicted in Fig. 8. The magnitude update of a is shown
along the upper part of the figure while the global sign
is determined with the xor logic along the lower part (see
Eq. 6). As in MinSum decoding, the first minimum Min1 and
the second minimum Min2 are found alongside the signal
IndexMinl, which indicates whether Minl or Min2 is
chosen for a particular c. However, Split-Row Threshold adds
a “Thresholding Logic” block for every check node’s o output.
In addition, two additional comparisons are required between
Minl and Threshold, and Min2 and Threshold, which
generate the compl and comp?2 signals, respectively, which
are used by the “Thresholding Logic” block. SpQ’s compl
signal is also sent (as Threshold_enspQ) to Sp0’s check node
processor counterpart in Spl.

The logic of the Improved Split-Row Threshold algo-
rithm (Sec. 3) is encapsulated by the “Thresholding Logic”
block (Fig. 8) and only consists of two muxes and their
select logic. The final mux selects between o’ and the
T hreshold—Min1l mux using: complNcomp2 (Condition 1)
U T'hreshold_enspl (Condition 4 and 2b). The T hreshold—
Minl mux chooses between Condition 2a and 3.

Table I summarizes the synthesis results for a single check
node processor implemented using the original MinSum (MS),
MS Split-Row, MS Split-Row Threshold, and (MS) Split-Row
Threshold Improved for an LDPC code with row weight W, =
32 in a 65 nm CMOS process using Synopsys Design Com-
piler. The additional algorithmic complexity of the Improved
Thresholding algorithm only incurs a minimal overhead cost
of 16% in increased area, 3% in increased gate count and 14%
in additional worst case gate delay. Thus, error performance is
improved substantially over the original Threshold algorithm
at a small increase to check node processor hardware.

A (2048,1723) LDPC decoder chip implemented using
Split-Row Threshold Improved algorithm in 65 nm CMOS
occupies 8.9 mm? and has a throughput of 5.5 Gbps with 15
iterations [17]. This chip is 2 times smaller and 3.3 times faster
than MinSum, and has the same area while running at nearly
the same clock frequency as MinSum Split-Row.

Area (pm?) Gate Count Delay (ns)

MinSum (MS) 3578 1018 2

MS Split 1767 541 1.4

MS Split Threshold 1932 586 1.4

MS Split Threshold Improved 2237 604 1.6
TABLE 1

CHECK NODE PROCESSOR SYNTHESIS RESULTS FOR VARIOUS MINSUM
DECODING METHODS FOR AN LDPC CODE WITH ROW WEIGHT W, = 32
IN 65 nm CMOS

VI. CONCLUSION

In this paper an improved thresholding method for the Split-
Row decoding algorithm was proposed, which only requires
minor modification to the basic Split-Row architecture. Sim-
ulation and synthesis results show that the new method only
requires a minor increase in logical complexity and area, while

substantially improving the error performance, which can be
up to 0.27 dB for a (6,32) (2048,1723) LDPC code in compar-
ison to the Split-Row decoding algorithm. Furthermore, unlike
the original Split-Row Threshold, the optimal threshold does
not have any dependency on channel statistics and decoding
iteration.
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