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A Low-Complexity Message-Passing Algorithm for
Reduced Routing Congestion in LDPC Decoders

Tinoosh Mohsenin, Dean N. Truong, and Bevan M. Baas

Abstract—A low-complexity message-passing algorithm, called
Split-Row Threshold, is used to implement low-density parity-check
(LDPC) decoders with reduced layout routing congestion. Five
LDPC decoders that are compatible with the 10GBASE-T stan-
dard are implemented using MinSum Normalized and MinSum
Split-Row Threshold algorithms. All decoders are built using
a standard cell design flow and include all steps through the
generation of GDS II layout. An � �� decoder achieves
improvements in area, throughput, and energy efficiency of
4.1 times, 3.3 times, and 4.8 times, respectively, compared to a
MinSum Normalized implementation. Postlayout results show
that a fully parallel � �� decoder in 65-nm CMOS operates
at 195 MHz at 1.3 V with an average throughput of 92.8 Gbits/s
with early termination enabled. Low-power operation at 0.7 V
gives a worst case throughput of 6.5 Gbits/s—just above the
10GBASE-T requirement—and an estimated average power of 62
mW, resulting in 9.5 pJ/bit. At 0.7 V with early termination en-
abled, the throughput is 16.6 Gbits/s, and the energy is 3.7 pJ/bit,
which is 5.8 lower than the previously reported lowest energy
per bit. The decoder area is 4.84 mm� with a final postlayout area
utilization of 97%.

Index Terms—Full parallel, high throughput, low-density parity
check (LDPC), low power, message passing, min sum, nanometer,
10GBASE-T, 65-nm CMOS, 802.3an.

I. INTRODUCTION

S TARTING in the 1990s, much work was done to enhance
error-correction codes to where communication over noisy

channels was possible near the Shannon limit. Defined by sparse
random graphs and using probability-based message-passing
algorithms, low-density parity-check (LDPC) codes [1] became
popular for their error-correction and near-channel-capacity
performances. At first, neglected since its discovery [2], ad-
vances in VLSI have given LDPC a recent revival [3]–[6].
LDPC has relatively low error floors, as well as better error
performance with large code lengths, and as a result, they
have been adopted as the forward error-correction method for
many recent standards, such as digital video broadcasting via
satellite (DVB-S2) [7], the WiMAX standard for microwave
communications (802.16e) [8], the G.hn/G.9960 standard for
wired home networking [9], and the 10GBASE-T standard for
10-Gbit Ethernet (802.3an) [10]. While there has been much
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research on LDPC decoders and their VLSI implementations,
high-speed systems that require many processing nodes typi-
cally suffer from large wire-dominated circuits operating at low
clock rates due to large critical path delays caused by the codes’
inherently irregular and global communication patterns. These
delay and energy costs caused by wires are likely to increase in
future fabrication technologies [11].

With these concerns in mind, the design of a future LDPC
decoder will require high performance and low power with the
following: 1) a large number of nodes that have a high degree of
interconnectedness and/or 2) a large memory capacity with high
memory bandwidths. These requirements are due, in part, to the
message-passing algorithm used by the LDPC decoder. Tradi-
tionally, this was done with the sum–product algorithm (SPA)
[12] or the MinSum algorithm [13]. Our previous work intro-
duced two nonstandard LDPC decoding algorithms based on
min sum, called “Split-Row” [14] and “multisplit” [15] algo-
rithms, that were proven to increase throughput up to five times,
and reduce wiring and area three times [16]. Split-row algorithm
achieves this through the partitioning of MinSum algorithm’s
global operation into semiautonomous localized
operations. As a result of the reduction in message passing, there
is a 0.3- to 0.7-dB reduction in performance, depending on the
level of partitioning.

The recently published “Split-Row Threshold” algorithms
add a comparison to a threshold constant that is used to par-
tially recover the lost information [17], [18]. A set of
1-bit global signals is needed with very few additional logic
blocks; significant error performance recovery is achieved
with only 0.07-dB loss from MinSum Normalized algorithm
[18]. Greater levels of partitioning is now accessible at less
error performance loss and will enable designs of fully par-
allel decoder architectures that have increased throughput
and energy efficiency, and reduced area and power [19]. This
paper is organized as follows: Section II reviews iterative
message-passing algorithms for LDPC decoders and common
decoder architectures, Section III studies the Split-Row algo-
rithm and its ability to reduce routing congestion in layout,
Section IV introduces a low-hardware-cost modification to
Split-Row algorithm called Split-Row Threshold algorithm that
improves error performance while maintaining the former’s
routing reduction benefits, Section V shows the detailed fully
parallel Split-Row Threshold architecture, Section VI analyzes
the postlayout results of fully parallel 10GBASE-T LDPC
decoders that implement Split-Row Threshold, and Section VII
concludes this paper.

II. BACKGROUND

A. MinSum Decoding Algorithm

The iterative message-passing algorithm is the most widely
used method for practical decoding [1], [20], and its basic flow
is shown in Fig. 1. After receiving the corrupted information
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Fig. 1. Flow diagram of an iterative message-passing decoding algorithm.

from an additive white Gaussian noise (AWGN) channel ,
the algorithm begins by processing it and then iteratively cor-
rects the received data. First, all check node inputs are initial-
ized to “0,” and then, a check node update step (i.e., row pro-
cessing) is done to produce messages. Second, the variable
node receives the new messages, and then, the variable node
update step (i.e., column processing) is done to produce mes-
sages. This process repeats for another iteration by passing the
previous iteration’s messages to the check nodes. The algo-
rithm finally terminates when it reaches a maximum number of
decoding iterations or a valid code word is detected,
which is explained in Section II-D.

An LDPC code is defined by an parity-check ma-
trix , which encapsulates important matrix parameters: The
number of rows is the number of check nodes, the number of
columns (or code length) is the number of variable nodes, and
row weight and column weight define the 1’s per row
and column, respectively. For clearer explanations, in this paper,
we examine cases where is regular and, thus, and are
constants. As an example, the 10GBASE-T code
matrix has a and . There are check
nodes and variable nodes, and wherever ,
there is an edge (interconnection) between check node and
variable node . In other words, the LDPC matrix is a matrix
describing a graph, whose vertices are check and variable nodes
and whose edges are the interconnections between the nodes of
the LDPC code.

In practice, among the iterative message-passing algorithms,
Sum Product algorithm (SPA) [12] and MinSum algorithm [13]
have become the standard decoding methods. Both algorithms
are defined by a check node update equation that generates

and a variable node update equation that generates . The
MinSum variable node update equation, which is identical to
the SPA version, is given as

(1)

where each message is generated using the noisy channel
information (of a single bit), , and the messages from all
check nodes connected to variable node , as defined
by (excluding ). MinSum algorithm simplifies the SPA
check node update equation, which replaces the computation

of an elementary equation by a function. The MinSum
check node update equation is given as

sign (2)

where each message is generated using the messages from
all variable nodes connected to check node , as defined
by (excluding ). Note that a normalizing scaling factor

is included to improve error performance, and thus, this
variant of MinSum algorithm is called “MinSum Normalized
algorithm” [21], [22]. Because check node processing requires
the exclusion of while calculating the for , it ne-
cessitates finding both the first and second minimums (
and , respectively). In this case, is more precisely
defined as follows:

if
if

(3)
where

(4)

(5)

Moreover, the term sign is actually an XOR of sign bits,
which generate the final sign bit that is concatenated to the mag-
nitude , whose value is equal to the function given
in (3).

The MinSum equations themselves do not cause the difficul-
ties of implementing LDPC decoders since, from an outward ap-
pearance, the core kernel is simply an addition for the variable
node update, and an XOR plus comparator tree for the check node
update. Rather, the complexities are caused by the large number
of nodes and interconnections, as defined by in tandem with
the message-passing algorithm. Recall that the 10GBASE-T
matrix has 2048 variable nodes , with each one connected
to six check nodes and 384 check nodes , with each

connected to 32 variable nodes . As a result, we have
connections,

where check nodes send, as an aggregate, 12 288 messages to
the variable nodes and the variable nodes, as an aggregate, send
12 288 messages to the check nodes per iteration.

In summary, for a single iteration of the message-passing al-
gorithm, the 10GBASE-T LDPC code requires a total of

total check node update computations and
total variable node update computations, as well

as pass these updated results for a total of
unique messages.

B. Fully Parallel Decoders

Fully parallel decoders directly map each row and each
column of the parity-check matrix to a different processing
unit, while all these processing units operate in parallel [4],
[5], [15], [19]. All check nodes, variable nodes, and
their associated total connections are
implemented. Thus, a fully parallel decoder will have
check and variable node processors, and
global interconnections. A fully parallel 10GBASE-T LDPC
decoder will require 2432 processors which are interconnected
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Fig. 2. Physical indicators of interconnection complexity over five ��� decoders (��� � �, 2, 4, 8, and 16) normalized to the the case where ��� � � (i.e.,
min sum). A 5-bit data path (1-bit sign and 4-bit magnitude) is used for all five decoder implementations. (a) Normalized ratios of per-partition properties: average
wire length, capacitance, area, and worst case delay, compared with the routing congestion model �� � ��

�
����. (b) Normalized ratios of whole decoder

properties: total wire length, percentage gate count and area increase (i.e., � versus � ), and via/pin/net/gate count, compared with routing CPU time.

by a set of global wires and their associated wire
buffers (i.e., repeaters), where is the number of bits in the
data path. Thus, optimizing the fixed-point format becomes an
important design parameter in reducing chip costs, not only by
optimizing logic area but also interconnect complexity.

In general, while fully parallel decoders have larger area
and capacitance, and lower operating frequencies than their
partially parallel counterparts (to be discussed shortly in the
next section), they typically only need a single cycle per
message-passing iteration; thus, fully parallel decoders are
inherently more energy efficient [5].

C. Fully Serial and Partially Parallel Decoders

In contrast to fully parallel decoders, fully serial decoders
have one processing core and one memory block. If the pro-
cessing core can calculate either a single check or variable node
update per cycle, then the memory must store all

messages. With this architecture, a 10GBASE-T fully serial
LDPC decoder will require a -bit memory. A 5-bit data
path would require the memory to store 122 880 bits or 15.36
kB. To increase performance, we can alternatively make the pro-
cessing core larger and calculate several checks and variables
per cycle and thus reduce the memory requirement. However,
this requires a multiport SRAM, which increases SRAM area
significantly [23], and building large high-performance SRAMs
in deep-submicrometer technologies results in sizable leakage
currents [24].

Although much smaller than fully parallel decoders, fully se-
rial decoders have much lower throughputs and larger latencies.
Partially parallel designs [6], [25]–[28] ideally try to find a bal-
ance between the two extremes by partitioning into rowwise
and columnwise groupings such that a set of check node and
variable node updates can be done per cycle.

Block-structured [29] or quasi-cyclic [30] codes are very
well suited for partially parallel decoder implementations.
The parity-check matrix of these codes consists of square
submatrices, where each submatrix is either a zero matrix or a
permuted identity. This structure makes the memory address
generation for partially parallel decoders very efficient, and
many communication standards, such as DVB-S2, 802.11n,
and 802.16e, use this structure.

D. Early Termination

For a basic message-passing algorithm, simulation can be
used to determine a predefined set of iterations for a range of
expected SNRs. However, a more efficient method is to deter-
mine whether the variable nodes have reached a valid solution to
the syndrome check equation: [1], [20], where
represents the beta messages of each variable node , i.e., the
recovered bits of . When satisfied, early termination occurs,
and the message is considered error free since parity among the
rows of has been met.

III. ROUTING CONGESTION REDUCTION WITH
SPLIT-ROW ALGORITHM

A. Split-Row Decoding Algorithm

The Split-Row decoding algorithm uses columnwise parti-
tioning of the matrix to reduce the interconnect complexity
due to message passing in the check node update step
[14]–[16]. Block-structured and quasi-cyclic codes which
have regular row weight (an equal number of ones per row)
receive the greatest benefit from the Split-Row architecture
because the routing congestion reduction of partitions is
equal and, therefore, the total congestion is minimized. Then,
if , the 10GBASE-T matrix, which has a row
weight of 32, is “split” into two submatrices, each with a
dimension of . For simplicity
of presentation, we assume even partitioning such that
is divided equally into partitions, where is
an integer, although there is no reason why the algorithm
cannot be applied to decoders with matrices of other forms.
This results in two decoder partitions that each has reduced

total check node update compu-
tations because of their reduced row weight and
reduced total variable node update
computations because of their reduced number of variable
nodes . The number of messages passed within each
partition is now ,
which is half that of a complete min sum.
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Fig. 3. Channel data ���, � matrix, the initialization matrix, and the check node output ��� values after the first iteration using MinSum Normalized, MinSum
Split-Row, and MinSum Split-Row Threshold algorithms. The Split-Row algorithm entries in (e) with the largest deviation from MinSum Normalized algorithm
are circled and are largely corrected with the Split-Row Threshold method in (f). Correction factors are set to be one here.

Simply put, Split-Row algorithm modifies the check node up-
date (2) of MinSum Normalized algorithm and results in the
following:

(6)
where represents the variable nodes only contained
in decoder partition on row (recall that each partition
has variable nodes). Notice that the sign information
is complete and is the only global signal propagating between
the “split” decoder partitions.

Because Split-Row algorithm is a general modification of the
message-passing algorithm, it can be used with both SPA and
MinSum algorithm [16]. In addition, Split-Row algorithm, like
SPA or MinSum algorithm, is not restricted to either fully par-
allel, fully serial, or partially parallel architectures. However, the
major benefit from “splitting” is its ability to reduce routing con-
gestion, which primarily only affects the global interconnects
caused by message passing. Fully serial architectures will gain
nothing, while fully parallel architectures will improve greatly;
partially parallel architectures will find their level of improve-
ment based on the amount of “parallelism” versus “serialism”
contained in their designs.

The major cost of partitioning comes from the incomplete
message passing that specifically affects check node updates (to
be discussed in Section IV-A).

B. Routing Congestion Reduction

In theory, for equally dimensioned matrices, we have
times the number of computations and times

the number of messages for each decoder partition per itera-
tion. However, since we still have times the number of
decoder partitions, then it initially appears that the intercon-
nect, memory, and logic complexity should in fact be the same.
However, it has been shown that, for fully parallel decoders,
Split-Row algorithm provides significant increase in area uti-
lization over other message-passing decoders that implement
large row weight LDPC codes [5], [14], [15], [23]. This result
is reasonable if we consider the physical role that interconnect
complexity plays in the design of VLSI systems.

Given an LDPC decoder with equal decoder partitions,
each with logic and memory resources, the core area
per partition is proportional to . quantifies the silicon
area used exclusively for logic and memory (e.g., standard cells,
SRAMs, etc.). Routing congestion is defined as ,
where is the number of “tracks demanded” and is the
number of “tracks supplied” [31]. Tracks are the lengthwise
(or widthwise) wires drawn assuming constant metal pitch and
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width. The maximum number of tracks for one metal layer is
proportional to the length (or width) of . Therefore, if we as-
sume that the layout is square,1 , which provides a
measure of the maximum routing resources available. Given that

(i.e., the communica-
tion requirements) per partition, then, as the decoder partition’s

is reduced by , the routing congestion for an LDPC
decoder with partitions is

. In other words, is the ratio of interconnect com-
plexity over a given chip dimension.

Fig. 2(a) shows the with the per-partition capacitance,
area, average wire length, and worst case (intrapartition) delay
of five postlayout 10GBASE-T LDPC decoder implementations
with , 2, 4, 8, and 16. (Note that repre-
sents a decoder using MinSum Normalized algorithm.) Clearly,
our routing congestion model follows these
metrics closely. For all five decoders, we use a 5-bit data path
(1-bit sign and 4-bit magnitude). Since Split-Row algorithm
eliminates the wires for check node magnitudes between par-
titions, its impact of routing congestion reduction is even more
significant when implementing larger data-path widths. On the
other hand, using a smaller data-path width results in signifi-
cant error performance loss when compared to a floating-point
implementation. Usually, a 4–6-bit data path results in near-
floating-point error performance.

Cadence’s SoC Encounter computer-aided design (CAD)
tool’s computational complexity, given by its routing CPU
time, is a real measure of routing congestion on their algo-
rithms’ ability to converge to a solution that satisfies the design
rules, timing, etc. Since the total wire length can be used as a
pessimistic measure of routing congestion [31], then it should
behave closely with the route CPU time. Fig. 2(b) shows this,
and in fact, the percentage area (as well as gate count) increase,
as compared to the original core (synthesis/core area and gate
count), also follow this trend. Via count also matches with
the rate of change in the total wire length, albeit at a different
magnitude. Notice that gate, pin, and net counts do not increase
rapidly until , which indicates that increases in wire
buffering change more dramatically, starting at the
data point. Since the gate, pin, and net counts represent the
connectivity needed by the design and are not decreasing as
much as compared to the total wire length for , this
means that the amount of tracks needed is decreasing
faster than the silicon complexity. Therefore, both postlayout

and core areas will converge with increasing :
.

In conclusion, theoretical results have shown that Split-Row
algorithm can reduce routing congestion by a factor of .
Actual implementation results of decoders at the postlayout step
bore out this conclusion.

IV. SPLIT-ROW THRESHOLD DECODING METHOD

A. Split-Row Error Performance

The major drawback of Split-Row algorithm is that it suffers
from a 0.4–0.7 dB error performance loss that is proportional to

compared to MinSum algorithm and SPA [12] decoders.
Because each Split-Row partition has no information about the
minimum value of the other partition, the minimum value in one
partition could be much larger than the global minimum. Then,

1If the layout is rectangular, then we have two routing congestion numbers
� and � , and the same analysis is done for each. For simplicity, we
assume a square layout.

Fig. 4. Impact of choosing threshold value �� � on the error performance and
BER comparisons for a (6, 32) (2048, 1723) LDPC code using SPA and MinSum
Normalized, MinSum Split-Row (original), and MinSum Split-Row Threshold
algorithms with different levels of partitioning and with optimal threshold and
correction factor values. (a) BER performance versus threshold value �� � with
different SNR values for Split-2 Threshold. The optimal region is circled with
an average value of � � ���. (b) Error performance results.

the check-node-generated values in the partition with the error
are overestimated. This leads to a possible incorrect estimation
of the bits during its variable node update.

Fig. 3 shows (a) the channel data and (b) the first three
rows of the parity-check matrix for an LDPC code with

and . Fig. 3(c) shows the initialization step where
all nonzero entries are initialized with channel data. Moreover,
Fig. 3 shows the check node outputs using (d) MinSum, (e)
MinSum Split-Row, and (f) MinSum Split-Row Threshold algo-
rithms based on the initialization step. To find and
for each case, reader should look at Fig. 3(c). For example, in
Fig. 3(c), in the first row, the entries are 0.2, 0.1, 2, 3, 0.3, and
5. Therefore, and in Fig. 3(d).

In Split-Row algorithm, entries with the largest deviations
from MinSum Normalized algorithm are circled. For example,
in the second row of the Split-Row matrix output in (e), the local
minimum in Sp1 is “2,” which is ten times larger than
the local minimum in Sp0, i.e., “0.2”, which is also the global
minimum of the entire row. This results in an overestimation of

values for the bits on the right side of the second row, possibly
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causing an incorrect decision for these three bits. In the first row,
although in Sp1, which is “0.3,” is close to the in
Sp0 (“0.1”), the in Sp1 (“3”) deviates significantly from
the in Sp0 (“0.2”), and this results in a large error in the
bit on the right side.

B. Split-Row Threshold Algorithm

The Split-Row Threshold algorithm significantly improves
the error performance without reducing the effectiveness of
Split-Row algorithm while adding negligible hardware to the
check node processor and one additional wire between blocks
[18]. Like Split-Row algorithm, the check node processing
step is partitioned into multiple semiautonomous par-
titions. Each partition computes the local and
simultaneously and sends the sign bit with a single wire to
the neighboring blocks serially. However, in the Split-Row
Threshold algorithm, both and are additionally
compared with a predefined threshold , and a single-bit
threshold-enable global signal is sent to
indicate the presence of a potential global minimum to other
partitions.

Algorithm 1 Split-Row Threshold Algorithm

Require:

Require: and as given in (4) and (5)

Require: threshold value

1: // Finds and

2: // for the th partition of a -decoder .

3:

4: if and then

5:

6:

if
if

(7)

7: else if and then

8:

9 if or

then

10:

if
if

(8)

11: else

12: do (7)

13: end if

14: else if and

or then

15:

16:

(9)

17: else

18

19: do (7)

20: end if

The kernel of the Split-Row Threshold algorithm is given in
Algorithm 1. As shown, four conditions will occur: Condition
1 occurs when both and are less than threshold

; thus, they are used to calculate messages according to
(7). In addition, , which repre-
sents the general threshold-enable signal of a partition with
two neighbors, asserted high, indicating that the least minimum
( ) in this partition is smaller than . Condition 2, as rep-
resented by lines 7 to 13, occurs when only is less than .
As with Condition 1, . If at
least one signal from the nearest neigh-
boring partitions is high, indicating that the local minimum in
the other partition is less than , then we use and to
update the messages, while using (8) (Condition 2a). Other-
wise, we use (7) (Condition 2b). Condition 3, as represented
by lines 14 to 16, occurs when the local is larger than
and at least one signal from the nearest
neighboring partitions is high; thus, we only use to compute
all messages for the partition using (9). Condition 4, as rep-
resented by lines 17 to 19 occurs when the local is larger
than and if the signals are all low;
thus, we again use (7). The variable node operation in Split-Row
Threshold algorithm is identical to the MinSum Normalized and
Split-Row algorithms.

The updated check node messages after one iteration
using the Split-Row Threshold algorithm are shown
in Fig. 3(f). Conditions 1 and 4 lead to the original Split-Row de-
coding, while Conditions 2 and 3 largely correct the errors by the
original Split-Row algorithm. Note that this is a simplistic rep-
resentation of the improvement that the threshold decoding will
have over Split-Row decoding method for larger parity-check
matrices.

C. BER Simulation Results

The error performance depends strongly on the choice of
threshold values. If the threshold is chosen to be very large,
most local and values will be smaller than which
results in only Condition 1 being met and the algorithm be-
haves like the original MinSum Split-Row. On the other hand
if the threshold value is very small, most local minimums will
be larger than and only Condition 4 is met which is again the
original MinSum Split-Row algorithm.

The optimum value for is obtained by empirical simula-
tions. Although the Threshold algorithm itself is independent of
the modulation scheme and channel model, in this work we use
BPSK modulation and an AWGN channel for all simulations.
Simulations were run until 80 error blocks were recorded.
Blocks were processed until the decoder converged early or the
maximum of 11 decoding iterations was reached. To further il-
lustrate the impact of the threshold value on error performance,
Fig. 4(a) plots the error performance of a (6,32) (2048,1723)
RS-based LDPC code [32], adopted for 10GBASE-T [10]
versus threshold values for different SNRs, using Split-Row
Threshold with . As shown in the figure, there are
two limits for the threshold value which lead the algorithm to
converge to the error performance of the original Split-Row.
Also, shown is the optimum value for the threshold
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Fig. 5. Block diagram of magnitude and sign update in the check node processor of partition ����� in Split-Row Threshold decoder. The Threshold Logic is
shown within the dashed line. The 4:2 comparator block is shown at the right.

TABLE I
AVERAGE OPTIMAL THRESHOLD VALUE �� � FOR THE SPLIT-ROW THRESHOLD

DECODER WITH DIFFERENT LEVELS OF PARTITIONING,
FOR A (6, 32) (2048, 1723) LDPC CODE

for which the algorithm performs best. Bit error rate (BER)
simulation results for (16, 16) (175, 255) EG-LDPC and (4, 16)
(1536, 1155) QC-LDPC codes show that the average optimal
thresholds with two partitions are 0.22 and 0.23, respectively.

The threshold value can be dynamically varied or made
static. Example implementations include dynamically
changed while processing, statically configured at runtime,
or hard wired directly into the hardware. In general, the less

is allowed to vary, decoders will have higher throughput,
and higher energy efficiency. Fortunately, as can be seen in
Fig. 4(a), the optimal BER performance is near the same
threshold value for a wide range of SNR values, which means
that dynamically varying produces little benefit. Efficient
implementations can use a static optimal value for found
through BER simulations.

One benefit of Split-Row Threshold decoding is that parti-
tioning of the check node processing can be arbitrary as long as
there are two variable nodes per partition and the error perfor-
mance loss is less than 0.3 dB. For example, Fig. 4(b) shows the
error performance results for a (6, 32) (2048, 1723) LDPC code
for (from left to right) SPA, MinSum Normalized algorithm,
MinSum Split-Row Threshold algorithm with different levels
of splitting and with optimal threshold values, and,
lastly, Split-Row algorithm (original). As the figure shows, the
MinSum Split-2 Thresholds are about 0.13 and 0.07 dB away
from SPA and MinSum Normalized algorithm, respectively.
The SNR loss between multiple Split-Row Threshold decoders
is less than 0.05 dB, and the total loss from Split-16 Threshold

Fig. 6. Block diagram of variable node update architecture for MinSum Nor-
malized and MinSum Split-Row Threshold decoders.

to Split-2 Threshold is 0.15 dB at . Moreover,
shown in the plot is the Split-2 original algorithm, which is
still 0.12 dB away from the Split-16 Threshold algorithm.
Table I summarizes the average optimal threshold values
for Split-Row Threshold decoder and shows small changes
with different partitioning levels.

V. SPLIT-ROW THRESHOLD DECODING ARCHITECTURE

A. Check Node Processor

The logical implementation of a check node processor in
partition using Split-Row Threshold decoding is shown in
Fig. 5. The magnitude update of is shown along the upper
part of the figure, while the global sign is determined with
the XOR logic along the lower part. In Split-Row Threshold
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Fig. 7. Top-level block diagram of a fully parallel decoder corresponding to an � � � parity-check matrix, using Split-Row Threshold decoding with ���
partitions. The interpartition ���� and �	
��	�� �� signals are highlighted. � � �����, where � is the code length.

Fig. 8. (a) Pipeline and (b) timing diagram for one partition of Split-Row Threshold decoder. In each partition, the check and variable node messages are updated
in one cycle after receiving the ���� and �	
��	�� �� signals from the nearest neighboring partitions.

decoding, the sign bit calculated from partition is passed
to the and neighboring partitions to
correctly calculate the global sign bit according to the check
node processing (2) and (6).

In both MinSum Normalized and Split-Row Threshold
decoding, the first minimum and the second minimum

are found alongside the signal , which
indicates whether or is chosen for a particular

. We use multiple stages of comparators to find and
. The first stage (the leftmost) is composed of simple

comparators which sort the two inputs and generate min and
max outputs. The second stage and afterwards consist of mul-
tiple 4 to 2 (4:2) comparators, and the details are shown in a
block in the right corner of Fig. 5. One benefit of the Split-Row
Threshold algorithm is that the number of inputs (variable
node outputs) to each check node is reduced by a factor of

, which lowers the circuit complexity of each check
node processor as the number of comparator stages is reduced
to .

The threshold logic implementation is shown within the
dashed line, which consists of two comparators and a few
logic gates. The Threshold Logic contains two additional
comparisons between and , and and

, which are used to generate the final values. The
local signal that is generated by comparing

and is OR’ed with one of the incoming
signals from and neigh-

boring partitions and is then sent to their opposite neighbors.

B. Variable Node Processor

The variable node equations remain unchanged between
MinSum Normalized and Split-Row Threshold algorithms, and
thus, the variable node processors are identical in all cases.
Fig. 6 shows the variable node processor architecture for both
MinSum and Split-Row Threshold decoders, which computes

messages according to (1) and contains multistage adders. Its
complexity highly depends on the numbers of inputs (column
weight ) and the input word widths. As shown in the figure,
this implementation uses a 5-bit data path.

C. Fully Parallel Decoder Implementation

The block diagram of a fully parallel implementation of
Split-Row Threshold decoding with partitions, high-
lighting the and passing signals, is shown
in Fig. 7. These are the only wires passing between the par-
titions. In each partition, local minimums are generated and
compared with simultaneously. If the local minimum is
smaller than , then the signal is asserted high.
The magnitude of the check node outputs is computed using
local minimums and the signal from neigh-
boring partitions. If the local partition’s minimums are larger
than and at least one of the signals is high,
then is used to update its check node outputs. Otherwise, local
minimums are used to update check node outputs. Fig. 8(a)
shows the pipeline diagram of one partition in the decoder. The
timing diagram of a check node and a variable node update is
shown in Fig. 8(b). The check and variable node messages are
updated one after the other in one cycle after receiving the
and signals from its neighboring partitions. In
fully parallel implementations, all check and variable processor
outputs are updated in parallel, and as shown in the timing
diagram in Fig. 8(b), it takes one cycle to update all messages
for one iteration. Therefore, the throughput for the proposed
fully parallel decoder with code length is

(10)

where is the maximum speed of the decoder and is based
on the delay of one iterative check node and variable node
processing.
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Fig. 9. Layout of MinSum Normalized and MinSum Split-Row Threshold decoder implementations shown approximately to scale for the same code and design
flow.

Fig. 10. Check to variable processor critical path Path1 and the interpartition ��������� �	 critical path Path2 for the Split-Row Threshold decoding method
with 
�	 partitions.

VI. DESIGN OF FIVE CMOS DECODERS

To further investigate the impact on the hardware im-
plementation due to partitioning, we have implemented
five fully parallel decoders using MinSum Normalized and
Split-Row Threshold methods with multiple partitionings for
the (6, 32) (2048, 1723) 10GBASE-T LDPC code in 65-nm
seven-metal-layer CMOS. All circuit-related performance
results are measured under “typical” process and temperature
conditions.

The parity-check matrix of the 10GBASE-T code has 384
rows, 2048 columns, a row weight of 32 , a column
weight of six , and an information length of 1723. The
fully parallel MinSum Normalized decoder has 384 check and
2048 variable processors, corresponding to the parity-check ma-
trix dimensions and , respectively. The split architectures
reduce the number of interconnects by reducing the number
of columns per subblock by a factor of . For example,
in each Split-16 subblock, there are 384 check processors (al-
though simplified) but only 128 (2048/16) variable processors.
The area and speed advantage of a Split-Row Threshold decoder
is significantly higher than in a MinSum Normalized implemen-
tation due to the benefits of smaller and relatively lower com-
plexity partitions, each of which communicates with short and
structured sign and passing wires. In this imple-
mentation, we use a 5-bit fixed-point data path, which results in
about 0.1-dB error performance loss for MinSum Normalized
and MinSum Split-Row Threshold decoders, when compared
to the floating-point implementation. Increasing the fixed-point
word width improves the error performance at the cost of a
larger number of global wires and larger circuit area.

A. Design Flow and Implementation

We use a standard-cell-based automatic place and route flow
to implement all decoders. The decoders were developed using
Verilog to describe the architecture and hardware, synthesized
with Synopsys Design Compiler, and placed and routed using

Cadence SOC Encounter. Each block is independently imple-
mented and connected to the neighboring blocks with and

wires. We pass these signals across each block
serially.

One of the key benefits of the Split-Row Threshold decoder is
that it reduces the time and effort for a fully parallel decoder im-
plementation of large LDPC codes using automatic CAD tools.
Since Split-Row Threshold decoder reduces the check node pro-
cessor complexity and the interconnection between check and
variable nodes per block, then each block becomes more com-
pact, whose internal wires are all relatively short. The blocks are
interconnected by a small number of sign wires. This results in
denser, faster, and more energy efficient circuits. Split-row also
has the potential to minimize cross talk and IR drops due to re-
duced wire lengths, reduced routing congestion, more compact
standard cell placement, and lower overall area.

Fig. 9 shows the postroute GDS II layout implementations
drawn roughly to scale for the five decoders using MinSum
Normalized and MinSum Split-Row Threshold algorithms with
multiple levels of partitioning. In addition to the significant dif-
ferences in circuit area for complete decoders, the even more
dramatic difference in individual “place and route blocks” is
also apparent.

B. Delay Analysis

In MinSum Normalized decoder, the critical path is the path
along a partition’s local logic and wire consisting of the longest
path through the check and variable node processors. However,
in Split-Row Threshold decoder, since the Threshold Logic (see
Fig. 5) is also dependent on the neighboring sig-
nals from partitions and , one possible crit-
ical path is a signal that finally propagates to
partition and changes the mux select bits influencing check
node output . To illustrate both critical paths, Fig. 10 shows
two possible worst case paths for Split-Row Threshold decoders
in bold. Path1 shows the original delay path through the check
and variable processors, while Path2 shows the propagation of
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Fig. 11. Components in the ������� delay path for ����	��
� �� propaga-
tion signal in MinSum Split-Row Threshold decoding.

Fig. 12. Components in the ����� delay path for����	��
� �� propagation
signal in MinSum Split-Row Threshold decoding.

TABLE II
����	��
� �� DELAY PATH COMPONENTS

FOR THE SPLIT-ROW THRESHOLD DECODERS

the signal, starting from the leftmost partition’s
( ) check node processor, through middle blocks,
and finally to the variable node processor of the rightmost parti-
tion ( ). In general, propagation path con-
sists of three delay blocks.

1) Origin Block (reg2out delay): This is the path where
signal is generated in a block and is shown

in Fig. 11. As shown in the figure, the path consists of
comparators to generate and , in addition
to a comparison with , and an OR gate to
generate the signal going to the next
partition.

2) Middle Blocks (in2out delay): This path consists of middle
blocks where signal is passing through. As-
suming that local and in all blocks are gener-
ated simultaneously, the delay in a middle block is one OR
gate which generates the signal.

3) Destination Block (in2reg delay): This is the path that a
block updates the final check node output and is using
the signal from neighboring partitions. The
path is shown in Fig. 12, which goes through the variable
processor and ends at the register.

Table II summarizes the , , and delay
values for four Split-Row Threshold decoders. As shown in the
table, the delay remains almost unchanged due to the

fact that it is one OR gate delay. For Split-2, there is no middle
block, and therefore, delay is not available. The total
interpartition delay for an -way
Split-Row Threshold decoder is the summation of all three delay
categories

(11)

Just as with check to variable delays, delays also
are subject to the effects of interconnect delays. Delays in the

and paths both decrease with increased split-
tings due to the lessening wiring complexity. Note that, because
of the decrease in comparator stages with each increase in split-
ting in the check node processor, the delay sees a sig-
nificant reduction while the worst case serial
signal path’s increases its contribution by , as
shown in (11).

The maximum speed of an -way threshold decoder
is determined by the maximum between

delay and the check to variable pro-
cessor delay paths

(12)

Although the bit is also passed serially since its final
value is updated with a single XOR logic in each block, its delay
is smaller than the propagation delay and there-
fore is not considered.

The bar plots in Fig. 13 show the postroute delay break-
down of (a) Path1 (check to variable processor) and (b)
Path2 ( propagation) in the decoders and are
partitioned into interconnect and logic (check and variable
processors and registers). The timing results are obtained using
extracted delay/parasitic annotation files. As shown in the fig-
ures, for MinSum Normalized and Split-2 Threshold methods,
Path1 is the dominant critical path, but for , Path2
( propagation path) begins to dominate due to
the overwhelming contribution of the term in (11).

The figures show that, while the variable processor delay
remains constant (because all decoders use the same variable
node architecture), the check node processor delay improves
with the increase of splitting. For MinSum Normalized and
MinSum Split-2 Threshold methods, the interconnect delay
is largely dominant. This is caused by the long global wires
between large numbers of processors. The interconnect path in
these decoders is composed primarily of a long series of buffers
and wire segments. Some buffers have long delays due to
large fanouts of their outputs. For the MinSum Normalized and
Split-2 decoders, the summation values of interconnect delays
caused by buffers and wires (intrinsic gate delay and delay)
in Path1 are 12.4 and 5.1 ns, which are 73% and 50% of their
total delays, respectively.

C. Area Analysis

Fig. 14 shows the decoder area after (a) synthesis and (b)
layout. The area of decoder after synthesis remains almost the
same. However, for the MinSum Normalized and Split-2 de-
coders, the layout area deviates significantly from the synthe-
sized area. The reason is because of the inherent interdepen-
dence between many numbers of check and variable nodes for
large row weight LDPC codes; the number of timing critical
wires that the automatic place and route tool must constrain
becomes an exponentially challenging problem. Typically, the
layout algorithm will try to spread standard cells apart to route
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Fig. 13. Postroute delay breakdown of major components in the critical paths of five decoders using MinSum Normalized and MinSum Split-Row Threshold
methods. (a) Path1: Check to variable processor delay. (b) Path2: ��������� �	 propagation delay.

Fig. 14. Area breakdown for five decoders using MinSum Normalized and MinSum Split-Row Threshold methods. The interconnect and wire buffers are added
after layout, which take a large portion of MinSum Normalized and MinSum Split-2 Threshold decoders. (a) Postsynthesis. (b) Postlayout.

the gates. This results in a lower logic (i.e., silicon/transistor)
utilization and a larger overall area. As an additional illustra-
tion, Fig. 14 shows the area breakdown of the basic contributors
of synthesis and layout for the decoders. As shown in the post-
layout figure, more than 62% and 49% of the MinSum Normal-
ized and Split-2 decoder areas are without standard cells and are
required for wiring.

Moreover, another indication of circuit area is the wire length
in the decoder chips, where there exist a limited number of metal
layers (seven metal layers). In MinSum Normalized and Split-2
decoders, the average wire lengths are 93 and 71 m, which are
4.4 and 3.4 times longer than Split-16.

D. Power and Energy Analysis

The energy consumed by a decoder is directly proportional
to capacitance, and by setting all decoder designs to the same
voltage, then their given capacitances will indicate energy effi-
ciency. Because our routing congestion model [Fig. 2(a)] can
follow capacitance versus the number of partitions, then, for
a given , the normalized capacitance is

. For , energy efficiency will be limited to
the algorithm and architecture—not the routing congestion in
layout.

The average power for Split-16 Threshold decoder is 0.70
times that of MinSum decoder. Interestingly, the operating fre-
quency of Split-16 decoder is 3.3 times that of MinSum decoder;
thus, if we simplify by assuming equal activities for both de-
signs, then effective lumped capacitance is decreasing at a rate
faster than the increased performance in terms of delay
(again, for simplicity, we assume that core logic gates have also
been unchanged)—see Fig. 15.

Fig. 15. Capacitance and maximum clock frequency versus the number of par-
titions 
�	.

Additional savings to average power and energy (along with
increased throughput) can be achieved through early termina-
tion, as mentioned in Section II-D. This technique checks the de-
coded bits every cycle and will terminate the decoding process
when convergence is detected. The cost of the early termination
circuit is the use of the already existing XOR signals (the sign
calculation), which gives “1” and “0.” Parity is then checked
through an OR gate tree with these XOR signals as inputs [5].
Postlayout results show that the early termination block for a
(2048, 1723) code occupies only approximately 0.1 mm .

Fig. 16(a) shows the average convergence iterations for
MinSum Normalized and Split-Row Threshold decoders for
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Fig. 16. Average convergence iteration and energy dissipation versus a large number of SNR values for five decoders using MinSum Normalized and MinSum
Split-Row Threshold methods. (a) Average convergence iteration. (b) Average energy dissipation.

TABLE III
COMPARISON OF FULLY PARALLEL DECODERS IN 65-nm 1.3-V CMOS, FOR A (6, 32) (2048, 1723) CODE IMPLEMENTED USING MINSUM NORMALIZED AND

MINSUM SPLIT-ROW THRESHOLD METHODS WITH DIFFERENT LEVELS OF SPLITTING. MAXIMUM NUMBER OF ITERATIONS IS � � ��.
�THE BER AND SNR VALUES ARE FOR 5-bit FIXED-POINT IMPLEMENTATIONS

a range of SNR values with . At low SNR values
dB , most decoders cannot converge within

11 iterations. For SNR values between 3.0 and 3.8 dB, the
average convergence iteration of MinSum Normalized decoder
is about 30% to 8% less than the Split-Row Threshold decoder.
For large SNRs dB , the difference between
the numbers of iterations for decoders ranges from 18% to
1%, indicating that all decoders can converge almost within
the same average number of iterations. Fig. 16(b) shows the
average energy dissipation per bit of the five decoders. The
MinSum Normalized decoder dissipates 3.4 to 4.7 times higher
energy per bit compared to the Split-16 decoder.

E. Summary and Further Comparisons

Table III summarizes the postlayout implementation results
for the decoders.

The Split-16 decoder’s final logic utilization is 97%, which
is 2.6 times higher than the MinSum Normalized decoder. The
average wire length in each subblock of Split-16 decoder is 21

m, which is 4.4 times shorter than in the MinSum Normalized
decoder. It occupies 4.84 mm , runs at 195 MHz, delivers 36.3-
Gbits/s throughput, and dissipates 37 pJ/bit with 11 iterations.

Compared to MinSum Normalized decoder, MinSum
Split-16 decoder is 4.1 times smaller, has a clock rate and
throughput 3.3 times higher, is 4.8 times more energy efficient,
and has an error performance degradation of only 0.23 dB with
11 iterations.

At , the average number of iterations of
Split-16 decoder is 1.15 times larger than MinSum Normalized
decoder, and it has a coding loss of 0.23 dB compared to
MinSum Normalized decoder. At this BER point, its average
decoding throughput is 92.8 Gbits/s, which is 2.9 times higher,
and dissipates 15 pJ/bit, which is four times lower than the
MinSum Normalized decoder.

At a supply voltage of 0.7 V, the Split-16 decoder runs at
35 MHz and achieves the minimum 6.5-Gbits/s throughput
required by the 10GBASE-T standard [10] (which requires 6.4
Gbits/s). Power dissipation is 62 mW at this operating point.
These results are obtained by interpolating operating points
using the measured data from a recently fabricated chip on the
exact same process [33].

F. Comparison With Other Implementations

The MinSum Split-16 Threshold decoder postlayout simula-
tion results are compared with recently implemented decoders
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TABLE IV
COMPARISON OF THE SPLIT-16 THRESHOLD DECODER WITH THE PUBLISHED LDPC DECODER IMPLEMENTATIONS FOR THE 10GBASE-T CODE.

�THROUGHPUT IS COMPUTED BASED ON THE MAXIMUM LATENCY REPORTED IN THIS PAPER

[6], [28] for the 10GBASE-T code and are summarized in
Table IV. Results for two supply voltages are reported for the
Split-16 decoder: Nominal 1.3 and 0.7 V, which is the minimum
voltages that can achieve the 6.5 Gbits/s throughput required
by the 10GBASE-T standard.

The partial parallel decoder chip [6] is fabricated in 65-nm
CMOS and consists of a two-step decoder: MinSum algorithm
and a postprocessing scheme which lowers the error floor down
to . The Sliced Message Passing (SMP) scheme
in [28] is proposed for Sum Product algorithm, divides the check
node processing into equal-size blocks, and performs the check
node computation sequentially. The postlayout simulations for
a partial parallel decoder are shown in the table.

Compared to the two-step decoder chip [6], the Split-16 de-
coder is 1.1 times smaller, has 1.9 times higher throughput, and
dissipates 3.9 times less energy, at a cost of 0.3 dB coding gain
reduction. Compared to the SMP decoder [28], Split-16 decoder
is about three times smaller and has 6.8 times higher throughput
with 0.2-dB coding gain reduction.

VII. CONCLUSION

This paper has given a complete, detailed, and unified presen-
tation of a low-complexity message-passing algorithm, called
Split-Row Threshold, which utilizes a threshold-enable signal
to compensate for the loss of interpartition information in
Split-Row algorithm (original). It provides at least 0.3-dB error
performance improvement over the Split-Row algorithm with

. Details of the algorithm with a step-by-step matrix
example, along with BER simulations, are given.

The architecture and layout of five fully parallel LDPC
decoders for 10GBASE-T using MinSum Normalized and
MinSum Split-Row Threshold methods in 65-nm CMOS have
been presented.

Postlayout results show that, when compared with the
MinSum Normalized decoder, Split-16 Threshold decoder has
2.6 times higher logic utilization, is 4.1 times smaller, has a
clock rate and throughput 3.3 times higher, is 4.8 times more
energy efficient, and has an error performance degradation of
0.23 dB with 11 iterations. At 1.3 V, it can attain up to 92.8
Gbits/s, and at 0.7 V, it can meet the necessary 6.4-Gbits/s
throughput for 10GBASE-T while dissipating 62 mW. In
comparison to other published LDPC chips, Split-16 decoder

can be up to 3 times smaller with 6.8 times more throughput
and 4.2 times lower energy consumption.
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