
An Energy-efficient Parallel H.264/AVC Baseline Encoder on
a Fine-grained Many-core System

Zhibin Xiao, Stephen Le and Bevan Baas

Department of Electrical and Computer Engineering, University of California, Davis

Abstract— The emerging many-core architecture provides a flexible
solution for the rapid evolving multimedia applications demanding both
high performance and high energy-efficiency. However, developing paral-
lel multimedia applications that can efficiently harness and utilize many-
core architectures is the key challenge for scalable computing. We con-
tribute to this challenge by presenting a fully-parallel H.264/AVC baseline
encoder on a 167-core asynchronous array of simple processors(AsAP)
computation platform. By exploiting fine-grained data and task level
parallelism in the algorithms, we partition and map the dataflow of the
H.264/AVC encoder to an array of 115 small processors coupled with
two shared memories and a hardware accelerator for motion estimation.
Due to the large number of independent processors available, the video
encoding process can be divided into three main stages: prediction,
entropy encoding, and reconstruction, with the entropy encoding and
reconstruction stages done in parallel and pipelined with the prediction
stage. Within each stage, each independent procedure is mapped onto
an individual processor for greater parallelization and efficiency. The
proposed parallel H.264/AVC encoder is capable of encodingvideo
sequences with variable frame sizes. The preliminary implemenation is
capable of encoding CIF (352x288) video at 54 frames per second (fps)
with 925 mW average power consumption by adjusting each processor
to workload-based optimal clock frequencies and dual supply voltages
with less than 1dB loss in resolution.

I. I NTRODUCTION

In the past decades, multimedia systems evolve with the rapid de-
velopment of VLSI technologies. More and more complicated image
and video algorithms become feasible by upgrading the underlying
hardware using newer process technology. Traditional video encoding
architectures appear in three forms: application-specificprocessors,
multimedia extensions to general-purpose processors, andmultime-
dia co-processors. However, none of these methods achieve both
high performance and flexibility for emerging multimedia standards.
The H.264/AVC is a video coding standard developed through a
collaboration of the ITU-T and ISO [1]. The standard is proven
to achieve significant video compression efficiency compared with
prior standards (39%, 49% and 64% bit-rate reduction versusMPEG-
4, H.263 and MPEG-2 respectively) [2]. This high coding gain
increase comes mainly from a combination of new coding techniques
which results in high computational complexity. The emerging many-
core approach has proven to be a feasible solution for real-time
H.264/AVC video encoding. However, how to map such complex
applications as H.264/AVC to many-core processors is challenging.
Many coarse-grained parallel many-core approaches have been pro-
posed for H.264/AVC encoding. Most of them exploit thread-level
or frame-level parallelism in video encoding algorithms [3], [4], [5],
[6].

In this paper, we propose an on-chip distributed processingap-
proach to parallelize the H.264/AVC baseline encoder at themac-
roblock (16x16) and 4x4 sub-macroblock level on a fine-grained
many-core platform. The proposed fine-grained parallelization ex-
ploits the existing locality and streaming nature of H.264/AVC resid-
ual encoding algorithms. Our work differs from previous research
in that we apply a more fine-grained approach to exploit task-
level parallelism in H.264/AVC encoding. We also take advantage

M

U

X

M

U

X

Fig. 1. Architecture of targeted many-core system.

of the globally-asynchronous locally-synchronous (GALS)and per-
processor voltage and frequency scaling features of the target many-
core system to further reduce the power consumption.

The rest of this paper is organized as follows. Section II introduces
the features of the targeted many-core system and the corresponding
parallel programming methodology. Section III presents the task-level
parallelization approach to the H.264/AVC encoder. Section IV shows
the performance analysis and results. Section V concludes the paper.

II. PARALLEL PROGRAMING METHODOLOGY AND TARGET

PLATFORM

A. The target AsAP platform

The target AsAP (Asynchronous Array of Simple Processors)
architecture is a fine-grained many-core system which is composed of
simple cores with small memories for high energy efficiency.Target
applications of AsAP include multimedia and communicationalgo-
rithms which can be partitioned into small tasks running separately on
small and simple processors at different supply voltages and frequen-
cies [7]. The system is composed of 164 16-bit homogenous DSP
processors, three dedicated hardware accelerators (viterbi decoder,
FFT and video motion estimator), and three 16-KB integratedshared
memories, all of which have local oscillators and are connected by
a reconfigurable mesh network [8]. The instruction set of thesimple
programmable processors adheres to a simple one-destination and
two-source architecture. The two source operands are from either
local data memory or two input buffers connected with neighboring
or far-away processors.

B. Parallel mapping and programing methodology

Fig. 2 shows the parallel programming methodology for the
proposed video encoder. The methodology is divided into three steps.
We first implemented a bit-level verified sequential C video encoder,
which uses a traditional shared memory model on general-purpose

Sequential C

Implementation

MemoryProc.

Task 0 Task 1Task 0
A

B
Task 1

Task 0 Task 1

Proc.0,0 Proc.1,0

Parallel C

Implementation

Fine-grained

Parallel

Implementation

General-Purpose Processor MPI-based Parallel Simulator Fine-grained Many-core Simulator

A B

Proc.

Memory

(a) Sequential C model (b) Parallel C model (c) Fine-grained AsAP model

Fig. 2. There execution model of fine-grained program parallelization
methodology

processors as shown in Fig. 2(a). Then the sequential algorithm
is partitioned into multiple parallel tasks which are implemented
with simple C programs separately as shown in Fig. 2(b). The
H.264/AVC encoder can be divided into many tasks which can be
combined by linking their inputs and outputs using a GUI-based
mapping tool. We have developed a linux-based parallel simulator
based on message passing interface (MPI) library to verify the parallel
C implementation. At the thrid step, the coarse-grained tasks are
repartitioned to fit on the resource-constrained fine-grainparallel
AsAP processors as shown in Fig. 2(c). By using the activity profile
of the processors reported by the simulator, we evaluate itsthroughput
and power consumption. This distributed processing approach is
suitable for video applications with streaming features sothat large
shared memories are avoided and each processor can work on its own
piece of data.

C. Programming constraints of AsAP platform

Theree main differences in programming AsAP versus other chips
or using MPI are the size of the data/instruction memory available
and the number of input buffers per processor. Video encoding is a
highly memory-intensive application. Since each processor occupies
128 16-bit words of data memory, even if one macro block data is
packed, it would not fit onto a single processor and would haveto
be split into at least two, with the luma data packed (two pixels per
word) into one processor and the chroma data into another processor.
Some processors are used soley for memory purposes, which would
have to be separated from the computational processors. Multiple
memory processors can be connected in a loop to form a FIFO like
buffer. The small instruction memory available for each processor
is fairly adequate for simple tasks. However, programs needto be
splitted up into smaller blocks for computationally-intensive tasks.
This creates more parallelism if programs can be broken up insuch
a manner that the smaller blocks can be executed at the same time.
The challenge is to find good breaking points in the programs where
branching off to another processor would require little overhead
because certain control information and data would be needed by
both/multiple processors.

The fine-grained AsAP platform has limited number of inputs to
both the chip and each individual processors. The AsAP chip has
one external input and output for off chip communication. Due to the
limited size of on-chip memories, the current and referenceframes
are stored off chip, when a processor requests a macroblock,it would
send a request signal to off-chip. The request signals and encoded
video output must share the same I/O port, requiring that control
bits be sent to off-chip for determining where each output should be
routed. In order to save buffer size, each processor only hastwo 64-
word input FIFOs. Because of the limited instruction memory, many

Fig. 3. H.264/AVC encoder block diagram

of the modules need to be broken up to smaller tasks, and at some
later point combined again to re-construct the data, which creates
input port congestions. Generally, we use processors for routing
purposes to overcome this problem.

III. F INE-GRAINED TASK-LEVEL PARALLELIZATION OF

H.264/AVC ENCODER

Fig. 3 shows the proposed H.264/AVC baseline encoder block
diagram. The motion estimation is implemented with dedicated hard-
ware motion estimator which supports several programmablesearch
patterns and all H.264-specified block sizes. As shown in Fig. 3, an
input frame is processed in units of macro-block which is compsed of
16x16 luma pixels and 8x8x2 chroma pixels. This type of block-based
video compression are very suited for the fine-grained many-core
systems which exploit fine-grained task-level parallelisms. An ideal
data-flow application pass data among processors in a streaming style.
However, data-dependencies and conditional execution complicate the
data-flow control of H.264 encoding, thus requiring large memories
for storing temporary data.

A. The overview of H.264 encoder parallelization on AsAP

1) Memory organization:Three memory internsive tasks in the
H.264 encoding are the current/reference frame management, motion
vector management and non-zero coefficient management in entropy
encoding. They arise from the fact that the encoding is basednot
only on the current macroblock but also previously encoded ones.

As shown in Fig. 3, the current/reference frame is stored off-chip,
which allows the proposed encoder support flexible frame size. The
off-chip memory is divided into three banks which holds the current
encoding frame, the reconstructed current frame and the previously
reconstructed frame in macroblock order with luma data followed by
chroma data.

As macroblocks are processed in raster scan order, a large memory
is needed to store the motion vectors of the top and left blocks
for motion vector prediction of current block and the numberof
the nonzero coefficients of those data-dependent blocks forCAVLC
encoding. The H.264 standard supports sub-partitions of blocks for
inter prediction, with two motion vectors per block this becomes a
possible maximum of 32 motion vectors when using the smallest par-
tition size(16 4x4 blocks). For motion vector prediction the preceding
row of macroblock motion vectors must be saved. A maximum of
3840-word memory is required for the 1080p resolution. Similarly to
motion vectors, the number of non-zero coefficients must be predicted
in the CAVLC using the top and left block data. Because the CAVLC
process is performed on 4x4 blocks, at least 4x120 memory addresses
must be reserved for a frame of 1080p resolution requiring the use
of on-chip shared memory.

������

�������	
��

����

���
���	�

��������

������

���������	�

�������

���������	�

���������
�������

��	�

�����

��	�

��	���

���	��

�������

��������

����
�	���

 ���

�����

��������

����
�	���

 ���

��	�!
�

���	��!
�

��"���	!#$

���
��

����
�	���

#$

����
�	���

#$

�����

���
��

Fig. 4. H.264 intra-prediction data-flow diagram

2) Data-flow control: One of the greatest challenges of parti-
tioning a program over such a large area is controlling the flow
of data between processors. Ensuring that data is present when
needed, and buffered when un-used is vital in preventing dead lock.
Since video encoding is done on a macroblock basis, for intra
prediction this requires each macroblock to go through the intra
prediction process, integer transform, quantization, scaling, inverse
transform, and reconstruction before the next macroblock can be
predicted. At each step proper control information must be present
to ensure accuracy. The chroma prediction process is much faster
than luma prediction and the predicted value used must be buffered
prior to being sent to the reconstruction blocks to prevent adead
lock situation at the integer transform. Basic macroblock and frame
information is also sent along each stage to ensure accuracyand
increase code reuse. Parameters such as frame width, frame height,
macro block width , macro block number, encoding mode (intra/inter)
and block mode are used at nearly every stage and transmittedto save
limited size of instruction memory. Many processors can start some
initial computation without all of the current data being present, this
however requires that the control information be broadcasted to many
processors via long distance interconnects creating an additional
mapping issue.

B. Detailed parallelization of H.264/AVC encoder

The major encoding blocks of H.264 baseline encoder include
intra-prediction, inter-prediction, integer trasnform,quantization and
CAVLC encoding. Due to space limit, we only give a breif illustration
of parallel mapping of inter-prediction and intra-prediction on AsAP.
The detailed illustration of the CAVLC encoder can be found in [9].

1) Intra Prediction: As mentioned before, the H.264 intra-
prediction introduces dependencies between current macroblock and
left, top and top right macroblocks. The proposed intra-predictor
on AsAP supports 5 prediction modes for luma and 3 prediction
modes for chroma, which reduce the dependencies between the
current macroblock and the top right macroblock. The intra prediction
process constitutes a rather large amount of computation. Fig. 4
shows a high level block diagram for the intra prediction module.
Data in and controlin contain information for the current macroblock
being predicted, the requestMB signal is for requesting neighboring
macroblock used for prediction. The residue output goes to are-
ordering processor for the integer transform process and the predicted
macroblock goes to the reconstruction processor to be addedto the
reconstructed residue data. Fig. 5 shows the parallel mapping of
chroma intra-prediction. The dash line represents the long-distance
communication links. Since one macroblock contains only 8x8 and

Cb/Cr

Memory

Cb/Cr

Residue
Horz/Vert

Prediction

DC

Prediction

1

DC

Prediction

2

Luma

Prediction

Luma

Predicti

on

Data/

ctrl_in

Residue/

Predicted

MB

Fig. 5. Intra chroma prediction mapping on AsAP

mvd_out

AsAP Memory

Processors

Calculate

SAD

Cal.

Residue

MV

Predict

residue_out

ME_ACC

Ctrl

ME_ACC

Inter

Pred

Control

data_in

ctrl_in

mb_request

Fig. 6. Block diagram of inter prediction module in AsAP

8x8 chroma Cb/Cr blocks, only one processor is needed for storage
while three are used for computation. To reduce the number ofrouting
processors, data is automatically sent to the DC mode computation
processors for computing the SAD for each mode and requested
individually at the second pass for computing residue. The luma intra-
prediction can be parallelized with a similar approach.

2) Inter Prediction: The inter-prediction is the bottleneck of the
H.264 encoder which can be speeded up by a programmable motion
estimation accelerator. The motion estimator basically consists of (a)
a parallel array of processing elements for pixel level SAD operations;
(b) a local memory to exploit data reuse to reduce the external
memory access; (c) an I/O control unit. Fig. 6 shows the diagram
of the proposed H.264/AVC inter-predictor. The motion estimator
(ME ACC) is capable of holding a 4x4 macroblock region for the
search window. To speed up the prediction process, only a 3x3search
window is used. A modified diamond search algorithm is used for
all block sizes. The modified algorithm uses only 5 search points as
opposed to the nine points generally tested, and is repeated4 times
to find the best match. Although this process is not as accurate as
a full diamond search the only drawback would be slightly higher
entropy values to be encoded. Once the best set of motion vectors
are computed, they are sent to a residue calculation processor. The
data used for this prediction is read from the 11 AsAP memory
processors that hold a mirror copy of the MEACC memory. The
data-flow diagram of Fig. 6 can be also mapped to AsAP array in
the same way as the chroma intra prediction module shown in Fig 5.

IV. I MPLEMENTATION RESULTS AND ANALYSIS

The proposed H.264 baseline encoder is implemented in sequential
C, parallel C with MPI simulator and AsAP assembly on the AsAP
chip simulator. Fig. 7 shows the mapping of major blocks on
the AsAP platform. The current implementation uses 115 AsAP
processors, 2 shared memories and the motion estimator. Table I
gives a comparison of overall processor number, memory processors,

Mem Mem

FFT

VitMem

Motion

Est.

clock

data

valid

request

clock

data

valid

request

CTRL

INTRA

PREDICTION

CTRL

IDCT/

RESCALING

CAVLCDCT/

QUANT.

INTER

PREDICTION

Fig. 7. The final mapping of H.264/AVC encoder on AsAP

Custom Mapping Mapping Tool
Number of Processors 115 147
Number of Memory Proc. 33 33
Number of Routing Proc. 21 53
Computational Proc. 61 61
Long Distance Links 48 52

TABLE I
COMPARISON OF CUSTOM LAYOUT AND PROPOSED MAPPING FROMASAP

ARBITRARY MAPPING TOOL

routing processors, computational processors and long distance com-
munication links between the custom mapping and the initialmapping
using the automatic mapping tool. The custom mapping saves 22% of
number of processors by reducing the number of routing processors.
The throughput of the proposed encoder is measured with the average
cycles to encode one QCIF (176x144) frame which can be converted
to frame per second at various voltages and maximum available
frequencies. Table II shows the throughput and power numberof
H.264 encoder measured on AsAP chip. The performance of intra
and inter encoder are reported separately. All of the processors are set
to run at the same voltages and the maximum supported frequencies.

Since AsAP processor can be set to run at different frequencies and
two provided supply voltages, we can scale the processor frequencies
and voltages based on the average processor activities dataprofiled by
the simulator. In this way, processors can be active most of the time at
their individual frequencies and voltages. We use the typical Foreman
video sequences for testing purpose. The preliminary results show the
encoder is capable of encoding CIF (352x288) video at 54 frames per
second (fps) with 925 mW average power consumption by adjusting
each processor to workload-based optimal clock frequencies and dual
supply voltages with less than 1dB loss in resolution compared to
reference C model. Since integer transform, quantization and CAVLC
encoding are processed at a smaller block size (4x4 block), we
can further exploit more fine-grained parallelsim to achieve higher
performance. In our implementation, the residual encoder (integer
transform, quantization and CAVLC) can encode real-time 1080p
HDTV at 30 frames per second (fps) with 424 mW average power
consumption.

V. CONCLUSION

In this paper, we have implemented an energy-efficient H.264/AVC
encoder on a fine-grained many-core platform. The implementation

Voltage Max Freq. Intra Inter Power Power
(V) (MHz) fps fps Intra (mW) Inter (mW)
0.8 172 19 95 108.8 365.1
0.9 295 33 160 213.6 452.6
1.0 410 49 233 419.0 662.3
1.1 539 66 324 696.3 908.4
1.2 651 82 427 802.7 1059
1.3 798 96 478 947.5 1189

TABLE II
PERFORMANCE OFH.264VIDEO ENCODER(QCIF FRAME) ON ASAP CHIP

utilizes an array of 115 small processors coupled with two shared
memories and a hardware accelerator for motion estimation.The
proposed parallel H.264/AVC encoder is capable of encodingvideo
sequences with variable frame sizes. The preliminary implemenation
is capable of encoding CIF (352x288) video at 54 frames per second
(fps) with 925 mW average power consumption with less than 1dB
loss in resolution. Our parallel programming practicses provides a
new method of coding over a large number of simple processors
allowing for a higer level of parallelization and energy-efficiency
than conventional digital singal processors (DSP) while avoiding
the complexity of implementing a full application specific integrated
circuit (ASIC).

VI. A CKNOWLEDGMENTS

The authors gratefully acknowledge support from ST Microelec-
tronics, NSF Grant 0430090 and CAREER Award 0546907, SRC
GRC Grant 1598 and CSR Grant 1659, Intel, UC Micro, Intellasys,
SEM, and a UCD Faculty Research Grant.

REFERENCES

[1] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,”IEEE Transaction on Circuits
Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[2] A. Joch et al., “Performance comparison of video coding standards using
lagrangian coder control,” inProc. IEEE Int. Conf. on Image Processing,
2002, pp. 501–504.

[3] Yen-Kuang Chen et al., “Towards efficient multi-level threading of
H.264 encoder on Intel Hyper-Threading architectures,” inProc. of
the 18th International Parallel and Distributed Processing Symposium
(IPDPS’04), 2004.

[4] Michael Roitzsch, “Slice-balancing H.264 video encoding for improved
scalability of multicore decoding,” inProc. of the 7th ACM and IEEE
International Conference on Embedded software, 2007, pp. 269–278.

[5] A. Rodrłguez* et al., “Hierarchical parallelization ofan H.264/AVC video
encoder,” inProc. of the International Symposium on Parallel Computing
in Electrical Engineering (PARELEC’06), 2006.

[6] Shuwei Sun, Dong Wang, and Shuming Chen, “A highly efficient parallel
algorithm for H.264 encoder based on macro-block region partition,”
Lecture Notes In Computer Science, pp. 577–585, 2007.

[7] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael
Lai, Jeremy Webb, Eric Work, Tinoosh Mohsenin, Mandeep Singh, and
Bevan M. Baas, “An asynchronous array of simple processors for
DSP applications,” inIEEE International Solid-State Circuits Confer-
ence(ISSCC), Feb. 2006, pp. 428–429.

[8] Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacob-
son, Gouri Landge, Michael Meeuwsen, Christine Watnik, Paul Mejia,
Anh Tran, Jeremy Webb, Eric Work, Zhibin Xiao, and Bevan M. Baas, “A
167-processor 65 nm computational platform with per-processor dynamic
supply voltage and dynamic clock frequency scaling,” inSymposium on
VLSI Circuits, (VLSI ’08), June 2008.

[9] Zhibin Xiao and Bevan Baas, “A high-performance parallel CAVLC
encoder on a fine-grained many-core system,” inIEEE International
Conference on Computer Design(ICCD ’08), October 2008.

