DLABS: a Dual-Lane Buffer-Sharing Router Architecture for Networks on Chip

Anh T. Tran, Bevan M. Baas

VLSI Computation Lab
University of California, Davis
Observation & Motivation (1)

More than 60% area and 30% power of the router are spent on its buffers.
But, a significant amount of these buffers are always empty while running some tested traffic patterns → not efficient.

The number of buffers which are always empty during 30,000 simulation cycles

<table>
<thead>
<tr>
<th>Traffic</th>
<th>uniform</th>
<th>transpose</th>
<th>bit-complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>always empty buffers</td>
<td>32</td>
<td>152</td>
<td>144</td>
</tr>
<tr>
<td>ratio</td>
<td>10.0%</td>
<td>47.5%</td>
<td>45.0%</td>
</tr>
</tbody>
</table>
Observation & Motivation (2)

For regular traffic patterns, a router design with less than number of buffers may have an equivalent performance as a typical router.

✓ the NoC using typical routers has high buffer empty and low buffer full percentages even at high packet injection rates.

an illustrated example: router’s buffer activity corresponding to a regular traffic pattern

![Diagram of router's buffer utilization](image)
Deadlock Potential in a NoC based on Shared-Buffer Routers

- A shared-buffer router architecture with 2 buffers;
- And the corresponding RDG for a 3x3-array network

✓ Can build a router with all input ports sharing a group of buffers instead of a buffer per input port
✓ But, it causes deadlock potential in the network (by creating loops in the corresponding resource dependence graph RDG)

[Dally, TC, 1987; Duato, TPDS, 1993]
Breaking Deadlock by a Dual-Lane Router Architecture

✓ Create two separate lanes without loop in the RDG by partitioning buffers into two group:
 - One group is shared by W_in and N_in ports, and outputs to E_out and S_out ports
 - Another group is shared by E_in and S_in ports, and outputs to W_out and N_out ports
✓ But, the network does not cover all destination-source patterns
DLABS_1+1

RD Labs_1+1 router architecture – version 1

- Allow a packet to be sent from lane 1 to lane 2, but not in the reversed way
- Has poor performance due to potential of buffering a packet two times in a router

A faster design:
- Allows a packet from buffer 1 of a router to be sent directly to buffer 2 of the next downstream router
Enhanced DLABS Router Architectures

- DLABS_2+2: two buffers per lane to have the same number of buffers as in a typical router
- Output physical links may become performance bottlenecks

- DLABS_2+2_duallink: two physical links per input/output ports
- Assumed on-chip interconnect wires are cheap:
 - multi-layer metal wires
 - routed only between nearest neighbors
Experimental Setup

Five router architectures in evaluation

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Typical wormhole</th>
<th>DLABS_1+1</th>
<th>DLABS_2+2</th>
<th>DLABS_2+2_duallink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total buffers</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Buffer depth (flits)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>I/O links per port</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

- Implement of all four router architectures in Verilog RTL
- Cycle-accurate simulation with Cadence NC Verilog
- Evaluate and compare their performance over three synthetic traffic patterns: uniform random, transpose, and bit-complement
- The simulated network consists of 8x8 nodes; each node = PE + router
- Run each simulation for 30,000 cycles
- Each packet is 10 FLITs in length
- Activity of each router is recorded cycle-by-cycle for evaluation
Results (1)

Percentage of number of buffers which are always idle during the whole simulation time

<table>
<thead>
<tr>
<th>Architect.</th>
<th>Typical wormhole</th>
<th>DLABS_1+1</th>
<th>DLABS_2+2</th>
<th>DLABS_2+2 duallink</th>
</tr>
</thead>
<tbody>
<tr>
<td>random</td>
<td>10.0%</td>
<td>1.0%</td>
<td>0.9%</td>
<td>0.9%</td>
</tr>
<tr>
<td>transpose</td>
<td>47.5%</td>
<td>16.2%</td>
<td>16.9%</td>
<td>16.9%</td>
</tr>
<tr>
<td>bit-comp.</td>
<td>45.0%</td>
<td>8.3%</td>
<td>9.8%</td>
<td>9.8%</td>
</tr>
</tbody>
</table>

☑ All DLABS routers utilize well their buffers

☑ DLABS_1+1: poorest performance due to congestion on shared buffers
☑ DLABS_2+2: better, but still poor due to congestion on interconnect links
☑ DLABS_2+2_duallink: best performance; especially in regular traffic patterns (not random)
Results (2)

- Routers are synthesized targeting 65-nm ST Microelectronics standard cells using Synopsis DC Compiler
- In typical router, 66% area is spent on its buffers
- Sharing buffers makes DLABS_1+1 router’s area only 62% of the typical router
- Having the same buffer area as the typical router, but DLABS_2+2 and DLABS_2+2_duallink are 8% and 12% bigger, respectively due to additional control logic circuits
- A similar result is observed in the synthesis power
TPA shows the silicon area using efficiency of a router design
Throughput is measured when the network has an average latency of 200 cycles (near saturated)
DLABS_2+2_duallink has greatest TPA over all traffic patterns
Especially, for the bit-complement pattern, the DLABS_1+1 and DLABS_2+2-duallink are 8% and 64% greater than the typical router
Conclusion
✓ Achieve higher area efficiency by sharing buffers of a router for multiple ports
✓ Resolve deadlock problem by a dual-lane architecture, named DLABS
✓ DLABS_1+1 has 62% area compared to a typical wormhole router, but has low performance
✓ DLABS_2+2_duallink has 12% area greater than a typical one, but achieves much higher performance and throughput per area, especially in regular traffic patterns

Future Work
✓ Evaluate DLABS routers over other traffic patterns
✓ Exploit other shared-buffer router architectures
✓ Compare with virtual-channel routers and other architectures
✓ Consider to use bidirectional interconnect links

Acknowledgements
✓ NSF Grant 430090, 903549; CAREER award 546907
✓ SRC GRC Grant 1598, 1971; CSR Grant 1659
✓ a VEF Fellowship
✓ ST Microelectronics
✓ Intel
✓ Intellasis