DLABS: a Dual-Lane Buffer-Sharing Router Architecture for Networks on Chip

Anh T. Tran, Bevan M. Baas

VLSI Computation Lab University of California, Davis

Observation & Motivation (1)

✓ More than 60% area and 30% power of the router are spent on its buffers

✓ But, a significant amount of these buffers are always empty while running some tested traffic patterns \rightarrow not efficient

The number	he number of buffers which are always empty during 30,000 simulation cycles						
	Traffic	uniform	transpose	bit-complement			
	always empty buffers	32	152	144			
	ratio	10.0%	47.5%	45.0%			

Observation & Motivation (2)

 ✓ the NoC using typical routers has high buffer empty and low buffer full percentages even at high packet injection rates

 ✓ For regular traffic patterns, a router design with less than number of buffers may has an equivalent performance as a typical router

Deadlock Potential in a NoC based on Shared-Buffer Routers

✓ Can build a router with all input ports sharing a group of buffers instead of a buffer per input port

✓ But, it causes deadlock potential in the network (by creating loops in the corresponding resource dependence graph RDG)

Breaking Deadlock by a Dual-Lane Router Architecture

✓Create two separate lanes without loop in the RDG by partitioning buffers into two group:

- One group is shared by W_in and N_in ports, and outputs to E_out and S_out ports
- Another group is shared by E_in and S_in ports, and outputs to W_out and N_out ports
- \checkmark But, the network does not cover all destination-source patterns

DLABS_1+1

✓ Allow a packet to be sent from lane 1 to lane 2, but not in the reversed way
✓ Has poor performance due to potential of buffering a packet two times in a router

 ✓ A faster design: allows a packet from buffer 1 of a router to be sent directly to buffer 2 of the next downstream router

Enhanced DLABS Router Architectures

✓ DLABS_2+2_duallink: two physical links per input/output ports

 ✓ Assumed on-chip interconnect wires are cheap:

- multi-layer metal wires
- routed only between nearest neighbors

 ✓ DLABS_2+2: two buffers per lane to have the same number of buffers as in a typical router
✓ Output physical links may become performance bottlenecks

Experimental Setup

Five router architectures in evaluation							
Typical	DLABS_1+1	DLABS_2+2	DLABS_2+2				
wormhole			_duallink				
5	3	5	5				
8	8	8	8				
2	2	2	4				
	Typical	Typical DLABS_1+1	Typical DLABS_1+1 DLABS_2+2				

✓ Implement of all four router architectures in Verilog RTL

- ✓ Cycle-accurate simulation with Cadence NC Verilog
- ✓ Evaluate and compare their performance over three synthetic traffic patterns: uniform random, transpose, and bit-complement
- ✓ The simulated network consists of 8x8 nodes; each node = PE + router
- ✓ Run each simulation for 30,000 cycles
- ✓ Each packet is 10 FLITs in length
- ✓ Activity of each router is recorded cycle-by-cycle for evaluation

Results (1)

Percentage of number of buffers which are always idle during the whole simulation time

Architect.	Typical wormhole	DLABS_1+1	DLABS_2+2	DLABS_2+2 _duallink
random	10.0%	1.0%	0.9%	0.9%
transpose	47.5%	16.2%	16.9%	16.9%
bit-comp.	45.0%	8.3%	9.8%	9.8%

✓ All DLABS routers utilize well their buffers

✓ DLABS_1+1: poorest performance due to congestion on shared buffers
✓ DLABS_2+2: better, but still poor due to congestion on interconnect links

✓ DLABS_2+2_duallink: best performance; especially in regular traffic patterns (not random)

Results (2)

✓ Routers are synthesized targeting 65-nm ST Microelectronics standard cells using Synopsis DC Compiler

 \checkmark In typical router, 66% area is spent on its buffers

✓ Sharing buffers makes DLABS_1+1 router's area only 62% of the typical router

✓ Having the same buffer area as the typical router, but DLABS_2+2 and DLABS_2+2_duallink are 8% and 12% bigger, respectively due to additional control logic circuits

 \checkmark A similar result is observed in the synthesis power

Results (3)

✓ TPA shows the silicon area using efficiency of a router design
✓ Throughput is measured when the network has an average latency of 200 cycles (near saturated)

✓ DLABS_2+2_duallink has greatest TPA over all traffic patterns
✓ Especially, for the bit-complement pattern, the DLABS_1+1 and
DLABS_2+2-duallink are 8% and 64% greater than the typical router

Conclusion

✓ Achieve higher area efficiency by sharing buffers of a router for multiple ports
✓ Resolve deadlock problem by a dual-lane architecture, named DLABS
✓ DLABS_1+1 has 62% area compared to a typical wormhole router, but has low performance

✓ DLBAS_2+2_duallink has 12% area greater than a typical one, but achieves much higher performance and throughput per area, especially in regular traffic patterns

Future Work

- ✓ Evaluate DLABS routers over other traffic patterns
- ✓ Exploit other shared-buffer router architectures
- ✓ Compare with virtual-channel routers and other architectures
- ✓ Consider to use bidirectional interconnect links

Acknowledgements

- ✓ NSF Grant 430090, 903549; CAREER award 546907
- ✓ SRC GRC Grant 1598, 1971; CSR Grant 1659
- ✓ a VEF Fellowship
- ✓ ST Microelectronics
- ✓ Intel
- ✓ Intellasys