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Abstract— Ultrasound remains a popular imaging modality due to its
mobility and cost-effectiveness. As general purpose computing and DSPs
are entering an era of multi-core architectures, the potential for parallel
performance gains are significant when used properly. This work explores
the possibility of using a massively parallel processor array to meet real-
time throughputs for mid-/back-end ultrasound processing. A many-core
array of simple DSP cores, shared memories, and an FFT processor is
shown to dissipate 87.79 mW for B-mode, 33.20 mW for color flow, and
29.24 mW for spectral doppler, while achieving a frame rate of 37.6 fps
for B-mode and 12.5 fps for color flow.

I. Introduction

The clinical use of ultrasound is increasingly commonplace with a
given estimate of 250 Million exams done worldwide—over three
times greater than the next often used imaging modality (X-ray
CT) [1]. The choices of transducers and digital processing algorithms,
as well as a wider range of design requirements such as adaptive
beamforming, automated 3D real-time ultrasound and enhanced mo-
bility, create a design environment for a wider array of possibilities.
Thus, future ultrasound systems will have reprogrammable and re-
configurable electronics at all levels including the analog front end,
beamforming, image processing, and scan conversion. To meet these
challenges multi-processor DSPs have been touted as a viable solution
to achieve real-time multimodal ultrasound with the capability of
being programmable [2], [3]. However, next generation computation
will be guided by many-core chip architectures and more integrated
electronics, which creates the foundation to push what is often
thought of as research into the hands of clinicians.

The potential of many-core parallelism in ultrasound was demon-
strated using Ambric, Inc.’s massively parallel processor array
(MPPA) with ultrasound beamforming [4]. Digital beamformers are
typically implemented on FPGAs to meet both reconfiguration and
processing requirements, but lack software programmability. Am-
bric’s MIMD architecture provided the flexibility and it’s 336 DSP
core 2D mesh let the application scale to most any typically sized
transducer array. A 64-channel test platform was built using Ambric’s
solution [5].

Academic research has also delved into the many-core question
early on with MIT’s 16-core RAW [6], the polymorphic TRIPs
architecture from UT Austin [7], and the 36-core AsAP from
UC Davis [8]. The second generation AsAP chip (Asynchronous
Array of simple Processors) is a 167-core computational platform fab-
ricated in 65 nm. In addition to its 164 homogeneous DSP processors,
it includes three shared memory blocks and three dedicated purpose
processors for process heavy tasks such as video motion estimation,
Viterbi decoding, and FFT [9]. To the best of our knowledge, these
research chips have not attempted to tackle biomedical imaging.

In this paper we will describe a B-mode and color flow application
implemented on a many-core architecture based on the 167-core com-
putational platform. Like many other DSP applications, ultrasound
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Fig. 1. Ultrasound system block diagram.

signal and image processing kernels tend to have small instruction
memory footprints and are naturally task parallel. Because the plat-
form is globally asynchronous and locally synchronous (GALS), and
can support dynamic voltage and frequency scaling (DVFS), per-
core voltage and frequency selection will be used to save power and
energy.

II. Overview

A. System Architecture

An ultrasound system generally consists of a transducer, beam-
former, mid-/back-end processing, and scan converter. The transducer
transmits the ultrasonic waves and then waits to receive the echoes
(i.e. the transceiver); the beamformer controls the direction of the
transmitting wave and the ‘listening’ direction of received echoes;
the mid-/back-end processing converts the raw echo signals into
anatomical and physiological data, and the scan converter maps the
data to the target video/image display. This system architecture is
shown in Fig. 1.

The analog front end consists of high-voltage muxes and ultrasound
pulsers, as well as transmit/receive switches and low noise amplifiers
(LNAs), variable gain amplifiers (VGAs), and high speed ADCs [3],
[10]. The digital beamformer can be built with FPGAs and/or Am-
bric’s MPPA, the scan conversion is done using a graphics processor,
while the mid-/back-end processing is done using our proposed many-
core architecture. Additionally, a control processor can be used to
reconfigure control signals and LUTs to every system block.

B. Chip Architecture

The key requirements for ultrasound signal and image processing
centers around RF demodulation, 1D and 2D filtering, and Doppler-
based imaging, which requires autocorrelation algorithms and the
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Fig. 2. Block diagram of the 167-processor computational array.

FFT. The basic chip architecture is shown in Fig. 2. The kernels are
mapped onto the array of simple DSP cores, each core consisting
of a 128-word local instruction memory (IMem), and 128-word
by 16-bit local data memory (DMem). In order to facilitate cross-
frequency domain communication, two 64-entry FIFOs are provided.
In addition, 16 KB shared memory modules are used to temporarily
store processed data (usually around several beam lines—spatially
and/or temporally) when the filtering becomes 2D.

Once the receive beamformer forms a data point that sample is
sent to the chip. Thus, the I/O can be a simple parallel bus of 16-
bits since the typical dynamic range acceptable for ultrasound (that is
achievable by an ADC) is around 12-bits. Given a modest I/O speed
of 250 MHz (for single ended CMOS), the ideal number of bytes per
second at the I/O is 500 MB/sec. Typically the sampling is chosen
to be at least four times the carrier to preserve echo information [5].
Since the normal diagnostic range for the ultrasound carrier frequency
is between 1 to 20 MHz, the I/O bandwidth will be between 4 to
80 MSamples/sec, accordingly (assuming 4× sampling rate). Thus,
the worst case bytes per second will be 120 MB/sec with a 12-bit
data word, which is more than doable with our modest I/O. The
output bandwidth will be lower because of decimation in the RF
demodulation step on the initial beamformed data stream.
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Fig. 3. Mid-/Back-end implementation block diagram.

C. Mid-/Back-end Processing

Figure 3 shows the main blocks and subblocks in mid-/back-
end ultrasound processing. Each of the algorithms will be described
below.

1) RF Demodulation: The first basic block before any further
processing is the RF demodulation, which mixes the received beam-
formed sample with the carrier frequency (the original ultrasound
transducer transmitted frequency) to extract the real and imaginary,
or I and Q components. Low pass filtering (LPF) and decimation is
done to eliminate the negative frequency spectra and to reduce the
number of samples, respectively. The polyphase filtering technique is
employed to reduce the number of computation steps by combining
the LPF and decimation step, which eliminates needless LPF pro-
cessing on generating samples that will eventually get discarded in
decimation.

2) B-mode Processing: In B-mode (or pulse-echo) processing the
first steps is a magnitude calculation of the demodulated signal and a
logarithmic compression, which helps to convert the dynamic range
into 8-bits for final display onto a monitor. The logarithm can be
done using a CORDIC algorithm. Filtering is then used on both
dimensions of the image. Axial and lateral filters are FIR filters that
can be done using one processor. Median filtering will require some
processor pipelining (see Sec. II-D) to speed up processing, but any
median filter dimension larger than 5 × 5 will require a histogram-
based algorithm that gives O(N) versus O(N2) for a N×N filter. Both
median and lateral filters require temporary storage of beam line data
(spatially) for filtering across multiple beam lines.

3) Color Flow Processing: Color flow imaging takes multiple
pulse-echo acquisitions along a select set of beam lines. In other
words, color flow images are constructed from repeated snapshots
of a subset of the whole B-mode image. In each snapshot only
objects that are moving will form changes in amplitude and phase.
By using a subtraction of images over time only the signals that
come from moving objects remain from the difference. An arctangent
is done on the difference to recover the phase information, i.e. the
average velocity over a given region of interest. This process is
called autocorrelation, which is also commonly used in radar to track
moving targets.

Color flow processing requires the most amount of temporary data
storage due to the fact that it needs data from previous acquisitions
(temporal). Thus, after RF demodulation, the data of the past beam
lines are stored before any processing is done. Otherwise, the signal
processing kernels are no more demanding than in B-mode: FIR
(Wall) filters and CORDIC for arctangent.

4) Spectral Doppler Processing: In spectral Doppler processing
continous wave (requires analog beamforming [10]) and/or pulsed
Doppler data is filtered and then sent to an FFT. A small area of
tissue is targeted and a beamformed wave is transmitted, and over
time a set of received data is processed using a 128 or 256-point
FFT. For our chip architecture it will be trivial to do FFTs because
of the built-in dedicated FFT processor [11].

D. Task Parallelization

Many tasks, such as those based on CORDIC, can be done using
one processor, but execution takes many cycles per sample due to
a costly iterative loop. As a result, a single loop in one processor
requires a higher than necessary operating frequency in order to meet
real-time requirements. Alternatively, it is possible to do a ‘loop
unroll’ and replicate the kernel over a pipelined set of processors
in order to increase throughput and reduce the minimum operating
frequency. This is not beneficial from a latency standpoint, but from



Algorithm 1 CORDIC Arctangent Kernel
Require: Get initial values of I and Q from autocorrelation.
θ = 0
for n = 0 to N − 1 do

Ishi f ted = I >> n
Qshi f ted = Q >> n
if Q < 0 then

Inew = I − Qshi f ted

Qnew = Q + Ishi f ted

θnew = θ − arctan(2−n)
else

Inew = I + Qshi f ted

Qnew = Q − Ishi f ted

θnew = θ + arctan(2−n)
end if
I = Inew

Q = Qnew

θ = θnew

end for

a power density standpoint we rather have a distribution of many low
power cores than a few high power cores.

A simple example can be shown with the CORDIC arctangent ker-
nel. The computational core of the loop is described in Algorithm 1.
The kernel consists of shifts and add/subtracts. In a serial version
of this algorithm, the loop’s kernel is iterated N times, where N
is generally the number of bits in the fixed point format; in other
words, the iterations required depends on the numerical precision
required. For each iteration, θ is updated by ± arctan(2−n), where
n ∈ 0, 1, . . . ,N − 1. The decision whether to add or subtract comes
from the value of Q1 from the autocorrelation processor (see Fig. 3).
For every subsequent iteration, a new Q is computed (Qnew) and then
a if/else decision is made where I, Q, and θ are updated based on
one of two sets of rules. For a parallel pipeline implementation the
kernel essentially stays the same, except that I, Q, and θ are received
from the previous processor, while Inew, Qnew, and θnew are sent to
the next processor (rather than being written/read to/from registers).

For our implementation we use fixed-point 3.13 format, which
requires 14 look-up-table entries from arctan(20) to arctan(2−13), and
thus N = 14. Notice that if we use a smaller fixed-point format
(ultrasound processing typically require only 8 bits of information)
power dissipation for CORDIC arctangent will decrease linearly,
e.g. Nnew/Nold = 6/14 for a 3.5 versus 3.13 format case, as the
frequency for a single processor implementation will decrease by
the number of iterations. Similarly, the number of processors will
decrease by the same ratio in a pipelined implementation. (Of course,
other algorithms will have different tradeoff functions.)

III. Results

The results of an ultrasound application implemented on the many-
core architecture is summarized in Table I. We have assumed that the
ultrasound pulses are carried on a 10 MHz frequency, the decimation
factor is four, sampling is done on 80 MSample/sec ADCs, the pulse
repetition frequency is 19.25 kHz, there are 512 B-mode beam lines,
192 color flow beam lines, and an ensemble size of 8 (more than
1024 samples per beam line for both modes). These characteristics are
relatively high-end [12], [13]. In addition, the (unweighted) median

1The numerator in arctan( Q
I ).

filter size is 3 × 3, the axial filter has 15 taps, the lateral filter has 5
taps, and the wall filters have 5 taps.

Note that there is an extremely low need for local data storage per
DSP processor—only large memories are required to store multiple
beam lines of data. Instruction memory usage is generally modest,
with only a few even going beyond half of the IMem’s 128 word
capacity. This shows that the processor granularity is well suited to
the parallelism inherent in mid-/back-end ultrasound.

In total, there are 77 DSPs, 6 shared memories, and one FFT
processor for the targeted ultrasound mid-/back-end applications. The
table shows that most processors require very few cycles per FIFO
read (CPR) and cycles per FIFO write (CPW), which helps reduce
their minimum operating frequencies in order to meet a throughput re-
quirement. For instance, given that the input throughput is 80 MSam-
ples/sec., and that the mixer processor of the RF-demodulator takes
four cycles to process each sample, the mixer operates at 320 MHz
(see Table I). Therefore, by using each processor’s CPR and CPW
we can determine the optimal frequency required by each processor
to avoid data starvation or data abundance—both of which causes
FIFO empty/full states to occur. Energy efficient operation occurs
when the mismatch in CPR and CPW of two communicating blocks
is eliminated with optimal frequency selection.

While the 167-core chip can only select between two Vdds, as
an experiment Table I shows an ideal DVFS where each processor
can select an arbitrary voltage and the resulting average power at
that voltage. This shows the extreme energy and power savings limit
of our many-core design. With a total average power dissipation
of 150.23 mW with all three modes concurrently running 100% of
time, the average energy per frame for B-mode at 37.6 frames per
second and color flow at 12.5 frames per second is 2.33 mJ/frame and
2.66 mJ/frame, respectively. In comparison, a two voltage operation
with VddHigh = 0.8 V and VddLow = 0.67 V static assignments
results in a total average power of 160.07 mW (a 6.5% increase),
with B-mode, color flow, and spectral doppler dissipating 96 mW
(2.55 mJ/frame—9.4% increase), 34 mW (2.72 mJ/frame—2.3%
increase), and 30 mW, respectively. Thus, even though the majority
of processors can operate efficiently using a static assignment, an
adaptive DVFS can still bring in gains if implemented with low
overhead circuits and algorithms [14].

IV. Conclusion

Many-core processing is becoming the norm to achieve perfor-
mance gains that satisfies future needs while meeting the power
density, energy, and heat requirements. Ultrasound is an example
medical imaging application that can benefit from many-core process-
ing, which has the potential to have markedly improved performance
over conventional multi-core or multi-chip DSPs. By exploiting task
parallelism and using an array of frequency independent simple
cores, ultrasound signal and image processing can meet real-time
throughput requirements while maintaining low power. However,
as multi-mode (duplexing) ultrasound and improved multi-beam
technologies become available, bandwidth as well as latency will
become larger issues, and future ultrasound applications will further
challenge system designers.
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