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A Low-Area Multi-Link Interconnect Architecture
for GALS Chip Multiprocessors

Zhiyi Yu and Bevan M. Baas

Abstract—A new inter-processor communication architecture
for chip multiprocessors is proposed which has a low area cost,
flexible routing capability, and supports globally asynchronous
locally synchronous (GALS) clocking styles. To achieve a low area
cost, the proposed statically-configurable asymmetric architec-
ture assigns large buffer resources to only the nearest neighbor
interconnect and much smaller buffer resources for long dis-
tance interconnect. To maintain flexible routing capability, each
neighboring processor pair has multiple connecting links. The
architecture supports long distance communication in GALS
systems by transferring the source clock with the data signals
along the entire path for write synchronization. Compared to a
traditional dynamically-configurable interconnect architecture
with symmetric buffer allocation and single-links between neigh-
boring processor pairs, this implementation has approximately
two times smaller communication circuitry area with a similar
routing capability. Area and speed estimates are obtained with the
physical design of seven chips in 0.18-pm CMOS.

Index Terms—Chip multiprocessor, globally asynchronous
locally synchronous (GALS), inter-processor interconnect,
many-core, multi-core, network-on-chip (NoC).

1. INTRODUCTION

NTEGRATING multiple processors into a single chip
I (known as chip multiprocessors or CMPs) has recently
become easily achievable and common due to continuing
advances in VLSI fabrication technologies [1], [2]. This fact
makes interprocessor communication in chip multiprocessors
an important design issue.

Wires in deep-submicrometer CMOS fabrication technolo-
gies are introducing greater: relative delay, relative power con-
sumption, and timing and power variations which is causing tra-
ditional on-chip communication methods such as a global bus
structures to meet considerable challenges. Researchers have
proposed network-on-chip (NoC) solutions which use routers
for inter-processor communication. Most research is based on
dynamic packet-switched routing architectures [3], [4]. Another

Manuscript received July 07, 2008; revised December 12, 2008. First pub-
lished August 04, 2009; current version published April 23, 2010. This work
was supported in part by Intel, by UC MICRO, by NSF Grant 0430090, by CA-
REER Award 0546907, by SRC GRC Grant 1598.001, by CSR Grant 1659.
001, by ST Microelectronics, by Intellasys, by S Machines, by Artisan, and by
State Key Laboratory of ASIC & System (Fudan University) ZD20080103 and
KF2008405.

Z. Yu is with the State Key Laboratory of ASIC & System, Microelec-
tronics Department, Fudan University, Shanghai 201203, China (e-mail:
zhiyiyu@fudan.edu.cn).

B. M. Baas is with the Electrical and Computer Engineering Department,
University of California, Davis, CA 95616 USA (e-mail: bbaas@ucdavis.edu).

Digital Object Identifier 10.1109/TVLSIL.2009.2017912

approach is the statically configurable nearest-neighbor inter-
connect architecture [5], [6], where each processor communi-
cates with only its four nearest neighbors in 2-D meshes and
long distance communication is accomplished by software in in-
termediate processors. Other designs [7] use both dynamic and
static interconnects.

Although both dynamic routing architectures and static
nearest neighbor interconnect architectures achieve significant
success in specific areas, they have some limitations. Dynamic
routing architectures are flexible, but normally require relatively
large circuit area and power for communication circuitry. The
static nearest neighbor interconnect architecture reduces area
and power requirements significantly, but it results in relatively
high latency for long distance communication.

Communications within chip multiprocessors for many appli-
cations, especially many digital signal processing (DSP) algo-
rithms, are often largely localized [8], [9]: most communication
is among nearest (or local) neighbors while a small portion is
long distance. Motivated by this fact, we propose an asymmetric
structure to obtain good tradeoffs between flexibility and cost
by: treating the nearest neighbor communication and long dis-
tance communication differently, using more buffer resources
for nearest neighbor connections, and using fewer buffer re-
sources for long distance connections [10]. Together with the
relatively simple static routing approach, this asymmetric archi-
tecture can achieve low area cost for communication circuitry.

Under the static asymmetric architecture, there are a couple
of design options available such as the number of input ports
(buffers) for the processing core; and the number of links be-
tween each neighboring processor pair. The area, speed, and
performance of different design options are analyzed, and some
conclusions based on the results are drawn. We found that in-
creasing the number of links between processors is helpful to in-
crease routing capability, but it dramatically increases processor
area after a certain point which depends on implementation de-
tails. Two or three links are generally appropriate when each
processor in the chip utilizes a simple single-issue processor ar-
chitecture.

Moreover, the proposed architecture supports the globally
asynchronous locally synchronous (GALS) [11] clocking style
which allows each processor to operate in its own clock domain
and avoids the design of a global clock tree, which can signifi-
cantly simplify the clock system design and potentially reduce
system power consumption. After examining the characteristics
of different approaches, we propose a source synchronous
method which transfers the clock with the data and control
signals along the entire path to the destination processor.

Compared to traditional dynamically configurable intercon-
nect architectures with symmetric buffer allocation and single
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Fig. 1. (a) Illustration of interprocessor communication in a 2-D mesh and (b)
a generalized communication routing architecture in which only signals related
to the west edge are drawn.

links between each neighboring processor pair, a presented im-
plementation example of the proposed architecture shows that it
can reduce the communication circuitry area by approximately
two times with similar routing capability.

The structure of the remainder of this paper is as follows.
Section II describes the proposed statically configurable asym-
metric interconnect architecture. Section III explores several de-
sign options. Section IV investigates the approaches to support
the long distance GALS clocking style. Section V discusses an
implementation example and its results. Finally, the conclusion
summarizes the key contributions.

A. Background: Traditional Dynamic Routing Architecture

Fig. 1(a) shows the interprocessor communication in a typical
2-D mesh-connected chip multiprocessor using a router archi-
tecture. The router block in each processor receives data from
the processor core and neighboring processors (east, north, west,
and south) and then sends data to the processor core or neigh-
boring processors. Since communication links are not always
available for data transfers due to slow data processing speeds
or link congestion, buffers are inserted at each input edge [12].
Fig. 1(b) shows a generalized diagram of the routing circuitry
where only signals related to the west edge (west in and west
out) are drawn. Input ports from each side feed data into a cor-
responding buffer, and the buffers supply data to the processor
core or other output ports. Each output port selects data from the
processor core and three input buffers. As the diagram shows,
the communication logic includes five buffers and five muxes,
and there is some control logic to support the communication
flow control which is not drawn. Other implementations are pos-
sible; for example, each output port can also have a buffer, or
each input buffer can be split into multiple virtual channels [13]
to reduce communication congestion and hence reduce com-
munication latency. The area of the communication circuitry
is normally dominated by the buffers, and the logic in the four
input/output edges is normally the same.

B. Background: Static Nearest Neighbor Interconnect

In many applications, communication in chip multiproces-
sors is localized or can be localized, which means data traffic
going into the processor core is much larger than to the other
paths. This is especially true for homogeneous processor arrays
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Fig. 2. Circuitry diagrams of the static nearest neighbor interconnect architec-
ture. Data from four inputs are transferred only to the processing core to reduce
the circuitry cost, and only a single buffer is needed.

assuming tasks are mapped in a way that minimizes distances of
inter-processor data traffic. To minimize communication circuit
overhead, another inter-processor communication strategy is to
implement only nearest neighbor interconnect logic, and thus,
long distance communication is performed by software in the
intermediate processors. Fig. 2(a) shows the concept of nearest
neighbor interconnect and Fig. 2(b) shows its circuit diagram.
All data from the input ports are transferred to the processing
core, so instead of inserting a buffer at each input port, there is
little change to system performance by inserting a buffer(s) only
at the output(s) of the router to the processing core. Comparing
Figs. 1 and 2, the static nearest neighbor interconnect reduces
the number of buffers from five to one and the muxes for each
output port are all avoided; resulting in more than five times
smaller area. But clearly it has the limitation that long distance
communication places a burden on intermediate processors.

II. LOW-AREA INTERCONNECT ARCHITECTURE

This section introduces the proposed statically configurable
low-area asymmetric interconnect architecture.

A. Asymmetrically-Buffered Architectures

1) Asymmetric Data Traffic Typically Exists at the Router’s
Output Ports: The case of varying buffer allocation for input
buffered routers to match asymmetric inter-processor data traffic
loads has been shown to achieve some benefits [14].

In contrast, this paper presents asymmetric buffer allocation
for output buffered routers [15] because we find the asymmetric
data traffic on the routers’ outputs are more uniform across dif-
ferent applications and hence the architecture is helpful across
a wider range of applications. The asymmetric traffic focuses
on the differences in traffic going to the processor core versus
output ports connected to other processors.

Table I shows the data traffic of each processor for a nine-pro-
cessor JPEG encoder as shown in Fig. 3, [16] which demon-
strates the different asymmetric data traffic on the input-buffered
and output-buffered routers.

Considering the router’s input ports, although each processor
shows a clear asymmetric communication data traffic load; the
major input direction for different processors are different which
makes the overall traffic at the input ports within a factor of
five in this example—the relative input traffic for the east, north,
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TABLE I
DATA TRAFFIC OF A 9-PROCESSOR JPEG ENCODER AS SHOWN IN FIG. 3
TO PROCESS ONE 8 X 8 BLOCK, ASSUMING FIVE-INPUT
FIVE-OUTPUT ROUTERS AS SHOWN IN FIG. 1 IN EACH
PROCESSOR. 80% OF THE DATA FROM INPUTS ARE
DELIVERED TO THE PROCESSING CORE WHICH
DOMINATES THE TRAFFIC AT THE
ROUTERS’ OUTPUT PORTS

Network data words at Network data words at
input ports of router: output ports of router:
East North West South | Core East North West South

Proc. 1 0 64 0 0 64 0 0 0 0
Proc. 2 0 64 0 0 64 0 0 0 0
Proc. 3 0 64 0 0 64 0 0 0 0
Proc. 4 0 0 64 0 64 64 0 0 0
Proc. 5 0 0 96 0 64 0 32 0 0
Proc. 6 0 0 0 64 1 0 0 63 0
Proc. 7 0 0 0 3 3 0 0 0 0
Proc. 8 63 0 0 0 63 0 0 0 0
Proc. 9 4 0 0 252 1256 0O 0 0 0
Total 67 192 160 319 | 643 64 32 63 0
Rel. input | 9% 26% 22% 43%
Rel. output 80% 8% 4% 8% 0%
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Fig. 3. Nine-processor implementation of a JPEG encoder core [16].

west, and south directions are 9%, 26%, 22%, and 43%, respec-
tively. Therefore, to optimize buffers in this approach would re-
quire the customization of individual buffer sizes on each pro-
cessor which would then unfortunately optimize the design for
only one (or a small number) of applications.

On the other hand, considering the output ports, each pro-
cessor shows a similar asymmetric data traffic: most of the data
from the input ports are delivered to the core (for local pro-
cessing) and very little is delivered to the edges (for long dis-
tance communication), and overall about 80% of the data are
delivered to the core. Thus a single asymmetric output-buffered
router can be widely suitable for different applications, which is
important since multi-core chips utilizing NoC architectures are
typically used widely across a number of application domains.

2) Proposed Asymmetric Architecture: We propose an ar-
chitecture which has asymmetrically-buffered output ports as
shown in Fig. 4 to achieve good tradeoffs between cost and flex-
ibility. As shown in Fig. 4(a), instead of equally distributing
buffer resources to each output port, we allocate a relatively
large buffer to the processing core port, and smaller buffers (one
or several registers) to the other ports. Fig. 4(b) shows the cir-
cuitry diagram where only signals related to the west edge (west
in and west out) are drawn. This architecture’s circuit area is
similar to the nearest neighbor interconnect architecture, shown
in Fig. 2, since it adds only a few registers and muxes. From the
point of view of routing capability, this architecture is similar
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Fig. 4. Concept and circuitry diagram of the proposed inter-processor commu-
nication architecture; it has the asymmetric buffer resource for the long distance
interconnect and the local core interconnect.

to the traditional dynamic routing architecture, shown in Fig. 1,
since reducing the buffers in ports for long distance communi-
cation does not significantly affect system performance when
the communication is localized. With its one large buffer for the
processing core, the proposed architecture can save about five
times the area compared to the traditional dynamic architecture
shown in Fig. 1. If using two ports and two buffers per processor
core as discussed in Section III-A, the required area is about two
times lower.

B. Static Routing Versus Dynamic Routing

The inter-processor interconnect can be configured statically
before runtime (static routing), or dynamically at runtime (dy-
namic routing). Dynamically-routed networks have been com-
monly used in multiprocessor systems such as those utilizing
message passing methods. Moreover, dynamic networks have
been rigorously studied in NoC research, but statically-config-
ured architectures have been much less intensively studied. The
key advantage of the static configuration approach is that for
applications with predictable traffic, such as most DSP applica-
tions, it can provide an efficient solution with small area cost
and communication latency. The dynamic configuration solu-
tion can effectively address more applications because of its
flexibility, but it has non-negligible overhead in terms of the cir-
cuitry area and the communication latency; the main overhead
comes from the routing path definition, the arbiter of multiple
independent clock sources, and the signal recognition at the des-
tination processor.

1) Dynamic Routing and Its Overhead: In dynamic routing,
the data transfer path should be defined by the source processor
and propagated to the corresponding downstream processor(s)
or dynamically decided by intermediate processors. The cir-
cuitry to define and control the routing path has an area over-
head, and to propagate the routing path might cost extra instruc-
tions and increase the clock cycles for the data transfer.

Since each link in the dynamic routing architecture is shared
by multiple sources, an arbiter is required to allow only one
source to access the link at one time. Furthermore, in GALS chip
multiprocessors, this arbiter becomes more complex since it
must handle multiple sources with unrelated clock domains. An
obvious overhead is that some synchronization circuitry is re-
quired for the arbiter to receive the link-occupying request from



YU AND BAAS: LOW-AREA MULTI-LINK INTERCONNECT ARCHITECTURE

different sources, and some logic is required to avoid glitches
when the occupying path changes.

Another important issue is how the destination processor can
identify the source processors of the received data. Since data
can travel through multiple processors with unknown clock do-
mains, it is not possible to assume a particular order for the in-
coming data. One common method is that an address is assigned
to each processor and sent along with the data, and the destina-
tion processor uses the address to identify the source processor
through software or hardware.

Combining these overheads, the communication latency
for dynamic routing between adjacent processors has been
estimated to be typically larger than 20 clock cycles [17], and
this value will increase further for GALS dynamic routing
networks due to the additional synchronization latency.

2) Static Routing: Due to its smaller circuit area and excel-
lent compatibility with GALS-clocked systems, we investigate
only the static routing approach in the remainder of this paper.

Few multi-processor systems use static routing, and the
Systolic [18] approach is one of the pioneers. Systolic systems
contain synchronously-operating processors which “pump”
data regularly through a processor array, and the data to be
processed must reach the processing unit at the exact predefined
time. Due to this strict requirement for data streams, the systolic
architecture is well suited only for applications with highly
regular communication patterns such as matrix multiplication.

Releasing the strict timing requirement of the data stream can
significantly broaden the application domain. To release the sys-
tolic system’s strict cycle-by-cycle timing requirements, each
processor must “wait” for data when the data is late, and the
data must “wait” to be processed when it comes early. Inserting
a first-input—first-output (FIFO) with appropriate full and empty
logic [19] at each input of the processing core can meet these
requirements. Data is buffered in the FIFO when it comes early,
the downstream processor is stalled when the FIFO is empty
and there is a read request, and the upstream processor is stalled
when the FIFO is full and there is a write request. In this way,
the requirement for the data stream is only its order, not its exact
arrival time.

RAW [17] is a chip multiprocessor with very low latency for
interprocessor communication (three clock cycles) using both
static routing and dynamic routing, but it achieves this goal with
a large area cost of about 4 mm? in a 0.18-ym CMOS tech-
nology. The communication circuitry we propose is suitable for
broad applications, with low latency (about five clock cycles),
and low area overhead (about 0.1 mm? in 0.18-xm technology).
The detailed implementation is described in Section V. Table II
compares the interconnect architectures discussed in this sec-
tion.

III. DESIGN SPACE EXPLORATION

Under the statically configurable asymmetric architecture
discussed in Section II, there are several options for the
communication logic realization. Two important options are
investigated in this section, including the following:

 the number of ports (buffers) for the processing core;

* the number of links between each neighboring processor

pair.
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TABLE II
COMPARISON OF SEVERAL ROUTING APPROACHES. THE AREA DATA ARE FOR
0.18-uM CMOS TECHNOLOGY, AND THE VALUES CAN VARY IN SPECIFIC
IMPLEMENTATIONS DUE TO MANY FACTORS

Routing method Suitable Latency Area
applications | (clk cycles) (mm?)
Static systolic limited ~1 N/A
Dynamic broad >20 N/A
Static + dynamic [17] broad 3 ~4
Proposed asymmetric static broad ~5 ~0.1
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Fig. 5. Diagrams of architectures with various numbers of input ports (and
therefore various numbers of buffers) for the processing core: (a) single port;
(b) two ports; (c) three ports; and (d) four ports.

A. Single Port Versus Multiple Ports for the Processing Core

In Fig. 4, the processing core has one input port (and one cor-
responding buffer). When using the dynamic routing approach,
a single port might be sufficient since the processing core can
fetchdatafromall directions by dynamically configuring the input
mux. Ifusing the static routing approach, a single port means each
processing core can fetch data from only one source, which might
be inefficient when multiple sources are required. Using one, two,
three, or four ports (buffers) for the processing core is considered,
asshowninFig. 5. The area of the communication circuitry scales
roughly linearly with the number of ports (buffers).

1) Performance Evaluation: The effect of the number of
buffer(s) to the routing capability is highly dependent on the ap-
plication communication patterns. We use the worst case com-
munication distance of fundamental and useful communication
patterns, including one-to-one communication (in which two
processors at opposite corners of the processor array communi-
cate with each other), one-to-all broadcast (in which one corner
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Fig. 6. Comparing the worst case communication distance across a 2-D mesh of processors for various architectures with different numbers of ports (buffers) for
the processing core, by varying the size of the array and using different basic communication patterns: (a) one-to-one and one-to-all; (b) all-to-one; and (c) all-to-all.

processor sends data to all processors), all-to-one merge (in
which all processors send data to a processor at the middle),
and all-to-all communication to evaluate the performance of dif-
ferent architectures. Real applications can normally be modeled
by a combination of these basic patterns.

For one-to-one and one-to-all communications where the des-
tination processor(s) need(s) only one source, the single-port ar-
chitecture has the same performance as other multiple-port ar-
chitectures. The worst case distance is approximately 2n pro-
cessors in an n X m array, as shown in Fig. 6(a).

For the all-to-one communication case, shown in Fig. 6(b),
increasing the number of buffers (ports) has a benefit. For the
single-port architecture, each processor can receive data from
only one source and the furthest processor must propagate data
through all n? processors, since all processors must be arranged
in a linear array. For architectures with multiple ports (buffers),
the communication can be distributed in multiple directions and
the furthest processor only needs to propagate through order n
processors. The architectures with 2, 3, or 4 ports (buffers) per-
form similarly; as shown in Fig. 6(b), the two-port architecture
is slightly worse in the 5 X 5 array and the four-port architecture
is slightly better in the 3 x 3 array.

Besides the worst case communication distance, another con-
sideration is how fast the destination processor can process the
received data. A single-issue simple processor can normally
consume no more than two data words in each clock cycle,
which means it has little benefit to accept more than two data
words in each cycle, hence it also means to use three or four
buffers for the processing core can not provide a significant ben-
efit. Of course processor designs which process more than two
input operands per cycle, such as VLIW or superscalar, would
yield different results.

The all-to-all communication differs from the all-to-one com-
munication in that each processor must reach all other proces-
sors. The architecture with one port (buffer) must arrange all
processors linearly and the worst case distance is to propagate
through all n? processors. Architectures with multiple buffers
(ports) can communicate in two dimensions and their worst-case
distance is through one row and one column of about 27 proces-
sors. Fig. 6(c) shows the results.

According to the results in Fig. 6 and considering the trade
off between area and performance, using two buffers for the
processing core is a good solution. A natural extension is that
if processors are in a 3-D mesh topology, then the best solution
will likely be a three-port architecture.
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Fig. 7. Diagram of inter-processor connections with one link at each edge.

B. Single Link Versus Multiple Links

One of the key differences between on-chip and inter-chip in-
terconnects is that there are more wire resources on chip, while
inter-chip connections are normally limited by the available chip
IO pins. One approach is to increase the wordwidth of each link
in NoCs to take advantage of this fact [3]. We explore another
option in this section of increasing the number of links at each
edge to increase connection capability and flexibility. The dif-
ference between this multi-link architecture and virtual channels
[13] is that virtual channels increase the number of buffers for
each link while the multi-link architecture increases the number
of connecting links between neighboring processors.

1) Single Link: When there is one link at each edge, each
output link can potentially receive data from the other three
edges and the processing core. Fig. 7 shows its diagram. It is
a relatively simple and straightforward architecture.

2) Double Links: If using double links at each edge, there
are eight sources for the processing core, and each edge has two
outputs and each output potentially has seven sources (six from
other input ports and one from core). Comparing the fully-con-
nected two-link architecture shown in Fig. 8(a) and the single-
link architecture in Fig. 7, the overhead of increasing the number
of links is high not only because of necessary control logic, but
more importantly because of semi-global wires inside each pro-
cessor which affect system area, speed, and power significantly
in submicrometer technologies.

Methods are available to simplify the fully connected archi-
tecture. Considering the router’s logic at the east edge which re-
ceives data from North, West, South, and Core and sends to East
output, we use {inl_N,in2_N,inl_W,in2_W,inl1_S,in2_S,
sig_core,outl_E, and out2_E} to define these signals. A large
exploration space exists at a first glance since 7 inputs and 2
outputs have 2! connecting options. Since the three input edges
are symmetric, we group {in1_N,in1_W,in1_S} together as
input in/ and {in2_N,in2_W,in2_S} as in2, so the input
number is reduced to 3 and the exploration space is reduced to
26 = 64 as shown in Table IIL. In options 0-7, outl does not
have any connections so they are not considered as two-link
architectures. Option 8 is neglected for a similar reason. Option
9 only connects the processing core to the outputs and it is es-
sentially the same as the nearest neighbor architecture. Option
10 can not be realized since out2 is connected only with in2
which means this link has no original source. Option 11 can
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Fig. 8. Four inter-processor interconnect schemes utilizing double links: (a)
fully connected; (b) separated nearest neighbor link and long distance link; (c)
separated link from core and link from edges; and (d) connections exist between
“corresponding” links. Methods (a), (b), (c), and (d) correspond to options 63,
11, 14, and 43 in Table III.

TABLE III
ALL POSSIBLE INTERCONNECT OPTIONS FOR DOUBLE-LINK ARCHITECTURES
EXAMINING ALL COMBINATIONS WHERE CONNECTIONS EXIST OR
Do Not EXIST BETWEEN ANY INPUT (IN1, IN2, AND CORE) AND
OUTPUT (OUT1 AND OUT2). YES MEANS A CONNECTION
PATH EXISTS, NO MEANS NO CONNECTION PATH
EXISTS, AND “—” MEANS “DON’T CARE”
FIELDS FOR MULTIPLE MATCHES

Option inl-outl in2-outl core-outl inl-out2 in2-out2 core-out2
number

0-7 No No No - - -
8 No No Yes No No No
9 No No Yes No No Yes
10 No No Yes No Yes No
11 No No Yes No Yes Yes
12 No No Yes Yes No No
13 No No Yes Yes No Yes
14 No No Yes Yes Yes No
15 No No Yes Yes Yes Yes
16-31 No Yes - - - -
32-39 Yes No No - - -
40 Yes No Yes No No No
41 Yes No Yes No No Yes
42 Yes No Yes No Yes No
43 Yes No Yes No Yes Yes
44-47 Yes No Yes Yes - -
48-62 Yes Yes - - - -
63 Yes Yes Yes Yes Yes Yes

be a potential choice, where outl is connected only to the core
served as the nearest neighbor link, and out2 is connected to
in2 and core served as the long distance connect link. Fig. 8(b)
shows the circuit diagram; each edge contains only one 4-input
mux. By examining all other options, we found that option
14 and 43 are also potential good choices. In option 14, out!
(link1) receives data from the core while out2 (link2) receives
data from edges, both of them send data to the core and routers.
Fig. 8(c) shows the circuit diagram; each edge contains one
6-input mux. In option 43, each link receives data from the core
and a corresponding link (outl corresponds to inl while out2
corresponds to in2), and sends data to the core and routers.



756 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 5, MAY 2010

link1  link2

link1  link2

|
1
|
1A
|
|

1
Il 1
(N
1A
(]
(I

|

- path 1 » path 1

A 4 Y

path 2 » path 2
B B

\/

(a) (b)

Fig. 9. Example route of a communication path from processor A to processor
B (a) using a fully connected architecture as shown in Fig. 8(a), and (b) with
reorganized conflicting paths using the simpler architecture shown in Fig. 8(d).

Fig. 8(d) shows the circuit diagram; each edge contains two
4-input muxes.

In terms of the area cost and the routing flexibility of the four
architectures shown in Fig. 8, architecture (a) has the most flex-
ible connection while it has the largest cost; architecture (b) has
the most strict connection limit while it has the smallest cost;
and architecture (c) has the connection flexibility and cost in be-
tween (a) and (b). Architecture (d) has an area cost similar with
(c), and interestingly, its routing capability is the same as archi-
tecture (a). This concept can be demonstrated by Fig. 9 where
A needs to communicate with B, while path1 and path2 occupy
some parts of the links between them. For the fully connected
architecture, the path between A and B is easy to setup since it
can first use link2 and then switch to link1 shown in Fig. 9(a).
Using the architecture in Fig. 8(d) has difficulty at first glance
but it can be handled by rerouting path1 and then using link2 as
the path between A and B, achieving the same routing purpose
as the fully connected architecture shown in Fig. 9(b).

According to these discussions, Fig. 8(d) architecture is a
good option due to its routing flexibility and moderate circuitry
cost; and Fig. 8(b) can also be a good option due to its small
circuitry cost.

3) Three or More Links Per Edge: Increasing the number of
links beyond two per edge increases the routing capability fur-
ther. Fig. 10 shows architectures with three and four links ex-
tended from designs shown in Fig. 8(b) and (d) architectures.
The circuitry clearly becomes more complex along with the
increased number of links. Each edge contains 2 or 3 4-input
muxes in three-link architectures and contains 3 or 4 4-input
muxes in four-link architectures. Also, the number of sources
for the processing cores becomes 12 and 16 in three-link and
four-link architectures. Since the wires are all semi-global, the
overhead of these additional connections has a significant effect
on the system area and speed.

Since the architectures with various links have a large number
of options and is not easy to judge according to the qualitative
analysis. A more quantitative analysis is given in the following
sections.

in2_N
in3_N | |in2_N in3_N l in1_N
R \::1\ . toswitch
:i\ to core 7% to core
=t =i
L to switch to switch
7:* to switch ::$ to switch

(a) (b)
in3_N
in4_N| | |in2_N |
+—1 to switch t
= D
__‘) = |tocore ——:‘\I to core
L = =il
7*“/ "~ toswitch ___:{\
1N i
7*{/ to switch L
i i
| T
(c) (d)

Fig. 10. Inter-processor interconnect with three and four links. (a) and (c): sep-
arated nearest neighbor link and long distance link, similar with Fig. 8(b); (b)
and (d): connections exist between “corresponding” links; similar with Fig. 8(d).

4) Area and Speed Estimates From Seven Chip Designs: In-
creasing the number of communication links requires additional
control logic, which increases circuitry area and affects pro-
cessor speed. Seven types of architectures will be investigated
further which are as follows.

Type 1)Single-link in Fig. 7.

Type 2)Double-link in Fig. 8(b).

Type 3)Double-link in Fig. 8(d).

Type 4)Three-link in Fig. 10(a).

Type 5)Three-link in Fig. 10(b).

Type 6)Four-link in Fig. 10(c).

Type 7)Four-link in Fig. 10(d).

Type 2 corresponds to Option 11 and Type 3 corresponds to
Option 43 in Table III.

All seven architectures were designed and written in verilog
and synthesized with a 0.18-pm CMOS standard cell library.
Synthesis area reports show communication logic area for the
seven architectures are 0.013 mm?2, 0.032 mm?, 0.047 mm?,
0.058 mm?, 0.067 mm?2, 0.075 mm?, and 0.081 mm?, respec-
tively. However, the results from synthesis do not tell the en-
tire story since they do not put the communication circuitry into
an entire processor environment and consider physical layout
effects. In deep submicrometer technologies, wires introduce
non-negligible delay compared to logic gates; and complex wire
connections require significant area for routing.

We therefore have designed these seven communication ar-
chitectures into a simple single-issue processor with an orig-
inal area of about 0.66 mm? per processor in a 0.18-ym tech-
nology [16]. The seven chips were synthesized from RTL code
and taken through the entire physical layout design flow using
Cadence Encounter. Fig. 11 shows the layouts of the seven pro-
cessors. Standard cell area utilization in the physical design can
have a strong impact on the design result. In terms of area, higher
utilization is always good as long as the chip is routable. In
terms of speed, too low of a utilization introduces long wires
and reduces system speed; too high of a utilization can result in
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typ 7

Fig. 11. Scaled layouts of seven processors containing different numbers
of communication links; types 1-7 correspond to the architectures shown in
Figs. 7, 8(b), (d) and the four in Fig. 10, respectively.

wiring congestion and complicated or impossible wire routing.
We found a good approach was to set utilization to 70% initially
and then allow it to increase to approximately 85% after clock
tree insertion and in-place optimization.

Fig. 12(a) shows the area of these seven chips and Fig. 12(b)
shows the relative area increment of each architecture compared
to the type 1 architecture. Types 6 and 7 (four-link architectures)
have a noticeable nearly 25% increase in area because they can
not successfully complete routing until the area utilization is re-
duced to 64% and 65%, respectively. This result provides some
interesting insight into how many global wires can fit into a chip.
For a processor with a 0.66 mm? area and a 0.80 mm edge, as-
suming a minimum 1 xm pitch between IO pins, an optimistic
estimation is that each edge can fit 800 IO pins consuming one
perpendicular metal layer, beyond this range the processor size
will become 10 pin or wire dominated. This estimation can be
true if these IO pins are all connected to short wires. For global
wires used for communication routers, increasing the number of
wires will quickly result in routing congestion and increase the
processor size. In our example, each processor edge in four-link
architectures has about 160 IO pins, much less than the opti-
mistic 800 IO pins. Four or more communication link architec-
tures are less desirable due to their high area cost.

Fig. 12(c) shows the processors’ speeds and Fig. 12(d) shows
the relative speed difference of each architecture compared to
the type 1 architecture. Each processor has a similar speed and
the difference is within £2%. Types 6 and 7 have a little faster
speed compared to Type 1 because the released area helps to
simplify the routing.

5) Performance: Again, we use basic communication pat-
terns to evaluate the performance of architectures with different
numbers of links.

The communication latency between two processors can be
expressed as k£ x p clock cycles where p is the distance be-
tween source and destination and £ is the clock cycles across one
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Fig. 12. Comparison of designed processors with the seven communication
link types showing: (a) absolute area; (b) area increment relative to type 1; (c)
absolute speed; and (d) speed relative to type 1. Types 1 to 7 correspond to
the architectures shown in Figs. 7, 8(b), (d), and 10; type 6 and 7 (four-link
architectures) have a noticeable area increase due to their semi-global wire effect
on the processor area.

processor. For the static nearest neighbor interconnect architec-
ture, crossing one processor requires extra instructions and the
latency (k) is dependent on the asynchronous synchronization
time and the processor pipeline depth; it is 13 in our experi-
mental system. If the communication can use the router in the
proposed routing architecture, k is 1 if the data is registered in
each processor and less than 1 if some processors are bypassed
as discussed in Section IV.

For one-to-one or one-to-all communication, each processor
requires only one source so that the single-link architecture is
sufficient and has the same communication latency with other
architectures, as shown in Fig. 13(a). A little surprisingly, all ar-
chitectures have the same latency for all-to-all communication,
as shown in Fig. 13(c), because each processor needs data from
both horizontal and vertical neighbor processors and both of the
two buffers (ports) of each processor are occupied, prohibiting
the usage of the additional links for long distance communica-
tion.

These architectures have different communication laten-
cies in all-to-one communication as shown in Fig. 13(b). For
the Type 1 (single-link) architecture, most or all of the link
resources are occupied by the nearest neighbor interconnect
and little can be used for the long distance communication, so
the latency is relatively high. Increasing the number of links
helps when the latency is limited by the link resources. Type
2 (double links with separated nearest neighbor link) has little
advantage to Type 1 with a relatively much higher area, and
Type 4 (three links with separated nearest neighbor link) has
little advantage to Type 3 (double links) but with a relatively
much higher area, so that Types 2 and 4 are not considered. The
Type 3 architecture is about two times faster than the single-link
architecture, which makes it a good candidate. Comparing Type
5 (three links) architecture with Type 3, they have the same
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Fig. 13. Comparing the communication latency (clock cycles) of interconnect architectures Types 1 to 5, by varying the size of the array and using different basic
communication patterns: (a) one-to-one and one-to-all; (b) all-to-one; and (c) all-to-all. Types 6 and 7 architectures are not included in the comparison due to their

high area cost as shown in Fig. 12.

latency within a small communication domain (2 X 2 and 3 x 3
arrays), while the three-link architecture benefits when the array
grows. For 4 x 4 to 6 x 6 arrays, the three-link architecture has
about 25% smaller latency; for 7 x 7 to 9 x 9 arrays, it has
about 30% smaller latency, and the benefit increases along with
the larger array sizes.

6) More Advanced Fabrication Technology: Although the
seven processors were designed in a single 0.18-xm technology,
it stands to reason that the relative area and performance will
scale well across many technology generations. The two-link
Type 3 design in Section III-B4 has been fabricated and is fully
functional in an advanced 65-nm technology [20], [21]. The
logic for I/O and interconnect router occupies about 5% of the
processor area, which is similar to the result we obtained in
0.18-pm technology.

IV. SUPPORT FOR GALS CLOCKING STYLES

Traditional globally synchronous clocking circuits have be-
come increasingly difficult to design with growing chip sizes,
clock rates, relative wire delays, parameter variations, and clock
power consumption. The GALS clocking style [11] separates
processing blocks such that each block is clocked by an inde-
pendent clock domain, thus avoiding the necessity of designing
a global clock tree.

Some research exists in investigating clocking issues for
networks on chip. Vangal et al. report an 80-core 2-D array with

packet-switched routers that employ mesochronous clocking
where each processor has the same clock frequency but with
potentially different phases [4]. Liang et al. propose an asyn-
chronous network-on-chip (FAUST) which uses a handshaking
scheme to handle asynchronous communication [22]. Zhang
et al. developed a reconfigurable DSP for wireless baseband
digital signal processing, and handshake style GALS signaling
was adopted to allow various modules to operate at different
and dynamically-varying rates [23].

A. Source Synchronous Flow Control for General GALS
Systems

GALS systems introduce modules with different clock do-
mains and the communication between those modules requires
special concerns. The methods can be classified into two cate-
gories. The first method is to use an asynchronous handshake
[24] as shown in Fig. 14(a). The source sends a request signal
and one single datum and waits until it receives an acknowl-
edge signal from the destination before beginning another trans-
action. A corresponding round-trip latency exists for each data
transfer in this method.

To sustain higher throughput, a source synchronous flow con-
trol method can be used as shown in Fig. 14(b), where the clock
of the source processor travels along with the data and signals
to control the writing into a buffer. Here the data can be trans-
mitted at a rate of one word per clock cycle as long as the buffer
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Fig. 14. Two strategies for communication in GALS systems. (a) Asyn-
chronous handshake which requires couple of clock cycles for each transaction
and (b) source synchronous flow control which can sustain one transaction per
clock cycle.

is not full. The buffer in the destination should support reads
and writes in different clock domains since its writing is con-
trolled by the source processor while its reading is controlled by
the destination processor, a good solution is using a dual-clock
FIFO [19].

B. Source Synchronous Flow Control for Long Distance
Communication

The design becomes more complex when considering
long-distance communication. For the asynchronous hand-
shake scheme, each bit of the signal might reach the destination
in a very different time, and some specific logic is necessary
to guarantee the arrival of all bits of the signal [25]. The logic
overhead to handle this asynchronous communication is not
negligible, and the propagation delay can be significant.

For the source synchronous scheme in long distance com-
munication, in order to avoid different data bits reaching the
destination in different clock periods, the circuits must meet
several requirements; they must: prevent signal delays larger
than the clock period, minimize crosstalk effects from long dis-
tance wires, and data signals will likely need to be registered
(pipelined) in intermediate processors along its path to main-
tain high clock rates. Two options exist for this task, as shown
in Fig. 15(a) and (b), where processor A sends data to processor
C through processor B. The first option is to register the sig-
nals using intermediate processors’ clocks and use a dual-clock
FIFO, as shown in Fig. 15(a). This scheme should work well
under most situations, but is not efficient due to significant ad-
ditional circuits and increased path latency. In addition, if an in-
termediate processor’s clock is running slowly, it will be a bot-
tleneck to the link’s throughput.

We propose to expand the source synchronous method that
routes the initial source clock along the entire path, as shown
in Fig. 15(b). In the case when the source processor is run-
ning at slow speed, the registers in the intermediate proces-
sors are unnecessary and the link latency can be reduced with
non-pipelined paths as shown in Fig. 15(c). Besides the data and
the clock, wires carrying information indicating the destination
FIFO’s full and empty status are also required to be transferred
to guarantee correct FIFO operation.

C. Clock Propagation Delay Requires Special Consideration

The dual-clock FIFO design allows arbitrary clock skew and
drift, which greatly simplifies the circuit design. The most im-
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Fig. 15. Synchronization strategies for long distance communication between
processors with unrelated clocks: (a) using intermediate processors’ clocks with
dual-clock FIFOs; (b) using source synchronous clocking with pipeline stages
in each intermediate processors; and (c) using source synchronous clocking with
selectable registering in intermediate processors.
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Fig. 16. Relative communication circuit area of several interconnection
architectures. The static single-link nearest-neighbor-only and proposed static
double-link asymmetric architecture contain two ports (buffers) for the pro-
cessing core, and the dynamic routing architecture contains four buffers for the
router’s input ports with a single-link at each edge.

portant parameter of the clock used for the synchronization is
no longer the skew or jitter, but is propagation delay.

First, the delay of the clock wire must match the delay of the
data wires to meet the setup and hold time requirements during
register writes. Adding configurable delay gates in the data path
[26] and the clock path is an excellent solution to this challenge.
Second, the delay of clock (and data) should be minimized if
possible, since increasing the communication delay not only in-
creases the application computation latency, but can also reduce
the application computation throughput.

V. RESULTS COMPARISON

Different communication architectures, including the static
nearest neighbor interconnect, the proposed double-link routing
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Fig. 17. Comparing the communication latency of the static nearest neighbor architecture, dynamic single-link routing architecture, and the proposed static double-
link architecture, by varing the size of the array, and using basic communication patterns: (a) one-to-one and one-to-all; (b) all-to-one; (c) all-to-all.

architecture, and the traditional dynamic routing architecture,
are compared in this section. The proposed communication cir-
cuitry uses the topology shown in Fig. 4, the static routing with
two buffers for the processing core as shown in Fig. 5(b), and
double links at each edge as shown in Fig. 8(d), and the extended
source synchronous strategy shown in Fig. 15(c).

Besides the difference of the high level architecture, some de-
tails of the implementation also impact the exact results. The
choice of the buffer sizes can affect system performance signif-
icantly [27], [28]. In this section, we assume FIFOs are large
enough so that their effect on performance is minimized. In this
design, the output from the processor core can be sent to any
combination of four directions and can be reconfigured dynam-
ically. The implemented example is compared to a traditional
dynamically configurable interconnect architecture with sym-
metric buffer allocation and a single-link between each neigh-
boring processor pair; we use 20 clock cycles as the communica-
tion latency [17], and we also assume the destination processor
receives one data and its address separately in two clock cycles
(sending the address together with the data could certainly be
done with additional hardware but the relative results would be
similar).

A. Area

Fig. 16 compares the communication circuitry area of three
architectures (including buffers and control logic) with different

sizes for each buffer. All areas are normalized to the area of the
static nearest neighbor architecture. When the buffer is not large,
the control logic plays an important role in determining area. For
example, when the buffer size is 32 words, the static double-
link architecture is about 1.5 times larger than the static nearest
neighbor architecture. Along with the increased buffer size, the
area of the communication circuitry will be dominated by the
buffer size. When the buffer is 128 words, the proposed double-
link architecture has approximately 25% larger area compared
to the nearest neighbor architecture, while the traditional dy-
namic routing architecture is more than two times larger.

B. Performance Comparison

In this section, we analyze the performance of different im-
plementations.

1) Performance of the Basic Communication Patterns:
Fig. 17 shows the latency of the basic communication patterns
mapped onto different architectures along with different array
sizes. The one-to-one communication has the same latency as
the one-to-all broadcast.

The proposed double-link routing architecture normally
has significant savings in communication latency compared
to the nearest neighbor architecture. The latency of the dy-
namic single-link routing architecture is similar to the static
double-link architecture; it is a little worse in the one-to-one
communication and all-to-one patterns; it is a little better in the
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communication patterns and assuming 80% of the communication is within the
local area, and the meaning of local area varies from 2 X 2 to 9 X 9 array.

all-to-all communication since this is where the flexibility of
dynamic routing greatly helps performance.

2) Combining the Basic Patterns: Although communication
patterns of real applications vary over a wide range of patterns,
they can often be modeled using some combination of basic
communication patterns. In this section we investigate one ap-
plication model mapped onto a 10 x 10 array.

The modeled communication is organized uniformly by the
four basic communication patterns and we assume 80% of
the communication is within the local area which is the value
often used in the literature [29]. In order to generally cover the
meaning of localization for different communication patterns,
eight data points present the situations where the definition of
local area varies from 2 X 2 to 9 X 9 arrays. Fig. 18 shows how
latency is impacted.

Not surprisingly, the static nearest neighbor architecture has
the longest latencies, the proposed static double-link routing ar-
chitecture is more than 2 times faster, and the dynamic single-
link routing architecture is a little slower than the static double-
link architecture.

VI. CONCLUSION

An asymmetric inter-processor communication architecture
which assigns more buffer resources to the nearest neighbor in-
terconnect and fewer buffer resources to the long distance in-
terconnect is proposed. Static routing is emphasized due to its
low cost and low communication latency. Inserting two ports
(buffers) for the processing core and using two or three links
at each edge can achieve good area/performance trade offs for
chip multiprocessors consisting of simple single-issue proces-
sors, and the optimal number of links is expected to increase if
a chip multiprocessor is built with larger processors. Compared
to a traditional dynamically-configurable interconnect architec-
ture with symmetric buffer allocation and single-links between
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neighboring processor pairs, this implementation has approxi-
mately two times smaller communication circuitry area with a
similar routing capability. The proposed architecture also pro-
vides the ability to support long distance GALS communication
with an extended source synchronous transfer method.

A varied group of seven designs with one, two, three, and four
links per processor edge, and with the most promising intercon-
nect strategies were designed and laid out in 0.18-pm CMOS
and analyzed for their chip area, maximum clock rate, and com-
munication latency over array sizes up to 100 processors for
various communication patterns. Compared to the single-link
processor on average, two-link designs require 5% more area,
three-link designs require 12% more area, and four-link designs
require 24% more area. In particular, the Type 3 two-link design
requires 7% more area than the single-link design but performs
all-to-one communication almost two times faster.
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