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Abstract—This paper presents a baseline residual encoder
for H.264/AVC on a programmable fine-grained many-core
processing array that utilizes no application-specific hardware.
The software encoder contains integer transform, quantization,
and context-based adaptive variable length coding functions.
By exploiting fine-grained data and task-level parallelism, the
residual encoder is partitioned and mapped to an array of 25
small processors. The proposed encoder encodes video sequences
with variable frame sizes and can encode 1080p high-definition
television at 30 f/s with 293 mW average power consumption
by adjusting each processor to workload-based optimal clock
frequencies and dual supply voltages—a 38.4% power reduction
compared to operation with only one clock frequency and
supply voltage. In comparison to published implementations on
the TI C642 digital signal processing platform, the design has
approximately 2.9–3.7 times higher scaled throughput, 11.2–
15.0 times higher throughput per chip area, and 4.5–5.8 times
lower energy per pixel. Compared to a heterogeneous single
instruction, multiple data architecture customized for H.264,
the presented design has 2.8–3.6 times greater throughput, 4.5–
5.9 times higher area efficiency, and similar energy efficiency.
The proposed fine-grained parallelization methodology provides
a new approach to program a large number of simple processors
allowing for a higher level of parallelization and energy-efficiency
for video encoding than conventional processors while avoiding
the cost and design time of implementing an application specific
integrated circuit or other application-specific hardware.

Index Terms—AsAP, CAVLC, fine-grained many-core system,
H.264/AVC, parallel programming.

I. Introduction

H .264/AVC IS a video coding standard developed through
a collaboration of the ITU-T and ISO [1]. The standard

is proven to achieve significant video compression efficiency
compared with prior standards (39%, 49%, and 64% bit-
rate reduction versus MPEG-4, H.263, and MPEG-2, respec-
tively) [2]. This high coding gain increase comes mainly
from a combination of new coding techniques such as inter-
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frame prediction with quarter pixel resolution, intra-prediction,
multiple reference pictures, variable block size, context-based
adaptive entropy coding, and in-loop de-blocking filter [3].
However, the coding efficiency improvement comes at a huge
increase of computational complexity. A combination of all of
the new coding features increase the computational complexity
by a factor of two for the decoder and larger than one
order of magnitude for the encoder compared with previous
standards [4].

Most traditional video encoding architectures appear in one
of the three forms: dedicated application-specific integrated
circuits (ASIC), programmable digital signal processing (DSP)
or general-purpose processors with either single-instruction-
multiple-data (SIMD) multimedia extension [5] or application-
specific instructions processing units [6], or a combination
of these two. However, none of these methods achieve both
high performance and flexibility for emerging and evolving
multimedia standards. Furthermore, H.264/AVC shows less
processing regularity and will be difficult for the SIMD ap-
proaches which mainly exploit explicit data-level parallelism.
The high computational complexity of H.264/AVC makes
it difficult to implement a low-power high-definition (HD)
video encoder on general-purpose processors and DSPs. Thus,
many current H.264/AVC HD encoders are implemented with
dedicated ASICs which lacks flexibility and scalability to keep
up with the fast development of new video standards [7]–[9].
Some other hybrid architectures use a hardware software code-
sign approach to speedup only complex tasks in H.264/AVC
encoding such as motion estimation and context adaptive
binary arithmetic coding [10].

This paper targets energy-efficient H.264 baseline encod-
ing from low resolution to HD video encoding on a fine-
grained many-core architecture. Our programmable approach
achieves both high performance (up to real-time 1080p) and
flexibility. We focus on the parallelization of the H.264/AVC
baseline residual encoder which utilizes integer transform
(IT), quantization, and context-adaptive variable length coding
(CAVLC) to encode residual data from intra and inter predic-
tion procedures. The IT and quantization are well suited for
parallel implementation. However, high-performance CAVLC
encoders are usually implemented in hardware due to its
serial processing property [11], [12]. We choose to implement
this software residual encoding accelerator because it is an
essential task of H.264 baseline encoding. The configurable
and programmable residual encoder can be used as a software
co-processor for a full HD encoder.
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Fig. 1. Architecture of targeted many-core system.

A. Related Work

Many coarse-grained parallel multicore approaches have
been proposed for H.264/AVC encoding. Most of them ex-
ploit thread-level or frame-level parallelism in video encoding
algorithms. Chen et al. [13] proposed a parallel H.264/AVC
encoder utilizing multilevel threading. Their results show good
speedups ranging from 3.74x to 4.53x over well-optimized
sequential code on a quad-core system. Roitzsch [14] proposed
a slice-balancing technique for H.264 video decoding by
modifying only the encoding stage and reports a performance
speedup of up to 4.7. Rodriguez et al. [15] use message
passing parallelization at group of pictures (GoP) and frame
level to speed up H.264/AVC encoding. Zhao et al. [16]
presented a wavefront parallelization method for H.264/AVC
encoding. Their parallelization method is conducted at both
frame and macroblock (MB) level. Sun et al. [17] proposed
a similar parallel algorithm based on a wavefront technique.
They partition one frame into different MB regions which are
processed independently. The MBs within the MB region are
then parallelized with the wavefront technique.

Stream processing has been proposed for multimedia appli-
cations that have computational intensity, data parallelism, and
producer–consumer localities. The stream model was first pro-
posed by Hoare [18] in communicating sequential processes.
With the rapid development of integrated circuit technology,
many architectures and processors supporting stream models
have emerged, such as Imagine [19] and RAW [20]. Khailany
et al. [21] use concurrencies between stream commands, data
parallelism, instruction-level parallelism, and subword SIMD
parallelism to speedup H.264/AVC motion estimation and
deblocking filter kernels to achieve realtime 1080p HDTV
encoding.

There is also a trend to use graphics processing units (GPUs)
to accelerate video applications. Cheung et al. [22] presented
an overview of video encoding and decoding using multi-
core GPUs. Chen et al. [23] implement H.264/AVC motion
estimation on a GPU and report a 12 times speedup versus
general-purpose CPUs. However, GPUs are more suitable
for applications with abundant explicit thread-level and data-
level parallelism and are less efficient for some serial video
encoding algorithms in the H.264/AVC standard.

Fig. 2. Fully functional AsAP chip in 65 nm CMOS which runs at a
maximum of 1.2 GHz and 1.3 V. (a) Die microphotograph. (b) Testing board.

B. Our Approach and Contribution

This paper demonstrates our fine-grained many-core ar-
chitecture can achieve high performance and energy effi-
ciency for both video encoding algorithms with high data-
level parallelism like IT and quantization and serial algo-
rithms with fine-grained task-level parallelism like CAVLC.
We propose a distributed processing approach to parallelize
the H.264/AVC residual encoding at 4 × 4 block level. The
proposed fine-grained parallelization exploits the existing lo-
cality and streaming nature of H.264/AVC residual encoding
algorithms. Our work differs from previous research in that we
apply a fine-grained approach to exploit task-level parallelism
in H.264/AVC encoding.

The fine-grained parallelization brings challenges for pro-
grammers in terms of memory, mapping, throughput, and
power optimizations. Our programming methodology yields
an H.264/AVC residual encoder capable of realtime 1080p
(1920 × 1080) HDTV encoding with both higher energy
efficiency and area efficiency compared with other software
approaches in common DSPs and customized hybrid multicore
architectures.

The rest of this paper is organized as follows. Section II
introduces the features of the targeted many-core system
and the corresponding parallel programming methodology.
In Section III, the H.264/AVC residual encoding algorithms
including transform, quantization, and CAVLC encoding are
described and analyzed. Section IV presents the approach
to parallelize the residual encoding kernel in terms of par-
titioning, mapping and optimization. Section V shows the
performance analysis and results. Section VI concludes this
paper.

II. AsAP Architecture and Programming

Methodology

A. Many-Core Array Architecture

The target asynchronous array of simple processors (AsAP)
architecture is a fine-grained many-core system which is
composed of simple cores that operate at independent clock
frequencies and contain small memories for high energy
efficiency [24].
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Fig. 3. Fine-grained parallel programming methodology with corresponding multitask application execution models and IT code examples. (a) Sequential C
program. (b) Parallel C program. (c) Fine-grained AsAP program.

The AsAP platform targets applications which can be parti-
tioned into small tasks running separately on small and simple
processors [25]. A second generation design allows processors
to operate at independent supply voltages and contains 16 kB
shared memories [26].

Fig. 1 shows a high-level diagram of the AsAP chip
which is fabricated in 65 nm complementary metal-oxide-
semiconductor (CMOS) technology. Fig. 2 shows the AsAP
chip die microphotograph and test board. The system is
composed of 164 16-bit homogenous DSP processors, three
dedicated accelerators, and three 16-kB integrated shared
memories, all of which have local clock oscillators and are
connected by a reconfigurable globally asynchronous locally
synchronous (GALS) clocking style mesh network [27]. Com-
pared with synchronous and mesochronous on-chip communi-
cation approach [28], the GALS approach simplifies the clock
design, provides easy scaling into future deep submicrometer
technologies and increases energy efficiency.

Each DSP processor contains a 16-bit datapath with a
40-bit accumulator and 128 word instruction and data memo-
ries. Although processors are not tailored specially for video
encoding, they handle residual encoding very well since most
of the encoding tasks require very small amounts of instruction
and data memories. Processor tiles are connected through
configurable nearest-neighbor or long-distance links.

In our platform, each processor can run at one of two supply
voltages VddHigh and VddLow and optimized clock frequencies.
This per-core based supply voltage and frequency configura-
tion feature is useful for achieving maximum power efficiency

in video applications with dynamic workloads as demonstrated
in Section V.

B. Parallel Programming Methodology

Fig. 3 shows the parallel programming methodology for the
proposed video encoder. The methodology is divided into three
steps, which is further illustrated with corresponding multitask
application execution models and examples of IT composed
of row and column transform tasks.

We first implement a sequential C program, which uses
a traditional shared memory model on a general-purpose
processor as shown in Fig. 3(a). The IT tasks are implemented
as C functions. The algorithm is fully verified to ensure bit-
level correctness compared with H.264/AVC JM software [29].

Then the sequential algorithm is partitioned into multiple
parallel tasks which are implemented with simple C programs
separately as shown in Fig. 3(b). The IT can be divided
into two tasks, row and column transforms. The two tasks
can be combined by linking their inputs and outputs using a
graphic user interface-based mapping tool. We have developed
a Linux-based parallel simulator based on message passing
interface library to verify the parallel C implementation. All
the partitions in this level are coarse-grained and have no con-
straints on available resources including data and instruction
memory.

Then coarse-grained tasks are repartitioned to fit on the
resource-constrained AsAP processors. As shown in Fig. 3(c),
the row and column transforms are implemented on individual
AsAP processors. The final encoder is simulated on the config-
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Fig. 4. Flow diagram of residual data encoding procedure in an H.264/AVC
encoder.

urable Verilog register transfer language model of our platform
using Cadence NCVerilog. By using the activity profile of
the processors reported by the simulator, we evaluate its
throughput and power consumption. The distributed processing
approach is suitable for video and communication applications
with streaming features so that large shared memories are
avoided and each processor can work on its own piece of
data.

III. Residual Encoding in H.264/AVC

Fig. 4 shows the residual data encoding procedure in the
H.264/AVC baseline profile. First, a 4 × 4 IT is applied to the
residual data from either intra or inter prediction procedures.
For the intra 16 × 16 prediction mode, an additional 4 × 4
Hadamard transforms (HTs) is applied to the 16 luma direct
current (DC) values within one MB. If the residual data are
chroma DC coefficients, a 2 × 2 HT is applied. The CAVLC
encoder encodes the zig-zagged 4 × 4 or 2 × 2 quantized
transform coefficients and sends the bitstream out. All the
functional blocks depicted in Fig. 4 are described in detail
in the following sections.

A. Integer Transform

The H.264/AVC encoder uses three different transforms in
the baseline encoder. They are 4 × 4 IT, 4 × 4 HT, and 2 × 2
HT. The forward 4 × 4 IT first operates on each 4 × 4 block
X and produces a 4 × 4 block Y as follows:

Y = CiXCT
i (1)

where

Ci =

⎡
⎢⎢⎣

1 1 1 0.5
1 0.5 −1 −1
1 −0.5 −1 1
1 −1 1 −0.5

⎤
⎥⎥⎦ . (2)

If the current MB uses intra prediction 16 × 16 mode, 16
luma DC values from the previous forward 4×4 IT are grouped
into one 4 × 4 block X and transformed as follows:

Y = Hf XHT
f (3)

where

Hf =

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎤
⎥⎥⎦ . (4)

TABLE I

Multiplication Factor (MF)

Positions Positions
QP mod 6 (0, 0), (2, 0) (1, 1), (1, 3) Other Positions

(1, 1), (1, 3) (3, 1), (3, 3)
0 13 107 5243 8066
1 11 916 4660 7490
2 10 082 4194 6554
3 9362 3647 5825
4 8192 3355 5243
5 7282 2893 4559

The chroma Cb and Cr DC values are grouped into 2 × 2
blocks separately and transformed by

Y = HtXHT
t (5)

where

Ht =

[
1 1
1 −1

]
. (6)

The above three transformations can be implemented by sim-
ple shift and addition operations. The H.264/AVC transform
multiplication scaling is integrated in the quantization process.
Therefore, H.264/AVC requires less complicated operations
for transformations than previous standards [30].

B. Quantization

H.264/AVC adopts two different quantization procedures for
residual data from 4 × 4 IT and DC coefficients from 4 × 4
or 2 × 2 HT. The quantization procedures for 4 × 4 residual
block is described as follows.

Each 4 × 4 block Y needs to be quantized individually as
follows:

Zij = round(Yij · PFij

Qstep
) (7)

where Yij is a coefficient of the transform described above,
Qstep is a quantization step size, Zij is a quantized coefficient,
and PFij is a scaling factor from the transform stage.

In H.264/AVC, 52 Qsteps are stored in a table indexed by a
quantization parameter (QP) (0–51). In order to avoid division
operations, the above equation can be simplified as follows:

Zij = round(Yij · MF
2qbits ) (8)

where
PFij

QStep
= MF

2qbits (9)

and

qbits = 15 + floor(QP/6). (10)

The above equations can be further simplified in integer
arithmetic as follows:

|Zij| = (|Yij| · MF ij + f ) � qbits (11)

sign(Zij) = sign(Yij) (12)

where f = 2qbits/3 for intra blocks or f = 2qbits/6 for inter
blocks. MFij is the MF depending on QP and the pixel position
in the 4 × 4 block as shown in Table I.
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Fig. 5. Scanning order of residual blocks within a MB.

TABLE II

Elements of CAVLC Encoding Per Block

Elements Description
Coeff token Encodes the number of nonzero coefficient and

number of signed trailing ones—one per block
Sign trail Encodes the sign of trailing ones

one per trailing ones maximum three per block
Levels Encodes the remaining nonzero coefficients

one per level excluding trailing ones
Total zeros Encodes the total number of zeros

before the last coefficient–one per block
Run before Encodes the number of run zeros preceding

each nonzero levels in reverse zigzag order

For intra 16 × 16 luma and chroma DC blocks, the trans-
form coefficients YD(i,j) are quantized to produce a block of
quantized DC coefficients as follows:

|ZD(i,j)| = (|YD(i,j)| · MF (0,0) + 2f ) � (qbits + 1) (13)

sign(Zij) = sign(Yij). (14)

MF(0,0) is the MF for position (0, 0) in Table I and f, qbits
are defined as before.

C. CAVLC Encoding

The CAVLC encoder is used for encoding transformed
and quantized residual coefficients of one video MB in the
processing order as shown in Fig. 5. A maximum of 27
blocks must be encoded within one MB. Block “−1” contains
16 luma DC coefficients if the current MB is encoded in
16 × 16 intra mode. Blocks 16 and 17 are formed by the
DC coefficients of two chroma components.

The CAVLC encoder can be partitioned into scanning and
encoding phases. In the scanning phase all of the blocks are
scanned in zigzag order. In the encoding phase, five different
types of statistic symbols are encoded sequentially using look-
up tables as Table II shows. The complexity of CAVLC mainly
comes from the context-adaptive encoding of the first and
third elements, coeff token and levels. The coeff token is
encoded for the total number of nonzero coefficients and
trailing ones. Five different variable-length coding (VLC)
tables are available for coeff token encoding and the choice
of table depends on the number of nonzero coefficients in the
neighboring left and top blocks. This data dependency requires
a large memory to store the number of nonzero coefficients
for high-quality video encoding. The levels are the nonzero

Fig. 6. Data flow diagram of the proposed H.264/AVC residual encoder.

coefficients (excluding trailing ones) encoded in reverse zigzag
order. The levels code is made up of an all 0 prefix followed
by a symbol 1 and suffix. The length of the suffix is initialized
to 0 unless there are more than ten nonzero coefficients and
less than three trailing ones, in which case it is initialized to
1. The length of the suffix can be adaptively incremented if
the current level magnitude is larger than a certain threshold.
A maximum of 6 bits are used for suffix encoding [31].

IV. Proposed Parallel Residual Encoder

Fig. 6 shows the data flow of the proposed parallel residual
encoding kernel. The input residual data are sent to the
shared 4 × 4 IT module. Then the transform coefficients are
forwarded to the alternating current (AC) quantization, chroma
DC, and luma intra 16 × 16 HT and quantization modules
separately. All the quantized coefficients are collected by the
data receiver module and sent to the CAVLC encoder. In the
CAVLC encoder, the zigzag and CAVLC scanning block are
the first phase of processing. Then corresponding syntaxes are
distributed to five different encoding units in parallel. The
packing unit collects and packs the final codes into an output
bitstream. When implementing the encoder on the array pro-
cessor, each task is first mapped to a single processor to allow
parallel execution. If either more memory or high performance
is required than can be provided by a single processor, the task
is mapped to multiple processors. Code for each processor is
implemented independently, considering only its inputs and
outputs. Once the mapping and communication patterns are
determined, coding for the small-memory processing array is
similar to writing codes for a sequential machine. However, an
efficient parallel mapping of this application on a fine-grained
architecture still requires overcoming some challenges in terms
of memory usage, mapping, and throughput optimization. The
following section describes our approach to these problems.

A. IT and Quantization

1) Memory and Algorithm Optimization: Since the pro-
posed encoder works at the 4 × 4 block level, most of the
time a 16-word memory is required for storing streaming data.
Thus, the 4 × 4 IT can be directly implemented on one AsAP
processor in 97 cycles to process each 4 × 4 block (without
configuration overhead). As for the quantization, we use look-
up tables to implement computations such as QP/6, QP mod
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Fig. 7. Two mappings of IT and quantization. (a) Non-optimized. (b) Opti-
mized with almost two times higher throughput.

6, 2qbits/6, and 2qbits/3. Another problem for quantization is
that the size of intermediate values exceeds 16 bits due to the
large size of MFs. This can be solved by using the 40-bit
accumulator to store the intermediate values so that a maximal
precision is preserved during the quantization procedure.

If the MB is in intra 16×16 prediction mode, the luma DC
(block −1) are first sent to the CAVLC encoder as shown in
Fig. 5. This will break the natural task-level pipeline because
the DC values cannot be fully collected until all the luma AC
blocks within one MB are transformed and quantized. Thus,
we need to buffer a maximum of 256 quantized luma AC
values to reorganize the block order. We can compress two
8-bit AC values into one 16-bit word so that the buffer tasks
can be implemented on one processor. Similarly, a maximum
64 quantized chroma AC values must be buffered so that the
chroma DC values can be sent first (blocks 16 and 17 in
Fig. 5).

2) Mapping and Throughput Optimization: Fig. 7(a) shows
a 6-processor direct mapping of the IT and quantization
procedures on the array processor. The two dashed lines
represent long-distance links. The chroma DC HT and quanti-
zation procedures are implemented in a single processor. This
fine-grained mapping creates an application level pipeline so
that the major transform and quantization tasks are running
in parallel. Our initial evaluation shows quantization is the
bottleneck of this mapping. In order to support HDTV 1080p
at 30 f/s, the 4×4 AC quantization processor needs to operate
at 2.14 GHz. Fig. 7(b) shows a 9-processor mapping. We have
duplicated the 4 × 4 AC Quant unit to double the throughput
of the quantization tasks. The transformed coefficients are sent
from the 4 × 4 IT processor alternately to the two 4 × 4
AC Quant processors. The chroma DC HT and quantization
are implemented in two processors which also buffer half
of the luma and chroma AC blocks within one MB. The
intra 16 × 16 DC HT and quantization are running on two
processors independently. The 9-processor mapping doubles
the throughput with three extra processors and simple code
duplication and re-mapping.

We can further parallelize the IT and quantization due
to the vast data parallelism available in the transform and
quantization operations. The residual encoder is parallelized in
a way similar to a software pipeline. Therefore, the throughput

Fig. 8. MBs in a QCIF frame. (a) Luma. (b) Chroma Cb or Cr.

Fig. 9. 20-processor CAVLC straightforward mapping done manually with-
out long-distance interconnection.

of the encoder depends on the slowest task. Since the IT and
quantization are fast enough for 1080p video encoding, we do
not need to further improve this part. In the following section,
we focus on the parallelization of the CAVLC encoder which
may be slower than the IT and quantization tasks in the case
that a test video sequence contains many nonzero residual data.

B. CAVLC Encoder

Compared with IT and quantization, the CAVLC algorithm
is intrinsically serial due to the dependencies among 4 × 4
blocks within one MB and the neighboring MBs within a
single video frame. However, task level parallelism can still be
exploited by distributing different tasks among processors [32].

1) Memory Optimization: In the CAVLC encoder, the
coeff token symbol (refer to Table II) is encoded with a table
look-up based on the number of nonzero coefficients (Total-
Coeff) and trailing ±1 values (TrailingOnes). In H.264/AVC,
five different look-up tables are used for this purpose and the
choice of table depends on a parameter nC which is the aver-
age of the number of nonzero coefficients of the neighboring
left and upper blocks named nA and nB, respectively. Fig. 8
shows the organization of MBs within one quarter common
intermediate format (QCIF) frame. The gray and dark gray
blocks are data-dependent blocks between neighboring MBs.
As MBs are processed in raster scan order, a large memory
is needed to store the number of the nonzero coefficients
of those data-dependent blocks. However, as each MB needs
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Fig. 10. 15-processor CAVLC mapping performed by an automatic task
mapping tool [33].

only nA and nB from neighboring 4 × 4 blocks, the memory
requirement can be reduced by maintaining a global memory
of upper nA and left nB in one of the 16-kB on-chip
memories of AsAP array. For one 1080p HDTV frame, the
upper nA contains 960 parameters and left nB contains eight
parameters. As each parameter uses no more than 5 bits, the
upper nA and left nB can be further compressed to save half
of the memory.

In our proposed CAVLC encoder, an arithmetic table elimi-
nation technique is used to encode level information. The level
encoding starts from the last nonzero coefficient (excludes
trailing ones). Two parameters, levels and vlcnum, are sent to
the encoding unit in each iteration. vlcnum is initialized to 0 or
1 and will be updated for the next level encoding depending
on the current level magnitude. The encoding unit encodes
VLC0 and VLC1–6 separately with simple shift and addition
operations. Due to the limit of the instruction memory, level
encoding has been implemented on two processors as shown
in Fig. 9. The P1 processor receives level information, sends
level and vlcnum to P2 and updates the vlcnum each time.

We use look-up tables to encode the other symbols: co-
eff token, total zeros, and run before. Most of the data in
the VLC tables are less than 4 bits except for some entries in
the coeff token when the number of total nonzero coefficients
is larger than 12. Moreover, the VLC table used to encode
total zeros has a triangular structure, where most data are
zeros. Based on the above observations, we can divide the
tables into smaller compressed tables and then determine
which table to use at runtime with little extra computation. Our
approach achieves a compression ratio of 4 so that the data
tables of the tasks coeff token, total zeros, and run before
fit into one processor’s 128-word 16-bit data memory.

2) Dataflow Mapping: As Fig. 6 shows, the CAVLC
encoder can be easily partitioned into a number of independent
serial and parallel tasks. When implementing the encoder on
an array processor, each task is first mapped to a single
processor to allow parallel execution. Each processor stores
only a small amount of data (up to a 4 × 4 block data) for
local computation. It is worth mentioning that the fine-grained
partition step determines the throughput of the encoder since
all of the tasks are implemented in a software pipeline style.
In the following step, we need to map the fine-grained task

Fig. 11. 15-processor CAVLC mapping done manually with throughput
identical to the mapping shown in Fig. 10.

graphs into the 2-D mesh array architecture. This mapping
step can be conducted either manually or automatically by
a customized AsAP mapping tool which aims to maximize
nearest neighbor communication and insert as few number of
routing processors as possible [33].

Fig. 9 shows a 20-processor straightforward manual map-
ping using only nearest-neighbor connections. The CAVLC
scanning unit sends statistical information only to the co-
eff token encoding unit and the coeff token encoding unit
passes the information immediately to the next sign trail
encoding unit. This takes place for every encoding unit before
it begins to operate on its own portion of data. This approach
simplifies the mapping and will not degrade the throughput
since the code produced by each unit needs to be collected in
sequential order by the VLC packing unit anyway. In Fig. 9,
the nC prediction unit is implemented on two processors
for luma and chroma separately. The 16 kB shared memory
supports two independent interfaces, which is ideal for this
case.

The mapping in Fig. 9 is inefficient due to the constraints of
a maximum of two input ports per processor and only nearest-
neighbor processor communication. Eight routing processors
are required to pass data around the graph. Fig. 10 shows
a compact 15-processor automatic mapping by the AsAP
mapping tool which aims to map an algorithm with the short-
est interconnection links and number of routing processors.
The four long arrow lines represent long-distance links. The
length of all the links are less than one processor. A saving
of five routing processors shows the efficiency of the low
overhead long-distance interconnection architecture [34]. With
a little more manual optimization, we have another similar
15-processor mapping shown in Fig. 11, which is more regular
and uses exactly a 5 by 3-processor array plus the shared
memory. As shown in the shadow box of Fig. 11, compared to
the CAVLC data-flow in Fig. 6, we added two more processors
for the nnz prediction and level encoding and three routing
processors which are required because of the constraints of
two input ports per processor. Overall, the parallel mapping
is very straightforward but effective once we have partitioned
the algorithm well.

3) Throughput Optimization: The throughput of the
15-processor mapping can be further optimized by character-
izing the workload of each processor and speeding up the
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Fig. 12. Proposed 25-processor H.264/AVC residual encoder mapping.

processors in the critical data path. The noncritical processors
add only latency to the system and do not affect the overall
throughput. Since the processors stop once they finish their
jobs, the processing time of one 4 × 4 block approximates the
processor active time during the encoding.

Our evaluation shows the critical path of the CAVLC encod-
ing includes zigzag reorder, CAVLC scanning, level encoding
P1&P2, and VLC binary packing. We adopted three methods
to optimize the mapping. First, the coding of these critical path
processors are optimized by using AsAP’s instructions and
features such as block repeat, automatic address generation,
and data forwarding. Second, the workload of VLC packing
is re-mapped onto routing processors. The codes can be packed
as soon as they are produced by each encoding unit. Third,
we add another two processors to further parallelize zig-zag
and CAVLC scanning procedures as shown by the CAVLC
encoder in Fig. 12. These three optimizations triple the average
throughput of the CAVLC encoder which can encode 1080p
(1920×1080) HDTV at 30 f/s or higher for various video test
sequences.

V. Simulation Results and Comparison

A. H.264/AVC Residual Encoder Implementation Results

Fig. 12 shows our proposed 25-processor fine-grained map-
ping for the H.264/AVC residual encoder. A total of eight pro-
cessors are used for transform and quantization and 17 proces-
sors including one 16-kB shared memory (968 bytes maximum
used for 1080p HDTV) are used for CAVLC encoding. There
are eight long-distance links with a length of one processor.
All other processors not included in the application mapping
within the AsAP array (Fig. 1) are turned off to save power by
halting their oscillators and disconnected them from the power
grid with their individual power transistors. We may use the
large number of unused processors to implement other work-
loads such as wireless communication or encryption for some
applications such as a wireless security video encoding system.

Fig. 13. Instruction memory usage of the proposed 25-processor encoder.

Figs. 13 and 14 summarize the instruction and data memory
usages for each processor among the 25 processors, respec-
tively. Our implementation shows that 128 words of instruction
and 128 words of data memory are more than enough for the
H.264/AVC residual video encoding. Each processor of the
25-processor encoder uses an average of 72 words of in-
struction memory, which is 56.3% of all available instruction
memory, and an average of 48 words of data memory, which
is 37.2% of all available data memory.

In our proposed residual encoder, the throughput of the
transform and quantization takes a maximum of 3960 cycles
to encode one MB. The throughput of the CAVLC encoder
is highly dependent on specific test video sequences and
encoding QP value. In H.264/AVC, the coded block patterns
(CBP) are used to determine the all-zero residual blocks which
are not necessary to be encoded. Considering the CBP effects,
we performed the simulations of our residual encoder using
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Fig. 14. Data memory usage of the proposed 25-processor encoder.

eight test sequences with different frame size including QCIF
Foreman, CIF Football, 4CIF Soccer, 720p Stockholm, 720p
Shields, 1080p Rush hour, 1080p Pedestrian area, and 1080p
Blue sky. All of these test sequences are encoded with four
different QP values from 25 to 36.

We use the JM 12.4 reference software to encode original
video sequences with a baseline setting. We collect the in-
termediate residual data after the intra and inter prediction in
reference software and send them to our residual encoder as
testing inputs. Simulation results are calculated by averaging
the cycles of encoding one MB of one I type and one P type
frame with a QP value from 25 to 36. If all the processors
run at a maximum of 1.2 GHz with a supply voltage of 1.3 V,
the encoder needs to encode one MB with less than 4902
cycles to support 1080p HDTV encoding. Fig. 15 shows the
average cycles to encode one MB for all the tests. As shown
in Fig. 15, all of the tests use less than 4902 cycles to encode
one MB. The QCIF Foreman test sequences has the highest
computation complexity and requires 4841 cycles to encode
one MB at QP = 25. All of the other test sequences have a
very steady encoding throughput in terms of average cycles per
MB within a range of 3500–4200 cycles per MB. The results
indicate that the encoder meets the real time requirement of
1080p HDTV encoding at 30 f/s.

B. Performance Evaluation

A more detailed analysis of processor execution reveals
some interesting insights into the bottleneck of our design.
Fig. 16 illustrates average processor activity of the encoder for
encoding Foreman testing video with QP = 25. The activity of
each processor (the amount of time spent executing, instead
of stalling), is indicated by the black bar in the figure. The
white bar indicates the time stalled on output, while the gray
bars indicate the time spent waiting for input to arrive. Fig. 16
shows that the two 4 × 4 AC Quant processors are running all
the time and they are both bottlenecks of our design in this
case. The two processors intra 16×16 DC HT and intra 16×16
DC Quant are stalling on input for most of the time because

Fig. 15. Average cycles to encode one MB for test sequences with varying
frame sizes and QP values.

Fig. 16. Processor activity of the residual encoder while encoding QCIF
Foreman at QP = 25.

the video frames are not encoded in intra 16 × 16 mode. The
QP Table & Data Receiver and 4 × 4 IT processors stall on
output for more than 30% of the whole encoding time because
the downstream 4×4 AC quant processor is not fast enough to
consume their outputs. Fig. 16 also shows that the VLC Binary
Packer is busy most of the time due to the large volume of
output bitstream which causes the other upstream processors
in the CAVLC encoder to stall on output during execution.
Most of the processors stall on input which indicates that
at some time the source processors are providing data at a
slower rate than the destination processor can consume it. The
large amount of stall time in Fig. 16 shows a large slack
for most of the processors, which provides a potential to
reduce the clock rate and supply voltage to increase energy
efficiency.
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TABLE III

Power Measured at 1.3 V and 1.2 GHz

Operation of 100% Active Stall Standby
(mW) (mW) (mW)

Processor 62.0 31.0 0.13
Shared memory 4.3 NA 0.11
Nearest-neighbor communication 5.9 NA ∼0
Long-distance communication one tile 12.1 NA ∼0

C. Power Consumption Optimization

1) Power Estimation: One advantage of the target many-
core system is that each processor its own oscillator. The clock
can be totally halted when the processor stalls for a certain
amount of time either because of input empty or output full.
During a short stall, the clock can still be active which results
in more power consumption than the case of a total standby
with halted clock. The overall activity of processors allows us
to estimate the total average power by

PTotal =
∑

i

PExe,i +
∑

i

PStall,i +
∑

i

PStandby,i

+
∑

i

PComm,i + Psharedmemory

(15)

where PExe,i, PStall,i, PStandby,i, and PComm,i represent the power
consumption of computation execution, stalling with active
clock, standby with halted clock, and communication activ-
ities of the ith processor among 25 processors, respectively.
Psharedmemory is the average power of the 16-kB shared memory.
PExe,i, PStall,i, and PStandby,i are estimated as follows:

PExe,i = αi · PExeAvg

PStall,i = βi · PStallAvg

PStandby,i = (1 − αi − βi) · PStandbyAvg

(16)

where PExeAvg, PStallAvg, and PStandbyAvg are average power
while the processor is 100% active in execution, stalling, and
standby (leakage only); αi, βi, and (1 − αi − βi) are the per-
centage of execution, stall, and standby activities of processor
i, respectively. The communication power of processor i can
be estimated as follows:

PComm,i =
∑

j

(δij · PCommActive,Lj

+PCommStandby,Lj
)

(17)

where δij is the communication active percentage of link
j; PCommActive,Lj

and PCommStandby,Lj
are the average power

consumed by a link with a length L while the link is 100%
active and standby. Table III shows the measured average
power consumption of various functions at 1.3 V and 1.2 GHz.
We have included two types of communication link power
since the length of the long-distance communication links
in our application are no more than one tile. As shown in
Table III, all the components consume little standby power
and the communication circuits consume nearly zero leakage
due to their simplicity.

Based on the average cycles per MB data as we present in
Fig. 15, Table IV lists the maximum frequencies to support
realtime (30 f/s) encoding of all the eight test sequences. The
processors only need to run as low as 15 MHz to encode QCIF
Foreman sequence at 30 f/s. Among all the tests, the 1080p

TABLE IV

Power Consumption of Residual Encoder Running at 30 f/s with

and Without Static VFS

Max Power Power
Test Frame Frequency w/o VFS w/ VFS Power

Size (MHz) (mW) (mW) Change (%)
Foreman QCIF 15 4.0 3.0 −25
Football CIF 45 9.1 7.1 −22
Soccer 4CIF 174 32 27 −16
Stockholm 720p 425 115 78 −32
Shields 720p 397 121 89 −26
Rush hour 1080p 939 433 271 −37
Pedestrian area 1080p 1032 544 347 −36
Blue sky 1080p 905 447 260 −42

Fig. 17. (a) Delay and (b) energy per operation of an inverter driving a fanout
of four based on SPICE simulation using PTM [35]; the general scaling rule
assumes a v/s2 reduction in delay and a 1/(sv2) reduction in energy/op where
s is the technology scaling factor and v is the voltage scaling factor [36]. (a)

Pedestrian area video sequence requires the highest frequency
of 1032 MHz for real-time encoding. Based on (15)–(17),
and Table III, we can reasonably estimate the average power
consumption of our residual encoder. We use the processor and
communication activity data from the profiling of encoding all
the eight test sequences at QP = 25. Table IV shows the power
consumption of all the tests without voltage and frequency
scaling which means all of the processors run at the same
maximum frequencies and corresponding supply voltages. The
QCIF Foreman real-time encoding consumes only 4 mW and
the power number increase proportionally with the frame size.
The encoder consumes 115–121 mW for 720p HDTV tests at
30 f/s and 433–544 mW for 1080p HDTV tests at 30 f/s.

2) Power Optimization: The power dissipation of our
encoder can be further reduced by adjusting the frequency
and voltage of each processor. Based on the processor activity
number, each processor has an optimal operating frequency
so that the processors can be active as much as possible. By
running at these optimal frequencies, the power wasted by
stalling and standby activities of the processors is eliminated.
As shown in Fig. 16, in that case the two AC 4 × 4 quant
processors must run at the highest frequencies and the other
processors will run at lower frequencies.

Our platform supports two global supply voltage grids
VddHigh and VddLow. The values of VddHigh and VddLow are vari-
ables for different test cases. The VddHigh is chosen to support
the maximum frequency based on the voltage frequency curve
presented in [27]. The VddHigh is set to 1.15 V for all the three
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1080p video tests shown in Table IV. Based on our simulation,
the two AC quantization processors are set to run at VddHigh for
the three 1080p tests. The other processors can run at VddLow or
VddHigh depending on their optimal operating frequency. If at
VddLow the processor can reach its optimal operating frequency,
the supply voltage is set to VddLow, otherwise VddHigh is chosen.
To find the optimal VddLow we changed VddLow from VddHigh

down to 0.65 V and chose the VddLow value which results in
the minimum total power consumption.

Table IV summarizes the estimated power consumption
of encoding the eight video sequences at QP = 25 with
voltage frequency scaling (VFS). As shown in Table IV, with
VFS, the residual encoder only consumes 3 mW for QCIF
Foreman encoding at 30 f/s. For the two 720p video tests,
the encoder consumes 78–89 mW with VFS. On average, with
VddHigh and VddLow at 0.85 V and 0.75 V, the encoder consumes
84 mW power dissipation for 720p video encoding at 30 f/s—
an average reduction of 29% compared with the design without
VFS. For the three 1080p 30 f/s video sequences, the encoder
consumes 260–347 mW. On average, with VddHigh and VddLow

at 1.15 V and 0.9 V, the encoder is capable of 1080p video
encoding at 30 f/s with 293 mW power dissipation—an average
reduction of 38.4% compared with the design without VFS.
The results demonstrate the effectiveness of voltage and fre-
quency scaling for video applications with dynamic workloads.
It is also interesting to notice that as frame size increases, the
power savings increase with voltage and frequency scaling.
This is because HD video encoding has more unbalanced
workloads among the encoding tasks, which provides more
power-saving potentials for voltage and frequency scaling.

D. Performance Comparison

The H.264/AVC baseline encoder has been implemented on
many DSP platforms. In order to fairly compare with other
reference designs, we estimate the loading fraction of residual
encoding in a full baseline encoder. Since this loading fraction
is affected by many different variables such as processor
architecture and test video sequences, we use a range to
estimate the fraction number.

The CAVLC occupies 18.2% computation time of the full
baseline encoder running on a general-purpose computer [43].
Our parallelized IT and Quant modules take around 56.2%
computation time of CAVLC encoding. Since the other re-
ported designs use VLIW, SIMD, or multiple-issue architec-
tures which are very likely able to execute multiple instructions
per cycle during the computation of IT and Quant, we esti-
mate they double their performance while computing these
workloads. In this way, we estimate the IT and Quant take
about 5.1% computation time of the full encoder. Summing
up the two fractions, the residual encoder is estimated to
take 23.3% computation time of a full encoder. We added
a fluctuation ranging from ±3% to roughly estimate the test
sequence variation which is observed in our JM encoding
tests over various test sequences from QCIF to 1080p frame
sizes. Thus, we estimate the residual encoder takes about 20.3–
26.3% of a full baseline encoder.

For a fair comparison, all of the reference data are scaled
to 65 nm technology at a supply voltage of 1.15 V. We use a

technology scaling rule justified by SPICE simulation of an
inverter driving a fan out of four under different technology
nodes and supply voltages with prediction technology model
(PTM) [35] as shown in Fig. 17. We use the metrics of
throughput (Mpixel/s), throughput per area [(Mpixel/s)/mm2],
energy per pixel (nJ/pixel) to compare the throughput, hard-
ware efficiency, and energy efficiency of each design.

Based on the loading fraction and technology scaling rule,
we estimate the residual encoder performance of published
software H.264/AVC baseline encoders on two DSP plat-
forms and two hybrid multicore architectures as shown in
Table V-C2. Since the proposed residual encoder on AsAP is
configurable and programmable, we include the performance
data of our design encoding 1080p, 720p, and CIF at 30 f/s at
different supply voltages as shown in Table V-C2. The energy
per pixel of AsAP reduces as we reduce the frame size and
supply voltages. A reduction of 36% and 52% energy per pixel
are achieved for 720p and CIF video encoding compared to
1080p encoding.

For a fair comparison, we only compare the other designs
with AsAP while encoding 1080p at 30 f/s because the other
results are scaled to 65 nm and 1.15 V. As shown in Ta-
ble V-C2, compared with the encoder on the TI DSP C642, the
proposed residual encoder on AsAP has 2.9–3.7 times higher
throughput, 11.2–15 times higher throughput per chip area, and
4.5–5.8 times smaller energy per pixel. Compared with ADSP
BF562 DSP, our design has 2.3–3.0 times higher throughput
and 5.6–7.2 times smaller energy per pixel. The IBM cell
processor is a heterogeneous multicore architecture for high-
end gaming and multimedia processing [44]. The reference
design on Cell has 5.9–7 times higher scaled throughput than
our design at a cost of 4.2–4.8 lower area efficiency than
AsAP. The Cell processor power number is not available
though AsAP should have far higher energy efficiency due
to area alone. The customized signal processing on-demand
architecture (SODA) is specially optimized for H.264 by
introducing flexible SIMD width, diagonal memory organiza-
tion and special fused operation instructions [40]. Compared
to the customized SODA, our implementation achieves 2.8–
3.6 times higher throughput and 4.5–5.9 times higher area
efficiency. AsAP has similar energy efficiency compared to the
SODA customized for H.264. SODA has not been fabricated
and both area and power data are from synthesis results
[40].

We also implemented the same residual encoder written
in sequential C and compiled it with Intel C++ Compiler
9.1 on a state-of-the-art Intel Core 2 Duo P8400 computer
running Windows XP SP2 with 3G bytes DDR3 RAM. To be
fair, we doubled the performance estimation of our sequen-
tial implementation based on the fact the encoder could be
potentially parallelized at the thread-level on the dual-core
processor [13]. As shown in Table V-C2, the throughput of
our design is around 4.7 times the scaled throughput of the
design running on the P8400. Our results show a state-of-
the-art general-purpose processor cannot meet realtime 1080p
encoding requirement with around two orders of magnitude
smaller throughput per area and around 93 times higher energy
per pixel compared with our design on AsAP.
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TABLE V

Comparison of Residual Encoder on Different Software Platforms

Max Esti. Resi.a Est. Resi.a Other Results Scaled to 65 nm and 1.15 V
Platform Arch. Tech. Vdd Area Frequency Power Throughput Throughput Energy Throughput Throughput/Area Energy

(nm) (V) (mm2) (MHz) (mW) (Mpixel/s) (nJ/pixel) (Mpixel/s) [(Mpixel/s)/mm2] (nJ/pixel)
8-way

TI C642 [37] VLIW 130 1.2 72 600 718 CIF@24f/s 9.3–12.0 59.8–77.2 16.7–21.6 0.9–1.2 21.2–27.4
Dual-core

ADSP BF561 DSP 130 1.2 NA 600 1110 CIF@30f/s 11.6–15.0 74–95.7 20.9–27.0 NA 26.2–33.9
[38]

CPU +
Cell [39] SIMD PE 90 1 221 3200 NA 1080p@31f/s 244–317 NA 366–476 2.8–3.2 NA
SODAb CPU +

customized SIMD PE 90 1 14.29 300 68 CIF@30f/s 11.6–15.0 4.5–5.9 17.4–22.5 2.3–3.0 3.9–5.2
for H.264 [40]

Dual-core
Intel P8400c CPU 45 1.1 107 2260 12 500d 1080p@12f/s 25 500 13.2 0.06 437.9

[41]
1.15/0.9 4.6 959 293 1080p@30f/s 62.2 4.7 62.2 13.5 4.7

This paper Array
AsAPe (25 cores) 65 0.85/0.75 4.6 411 84 720p@30f/s 27.6 3.0 27.6 6.0 3.0

0.675/0.675 4.6 45 7.1 CIF@30f/s 3.0 2.3 3.0 0.65 2.3

The original published data are included under different technology nodes and voltages. For comparison, data are scaled to 65 nm technology with a supply
voltage 1.15 V assuming a 1/s2 reduction in area. Throughput and energy are scaled based on a scaling rule justified by the SPICE simulation (Fig. 17).
aThe residual encoding throughput is estimated based on a loading factor of 20.3–26.3% of a full baseline encoder.
bSODA is not fabricated and data are from synthesis results [40].
cMeasured results by implementing the same residual encoder on Thinkpad T400 Core 2 Duo PC.
dThe P8400’s typical power is not available, so 50% of TDP (25 W) is used based on benchmark data of a general-purpose processor [42].
eThe AsAP’s area includes 25 cores and one 16-kB shared memory. Three sets of supply voltages are used for 1080p, 720p, and CIF video encoding separately.

VI. Conclusion

We have implemented a high-performance parallel H.264/
AVC baseline residual encoder on a fine-grained many-core
system. The encoder is composed of IT, quantization, and
CAVLC blocks. The 25-processor residual encoder is the first
software implementation on a fine-grained many-core system
that supports realtime 1080p HDTV encoding to the best of
our knowledge. We exploited data and task level parallelism in
the H.264/AVC algorithms at the fine-grained block level and
utilized the benefits of the GALS architecture to reduce power
dissipation based on the workload of each processor. The de-
sign achieved higher throughput, much higher throughput per
chip area, and much lower energy per pixel than the exact same
encoder implemented on a general-purpose multiprocessor. It
also compared very well with published implementations on
programmable DSP processors, thus demonstrating the great
promise of fine-grained many-core processor arrays for use in
video encoding.
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