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Abstract—On-chip router typically has buffers dedicated to its input

or output ports for temporarily storing packets in case contention occurs
on output physical channels. Buffers, unfortunately, consume significant
portions of router area and power. While running a traffic trace, however,
not all input ports of routers have incoming packets needed to be

transferred at the same time. As a result, a large number of buffer
queues in the network are empty while other queues are mostly busy. This
observation motivates us to design RoShaQ, a router architecture that
maximizes buffer utilization by allowing to share multiple buffer queues

among input ports. Sharing queues, in fact, makes using buffers more
efficient hence is able to achieve higher throughput when the network
load becomes heavy. On the other side, at light traffic load, our router
achieves low latency by allowing packets to effectively bypass these shared

queues. Experimental results show that RoShaQ is 21% less latency and
14% higher saturation throughput than a typical virtual-channel (VC)
router with 4% higher power and 16% larger area. Due to its higher
performance, RoShaQ consumes 7% less energy per a transferred packet

than a VC router given the same buffer space capacity.

I. INTRODUCTION

Systems on chip toward multicore design for taking advantage of

technology scaling and also speeding up system performance through

increased parallelism in the fact that power wall restricts increasing

more clock frequency [1]–[3]. Networks on chip were shown to be

feasible and easy to scale for supporting a large number of processing

elements rather than point-to-point interconnect wires or shared

buses [4]. Fig. 1 depicts a multicore system in which processors

communicate together through a 2-D mesh network of routers. Each

router has five ports which connect to four neighboring routers and its

local processor. A network interface (NI) locates between a processor

and its router for transforming processor messages into packets to be

transferred on the network and vice versa.

In a typical router, each input port has an input buffer for tem-

porarily storing packets in cases that output channels are busy. This

buffer can be a single queue as in a wormhole (WH) router or multiple

queues in parallel as in virtual-channel (VC) router [5]. These buffers,

in fact, consume significant portions of area and power that are can be

60% and 30% of the whole router, respectively [6]. Bufferless routers

remove buffers from the router so save much area [7], [8]; however,

their performance becomes poor that in many cases cannot meet

application requirements in which packet injection rates are high.

Furthermore, due to having no buffers, packets have to be dropped

and retransmitted or deflected once network contention occurs that

can consume even higher energy than a router with buffers [9].

Other approach is sharing buffer queues that allows to utilize idle

buffers [10] or emulate an output buffer router in order for obtaining

higher throughput [11]. Our work differs from those router designs

by allowing input packets at input ports to bypass shared queues so

that it achieves lower zero-load latency. In addition, the proposed

router architecture has simple control circuitry making it dissipate

less packet energy than VC routers while achieving higher throughput

by letting queues sharing workloads together when the network load

becomes heavy.

The main contributions of this work are:
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Fig. 1. A chip multi-processors (CMP) interconnected by a network of
virtual-channel routers. NI: Network Interface; R: Router.

• exploring and analyzing shared-queue router architectures that

maximize buffer utilization for boosting network throughput.

• proposing a router architecture that allows input packets to

bypass shared queues for reducing zero-load packet latency.

• evaluating and comparing the proposed router with VC routers

in terms of latency, throughput, power, area and packet energy.

This paper is organized as follows: Section II provides the back-

ground on router designs and motivation of this work. Section III

presents our router architecture with all its components in details.

The experimental results are shown in Section IV with analysis and

comparison against VC routers. Section V reviews related work and,

finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

We first review conventional on-chip router architectures with brief

evaluation of their performance; and then we analyze their buffer

utilization that is motivation of our new router design with shared

queues.

A. Typical Router Architectures

Fig. 2(a) shows a typical WH router with three pipeline stages.

The figure only shows details of one input port for simple view. At

first, a packet at the head of an input queue will decide the output

port for its next router (based on destination information contained

in its head flit) instead of for the current router (known as lookahead

routing computation (LRC) [12]). At the same time, it arbitrates for

its output port at the current router because there may be multiple

packets from different input queues having the same output port. If

it wins the output switch allocation (SA), it will traverse across the

crossbar in next cycle. One cycle after that, it then traverses on the

output link towards next router. Both LRC and SA are done by the

head flit of each packet; body and tail flits will follow the same

route that has already been reserved by the head flit, except the tail

flit should release the reserved resources once it leaves the queue.
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Fig. 2. Typical router architectures and their pipelines: (a) 3-stage wormhole (WH) router; (b) 4-stage virtual-channel (VC) routers. LRC: Lookahead Route
Computation; VCA: Virtual Channel Allocation; SA: Switch Allocation; ST: Switch Traversal; LT: Output Link Traversal; (X): a pipeline bubble or stall.

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

injection rate (flits/cycle/node)

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

c
y
c
le

s
)

 

 

VC (2VCs x 4 entries)

wormhole (8 entries)

VC with full Xbar (2VCs x 4 entries)

Fig. 3. Average packet latency simulated on a 8x8 2D-mesh network over
uniform random traffic pattern.

In a WH router, if a packet at the head of a queue is blocked

(because it is not granted by the SA or the corresponding input

queue of the down stream router is full), all packets behind it also

stall. This head of line blocking problem can be solved by a virtual-

channel (VC) router [5] as shown in Fig. 2(b). In this VC router

design, an input buffer has multiple queues in parallel, each queue is

called a virtual-channel, that allows packets from different queues can

bypass each other to advance to the crossbar stage instead of being

blocked by a packet at the head queue (however, all queues can also

be blocked if all of them do not win SA or if all corresponding

output VC queues are full). Because now an input port has multiple

VC queues, each packet has to choose a VC of its next router’s input

port before arbitrating for output switch. Granting an output VC for

a packet is given by a virtual-channel allocator (VCA); and this VC

allocation is performed in parallel with the LRC; hence the router

now has 4 stages as shown in Fig. 2(b). As a result, although a VC

router achieves higher saturation throughput than a WH router while

having the same number of buffer entries per input port, it also has

higher zero-load latency due to deeper pipeline.

Fig. 3 shows the latency-throughput curves of a 8x8 2-D mesh

network over uniform random traffic pattern with packet length of 4

flits. As shown in the figure, a VC router with 2 queues per input

port (each queue has 4 entries) has 11% throughput gain compared

to a WH router with 8 entries per queue; but its zero-load latency

is 29 cycles that is also 26% higher than that of a WH router (23

cycles). Speculative virtual-channel routers proposed by Peh et al.
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Fig. 4. Crossbar designs for a virtual-channel router: (a) P:P crossbar with V
buffer queues of an input port are multiplexed; (b) PV:P crossbar that connects
directly to all input buffer queues.

and Mullins et al. can reduce zero-load latency of a VC router to the

same as a WH router [13], [14]. However, at heavy network loads,

speculation usually fails that makes its network same throughput as

a typical VC router while consuming more power.

For achieving higher throughput, all VC queues of an input port can

be connected directly to a crossbar with full input degree instead of

being multiplexed as shown in Fig. 4. With this full-degree crossbar,

after allocated an output VC, packet from a queue can directly

arbitrate for its output port then would advance to next router if

it wins; while with multiplexed-input crossbar, queues of the same

input port have to beat together first before arbitrating for an output

port. Clearly, the probability of winning both arbitration stages is

less than winning only one arbitrator; hence, a VC router with full-

crossbar (full-Xbar) achieves higher throughput than a typical VC

router given the same number of VCs and buffer entries as shown

by the curves in Fig. 3.

In section III, we will present our new router architecture that

has low-load latency as a wormhole router while achieving higher

throughput than a full-Xbar VC router without the need of pipeline

speculation.

B. Buffer Utilization

Although buffers are expensive in terms of both power and area,

they are not utilized well because at the same time not all input

ports have packets to forward. Few input ports receive several packets

while others may be empty. Fig. 5 shows two extreme states (full and

empty) of buffer queues in a VC routers with 4 VCs per input port

and 4 buffer entries per VC. This figure shows the percentages of
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Fig. 5. Activities of router buffers vs. injection rate over synthetic traffics:
(a), (b) are percentages of cycles that queues are full or empty in the whole
simulation time.

number of cycles a queue is full and empty in 50,000 simulation

cycles after 10,000 warmup cycles (that allows the network to be

stable) over three synthetic traffic patterns on a 8x8 network.

When the load is low, queues are almost empty and never get full.

When the network load increases, queues get full in more cycles

and also less cycles to get empty. At the saturation status, around

30% and 40% of time queues get full over random traffic and bit-

complement or tornado traffic, respectively. However, there are also

around 40% of time queues get empty. We wish at this situation,

empty queues can share their storage capacity with full queues that

may allow more packets to be advanced rather than to be stalled,

hence should improve more throughput. This motivates us to design

a router with shared buffer queues as detailed in following section.

III. ROSHAQ: ROUTER ARCHITECTURE WITH SHARED QUEUES

A. The Initial Idea

For maximizing queue utilization, input ports of a router can

share all queues as depicted in Fig. 6(a). With this architecture,

incoming packets from an input port can be written to any shared

queues. However, this architecture has critical drawbacks explained

as follows. Because there is no buffer at input ports, when a packet

from a upstream router needs to be forwarded, it has to send a request

to downstream router and waits to receive the grant before sending

data. As a result, the shared queue arbitrator for each router is highly

complicated because it has to handle multiple requests from many

shared queues of all neighboring routers. Furthermore, the round-trip

inter-router request/grant delay can take several cycles plus the intra-

router pipeline making zero-load network latency very high [15].

To alleviate this latency, each input port is dedicated one buffer

queue and share all remaining queues as depicted in Fig. 6(b). With

this design, since each output port connecting to an input queue of

downstream router, shared queues only arbitrate for output port that

is similar to a wormhole router. Input queues of each router also beat

together to get grants to the shared queues. All request/grant signals

are intra router, hence reduces latency and also allocation complexity.

With this architecture, however, packets from input queues have to

be buffered into the shared queues again before sent to output ports.

This is actually unnecessary in the case when network load is low

that unlikely causes much contention at output channels.

From this observation, we move on one more step by allowing

input queues to bypass the shared queues as shown in Fig. 6(c). With

this design, a packet from an input queue simultaneously arbitrates

for both shared queues and an output port; if it wins the output

port, it would be forwarded to the downstream router at next cycle.

Otherwise, that means having congestion at the corresponding output

port, it can be buffered to the shared queues. Intuitively, at low

load, the network would has low latency because packets seem to

frequently bypass shared queues. While at heavy load, shared queues

are used to temporarily store packets hence reducing their stall times

at input ports that would improve the network throughput. In next

subsection, we will show in details circuit components that realize

this router architecture.

B. RoShaQ Architecture

RoShaQ, a router architecture with shared queues based on

Fig. 6(c), is shown in Fig. 7. When an input port receives a packet,

it calculates its output port for the next router (lookahead routing), at

the same time it arbitrates for both its decided output port and shared

queues. If it receives a grant from the output port allocators, it will

advance to its output port in next cycle. Otherwise, if it receives a

grant to a shared queue, it will be written to that shared queue at

next cycle. In case that it receives both grants, it will prioritize to

advance to the output port.

Shared-queues allocator (SQA) receives requests from all input

queues and grants the permission to their packets for accessing non-

full shared queues. Output port allocator (OPA) receives requests

from both input queues and shared queues. Both SQA and OPA

grant these requests in round-robin manner to guarantee fairness

and also to avoid starvation. Input queue, output port, shared-

queue receiving/writing and shared-queue transmitting/reading states

maintain the status (idle, wait or busy) of all queues and output ports,

and incorporate with SQA and OPA to control the overall operation

of the router. Another notice is that only input queues of RoShaQ

have routing computation logic because packets in the shared queues

were written from input queues so they already have their output port

information. RoShaQ has the same I/O interface as a typical router

that means they have the same number of I/O channels with flit-level

flow control and credit-based backpressure management [16].

C. RoShaQ Datapath Pipeline

At first, a packet at the head of an input queue simultaneously

performs three operations: LRC, OPA and SQA. At low network

load, there is a high chance the packet to win the OPA due to low

congestion at its desired output port; hence it is granted to traverse

through the output crossbar and output link towards next router.

Therefore, it incurs three stages including link traversal as depicted

in Fig. 8(a). that is similar to a WH router pipeline.

When network becomes heavy, incoming packet may fail to get

granted from OPA, but it can get a grant from SQA and is allowed

to traverse the shared-queue crossbar and write to the granted shared

queue in next cycle. After that, it arbitrates for the output port again

and would traverse across the output crossbar and output channel

toward the next router at next cycles if it is granted by the OPA at

this time. Thus, in this situation, it incurs five inter-router stages as

shown in Fig. 8(b). This larger number of traversing stages, in fact,

allows the router to utilize shared-queues for reducing stall times of

packets at input queues, hence improves throughput at heavy network

load.

In both cases, body and tail flits of a packet traverse through the

router on the same way as its head flit, except they do not need

to arbitrate for resources (output ports and shared queues) that were

already reserved by the head flit. The tail flit should also release these

reserved resources once it leaves the queue.

D. Design of Allocators

This subsection describes the design of allocators for VC and

RoShaQ routers. Let P and V be number of router ports and number
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of VC queues per port in a VC router, respectively. Its VCA circuit

is shown in Fig. 9 that has two stages of arbiters [13]. Each arbiter

in the first stage chooses which output VC for a specific input VC;

while an arbiter in the second stage chooses an input VC among

several input VCs that were granted to the same output VC at the

first stage. In total, this VCA consists of 2PV (PV:1) arbiters.

Fig. 10 shows the SA circuit designs for a typical VC router and

for a VC router with full crossbar. Because input queues in the typical

VC router are multiplexed before connected to the crossbar, its SA has

two stages as shown in Fig. 10(a). First stage decides which input VC

wins the input crossbar port; while second stage choose one among

these winning input VCs for output ports. This SA consists of P

(V:1) and P (P:1) arbiters. For a full-Xbar VC router, all input VCs

directly arbitrate for output ports; so its SA consists of P (PV:1),

each for one output port as depicted in Fig. 10(b).

The OPA and SQA of RoShaQ router are shown in Fig. 11. The

OPA includes P (P+N:1) arbiters; each chooses one queue among

input queues and shared queues that have the same output ports,

where N is number of shared queues. In order for the total number

of buffer queues to be identical to that of a VC router (PV queues in
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multiplexed; b) VC router with full crossbar.

total), N is equal to P(V − 1) because each input port has one queue.

So, the OPA is exactly the same as the SA of a full-Xbar VC router.

The SQA includes two stages to allocate P input queues to N shared

queues; so its circuit is the same as the SA of a VC router. This SQA

is much low cost than a VCA; as a result, OPA and SQA of RoShaQ

consume less area and power than VCA and SA of both typical and

full-Xbar VC routers as will be shown in next section.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

For evaluating performance of VC, full-Xbar VC and RoShaQ

routers, we developed three cycle-accurate simulators, each for one

router model. Experiments are performed over four synthetic traffic

patterns as described in Table I. For uniform random traffic, each

source processor chooses its destination randomly with uniform

distribution, packet-by-packet. For other patterns, destination of each
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TABLE I
SYNTHETIC TRAFFIC PATTERNS

traffic patten description

uniform random destination is randomly chosen, uniform dist.

transpose [x,y] to [y,x]

bit-complement [x,y] to [x̄, ȳ]

tornado [x,y] to [(x+3) % 8, (y+3) % 8]

source node is decided based on location of the source [16] as detailed

in the table.

Performance of each router is evaluated by running simulation

in 50,000 cycles with 10,000 warmup cycles on a 8x8 2-D mesh

network where each network node consists of a processor and a

router. Processor injects and consumes packets into and out of the

network with each packet length is four 32-bit flits. We can employ

any routing algorithm proposed in the literature [17] for routers;

however, for comparing only the performance purely achieved by

different architectural designs, we use the same XY dimension-

ordered routing algorithm for all routers in this work. Latency of

a packet is measured from the time its head flit is generated by the

source to the time its tail flit is consumed by the destination. Average

network latency is mean of all packet latencies in the network.

Table II describes six router configurations used in our experiments.

VC2 and VC4 have 2 and 4 VC queues per input port, respectively.

For fair evaluation, each queue of VC2 has 8 flit-entries while each

queue of VC4 has 4 flit-entries. VC2-fullXbar and VC4-fullXbar have

the same buffer configurations as VC2 and VC4 except their crossbars

are full-degree (10:5 crossbar for VC2-fullXbar and 20:5 crossbar for

VC4-fullXbar). For comparing with VC2 and VC2-fullXbar where

each has total of 10 queues, RoShaQ5 that has 5 shared queues is

used. Similarly, for comparing with VC4 and VC4-fullXbar where

each has total of 20 queues, we use RoShaQ15 that has 15 shared

queues. All routers have the same 80 flit buffer entries in total.

B. Latency and Throughput

The average packet latency of network corresponding to six router

configurations over uniform random traffic is given in Fig. 12. As

TABLE II
ROUTER CONFIGURATION USED IN EXPERIMENTS. EACH ROUTER HAS 80

BUFFER ENTRIES IN TOTAL

router name description

VC2 2 queues/input port, 8 entries/queue
VC2-fullXbar the same as VC2, but using fullXbar
RoShaQ5 1 queue/input port, 5 shared queues, 8 entries/queue
VC4 4 queues/input port, 4 entries/queue
VC4-fullXbar the same as VC4, but using fullXbar
RoShaQ15 1 queue/input port, 15 shared queues, 4 entries/queue
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Fig. 12. Latency-throughput curves over uniform random traffic

shown, even having the same number of buffer entries, VC4 has

higher saturation throughput than VC2 that is identical with results

reported by Peh et al. [13]. Increasing number of crossbar input ports

improves much more throughput. As shown, VC2-fullXbar achieves

saturation throughput even higher than VC4. VC4-fullXbar has 11%

saturation throughput higher VC4 (0.40 flits/cycle vs. 0.36 flits/cycle).

RoShaQ5 has the same saturation throughput as VC2-fullXbar

(0.37 flits/cycle), while RoShaQ15 achieves 0.41 flits/cycle that is 2%

higher VC4-fullXbar and 14% higher than VC4. More importantly,

both RoShaQ5 and RoShaQ15 have zero-load latency of 23 cycles

similar to a WH router that is 21% lower than all VC routers with and

without full-degree crossbar. From these results, for simplicity, from

now on we only provide the comparison results among RoShaQ15,

VC4 and VC4-fullXbar in the rest of this paper. Comparison among

RoShaQ5, VC2 and VC2-fullXbar gives a similar conclusion.

Fig. 13 shows packet latency of routers over three other traffics:

transpose, bit-complement and tornado. As shown, similar to random

traffic, RoShaQ outperforms VC4 over both bit-complement and

tornado traffics. For transpose traffic, routers on the same row

send packets to the same output direction; therefore, at saturation,

throughput is limited by the output channel of the last router on

that row. So all routers have the same saturation throughput of 0.14

flits/cycle. For bit-complement, RoShaQ15 is 2% and 8% higher

saturation throughput; and for tornado-traffic, RoShaQ15 is 4%

and 17% higher saturation throughput than VC4 and VC4-fullXbar,

respectively. Again, over all traffics, RoShaQ15 achieves far lower

latency than both VC routers before saturated because packets have

a high chance to bypass shared queues.

C. Power, Area and Energy

Three router models (VC4, VC4-fullXbar and RoShaQ15) in

Verilog RTL are synthesized targeting ST Microelectronics 65 nm

low-power standard cells using Synopsis Design Compiler. Buffer

queues are built from flip-flop registers; while each crossbar is a set

of multiple multiplexers. Environmental parameters for the compiler

are set at 1.2 V, 25oC. We let the synthesis tool does all optimizations

and automatically picks up standard cells in the library in order for

all routers to meet 1 GHz clock frequency in the worst case.

Fig. 14 shows the synthesis power and area of three routers. ‘Other’

circuits in the figure include state of queues, routing computation

and credit calculating circuitry. For taking into account the pipelined

architecture of routers, the reported power and area of all components

are also included their output pipeline registers. As seen in the figure,

in the typical router VC4, buffers are expensive that occupy 53% area

and consume 68% power of the whole router; while its crossbar only

occupies 8%. VC4-fullXbar increases number of crossbar input ports

that makes its router 7% larger area and 19% larger power than VC4
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Fig. 14. Synthesis results: (a) power; (b) area.

TABLE III
ROUTER POWER AND AREA COMPARISON

VC4 VC4- vs. RoShaQ15 vs. vs. VC4-
fullXbar VC4 VC4 fullXbar

power (mW) 56 60 + 7% 58 + 4% -3%

area (mm2) 0.078 0.093 +19% 0.091 +16% -3%

as listed in Table III.

Because RoShaQ15 has two crossbars, its crossbars are 56% larger

and consumes 35% higher power than the VC4-fullXbar’s crossbar.

However, interestingly enough, due to the simplicity of its allocators’

circuits and less number of routing computation blocks (5 for 5 input

queues compared to 20 for 20 virtual-channels in VC routers), the

total router area and power of RoShaQ15 is even 3% less than these

of VC4-fullXbar, respectively. Compared to VC4, RoShaQ is 4% and

16% larger power and area.

Another important metric to compare among router designs is

the energy that routers in the network dissipate for transferring

data packets [18]. As seen from latency-throughput curves, given

a targeted packet latency of D cycles, the maximum injection rate

is limited to R flits/cycle. For example, over uniform random traffic,

from Fig. 12, to achieve an average packet latency of 60 cycles,

R is 0.35, 0.39 and 0.40 for VC4, VC4-fullXbar and RoShaQ15,

respectively. With injection rate of less than R, it needs more cycles

to transfer a whole packet that means consuming more energy per

packet. Therefore, the injection rate that minimizes packet energy

while satisfying a given average packet latency should be equal to R.

Let L be packet length in the number of flits, then L/R is number

of cycles to send a packet. Let Ec be energy per cycle of a router

TABLE IV
MAXIMUM INJECTION RATE R OF SOURCE PROCESSOR (FLITS/CYCLE)
WHILE TARGETING AN AVERAGE PACKET LATENCY OF 60 CYCLES OVER

SYNTHETIC TRAFFICS

VC4 VC4-fullXbar RoShaQ

random 0.35 0.39 0.40

transpose 0.14 0.14 0.14

complement 0.18 0.20 0.21

tornado 0.22 0.26 0.27

TABLE V
MINIMUM PACKET ENERGY Ep (PJ/PACKET) OF ROUTERS WHILE
TARGETING AN AVERAGE PACKET LATENCY OF 60 CYCLES OVER

SYNTHETIC TRAFFICS

VC4 VC4-fullXbar RoShaQ

random 640 615 580

transpose 1600 1714 1657

complement 1244 1200 1105

tornado 1018 923 859

average 1126 1113 1050

that is equal to router power Pr multiplying with cycle time Tc;
1

then energy per a transferred packet is:

Ep = Ec
L

R
=

Pr × Tc × L

R
(1)

We choose 60-cycle packet latency for comparison that is two times

of zero-load latency of VC routers and also before all routers get

saturated. From figures 12 and 13, while targeting the same average

packet latency of 60 cycles, the maximum injection rate R of each

router corresponding to different traffics is given in Table IV. The

router power Pr of routers at 1 GHz (Tc = 1 ns) was shown in row 2

of Table III. Hence, with packet length L of 4 flits, from Eqn. (1),

the average packet energy each router dissipates corresponding to

different traffics is given in Table V. As shown, due to higher injection

rate given the same packet latency, RoShaQ15 consumes less energy

per packet than both VC4 and VC4-fullXbar over three traffic patterns

except the transpose one. This is because, for the transpose traffic,

all routers have the same throughput of 0.14 flits/cycle at latency of

60 cycles while RoShaQ15 consumes more power. Averaging from

all four traffic patterns, consequently, RoShaQ15 consumes 7% and

5% less energy per packet than VC4 and VC4-fullXbar, respectively.

1We assume a router consuming the same energy for each cycle that it
transfers a flit. This is not always a case because activity of components may
differ in cycle by cycle. However, for relative comparison among designs,
this assumption can be used here for simplicity. For accurate evaluation, it
requires a full simulation which takes into account activities of all router
components that allows to accumulate their energy in whole simulation time
before obtaining the average packet energy. This simulation-based evaluation
is left for our future work.
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V. RELATED WORK

Peh et al. proposed a speculative technique for VC routers allowing

a packet to simultaneously arbitrate for both VCA and SA giving

a higher priority for non-speculative packets to win SA; therefore

reducing zero-load latency in which the probability of failed specu-

lation is small [13]. This low latency, however, comes with the high

complexity of SA circuitry and also wastes more power each time the

speculation fails. A packet must stall if even it wins SA but fails VCA,

and then has to redo both arbitration at next cycle. Reversely, RoShaQ

is non-speculative architecture. An incoming packet in RoShaQ only

stalls if it fails both OPA and SQA; therefore it has high chance to

advance either to be written to a shared queue (if it wins SQA) or

be sent to output port (if it wins OPA) instead of stalling at an input

port, and also reducing re-arbitration times.

Increasing crossbar input ports, that allows to directly connect

to all virtual-channels of an input port instead of muxing them,

improves much network throughput for VC routers. Using a large-

radix crossbar is feasible and low-cost than adding more buffers as

the results reported by DeMicheli et al. [19]. Recently, Passas et al.

designed a 128×128 crossbar allowing to connect 128 tiles while

occupying only 6% of their area [20]. This fact encourages us to

build RoShaQ that has two crossbars while sharing cost-expensive

buffer queues. The additional costs of crossbars are compensated

by the simplicity of allocators and reducing the number of routing

computation circuits that make our router better VC routers in many-

fold: throughput, latency and packet energy.

IBM Colony router has a shared central buffer which is built from

a time-multiplexed multi-bank SRAM array with wide word-width in

order that it can be simultaneously written/read multiple flits (defined

as a chunk) by input/output ports [21]. As a result, the central buffer

is high cost and not identical with input queue design. RoShaQ has all

buffer queues (both input and share queues) to be the same structure

that allows to reuse the existing generic simple queues reducing

practical design and test costs.

Latif et al. implemented a router with input ports sharing all

queues [10] that is similar to the architecture illustrated in Fig. 6(a).

Its implementation on FPGA shows more power and area-efficient

than typical input VC routers. However, no router performance was

reported and compared to VC routers. A similar approach is proposed

by Tran et al. [15]; however, due to the high complexity of its

allocators and also inter-router round-trip request/grant signaling, its

performance is actually poorer than a typical router.

Ramanujam et al. recently proposed a router architecture with

shared-queues named DSB which emulates an output-buffered

router [11]. This router is similar to one illustrated in Fig. 6(b) that has

higher zero-load latency than a VC router. This is because a packet

has to travel through both two crossbars and be buffered in both

input and shared queues at each router. Besides that, the timestamp-

based flow control of DSB router design is highly complicated and

hence consumes much larger area and power than a typical VC

router (that are 35% and 58%, respectively). RoShaQ allows input

packets to bypass shared-queues hence achieves lower zero-load

latency compared to VC routers. RoShaQ also achieves much higher

saturation throughput than VC routers, with only small area and

power overheads while consuming less average energy per packet.

VI. CONCLUSION

We have presented RoShaQ, a new router architecture which allows

to share multiple buffer queues for improving network throughput.

Input packets also can bypass shared queues to achieve low latency

in the case that the network load is low. Compared to a typical VC

router, it is 21% lower zero-load latency and 14% higher saturation

throughput with only 4% higher power and 16% larger area. It is

also 2% higher throughput than a full-crossbar VC router with 3%

less than power and area. While targeting the same average packet

latency of 60 cycles, RoShaQ has 7% and 5% less energy dissipated

per packet than typical VC and full-crossbar VC routers, respectively,

while having the same buffer space. Its low latency, high throughput

and low energy are achieved without the need of pipeline speculation.
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