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Abstract— The emerging many-core architecture provides a flexible
solution for the rapid evolving multimedia applications demanding
both high performance and high energy-efficiency. However, developing
parallel multimedia applications that can efficiently harness and utilize
many-core architectures is the key challenge for scalable computing. We
contribute to this challenge by presenting a fully-parallel H.264/AVC
baseline encoder on a 167-core asynchronous array of simple proces-
sors(AsAP) computation platform. By exploiting fine-grained data and
task level parallelism in the algorithms, we partition and map the
dataflow of the H.264/AVC encoder to an array of 115 small processors
coupled with two shared memories and a hardware accelerator for
motion estimation. The proposed parallel H.264/AVC encoder is capable
of encoding video sequences with variable frame sizes. The encoder
presented is capable of encoding VGA (640 x 480) video at 21 frames per
second (fps) with 931 mW average power consumption by adjusting each
processor to workload-based optimal clock frequencies and dual supply
voltages with less than 1dB loss in resolution.

I. INTRODUCTION

In the past decades, multimedia systems evolve with the rapid de-
velopment of VLSI technologies. More and more complicated image
and video algorithms become feasible by upgrading the underlying
hardware using newer process technology. Traditional video encoding
architectures appear in three forms: application-specific processors,
multimedia extensions to general-purpose processors, and multime-
dia co-processors. However, none of these methods achieve both
high performance and flexibility for emerging multimedia standards.
The H.264/AVC is a video coding standard developed through a
collaboration of the ITU-T and ISO [1]. The standard is proven
to achieve significant video compression efficiency compared with
prior standards (39%, 49% and 64% bit-rate reduction versus MPEG-
4, H.263 and MPEG-2 respectively) [2]. This high coding gain
increase comes mainly from a combination of new coding techniques
which results in high computational complexity. The emerging many-
core approach has proven to be a feasible solution for real-time
H.264/AVC video encoding. However, how to map such complex
applications as H.264/AVC to many-core processors is challenging.
Many coarse-grained parallel many-core approaches have been pro-
posed for H.264/AVC encoding. Most of them exploit thread-level
or frame-level parallelism in video encoding algorithms [3], [4], [5],
[6].

In this paper, we propose an on-chip distributed processing ap-
proach to parallelize the H.264/AVC baseline encoder at the mac-
roblock (16x16) and 4x4 sub-macroblock level on a fine-grained
many-core platform. The proposed fine-grained parallelization ex-
ploits the existing locality and streaming nature of H.264/AVC encod-
ing algorithms. Our work differs from previous research in that we
apply a more fine-grained approach to exploit task-level parallelism
in H.264/AVC encoding. We also take advantage of the globally-
asynchronous locally-synchronous (GALS) and per-processor voltage
and frequency scaling features of the target many-core system to
further reduce the power consumption.

The rest of this paper is organized as follows. Section II introduces
the features of the targeted many-core system and the corresponding
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Fig. 1. Architecture of targeted many-core system.

parallel programming methodology. Section III presents the task-level
parallelization approach to the H.264/AVC encoder. Section IV shows
the performance analysis and results. Section V concludes the paper.

II. THE TARGET PLATFORM AND PARALLEL PROGRAMMING

METHODOLOGY

A. The target AsAP platform

The target AsAP (Asynchronous Array of Simple Processors)
architecture is a fine-grained many-core system which is composed of
simple cores with small memories for high energy efficiency. Target
applications of AsAP include multimedia and communication algo-
rithms which can be partitioned into small tasks running separately
on small and simple processors. As shown in Fig. 1, the system
is composed of 164 16-bit homogeneous DSP processors, three
dedicated hardware accelerators (Viterbi decoder, FFT and video
motion estimator, and three 16-KB integrated shared memories, all
of which have local oscillators and are connected by a reconfigurable
mesh network [7].

1) The AsAP processor: Some of the key features of the AsAP
processors are listed as follows:

• each processor is small, containing only 128-word of instruction
and 128-word of data memory.

• the instruction set of the simple programmable processors ad-
heres to a simple one-destination and two-source architecture.
The two source operands are from either local data memory
or two input buffers connected with neighboring or far-away
processors.

• each processor has two sets of communication links in each
direction for nearest-neighbor communication; long-distance
communication can be statically configured without interrupting
the processors in the middle.

• each processor has two input port with dual-clock FIFO.
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• each processor’s voltage and frequency can be dynamically
scaled to achieve highest energy efficiency.

2) The Motion Estimation Accelerator: Motion estimation is a
highly computational task and has been implemented as configurable
hardware accelerator in our design. The motion estimation accelerator
(ME ACC) allows for communication with two neighboring AsAP
processors for control. The controlling processor sets up the ME ACC
to perform SAD (Sum of Absolute Difference) computation by
programming various registers and controls the ME ACC to start,
continue or stop the MV search. The ME ACC performs SAD
computation at the given search position and increments the search
position index automatically. The search area and pattern in the
ME ACC are user defined allowing for different types of searches
such as full search, 4-step, diamond as well as any custom ones. The
accelerator currently allows for 4 sets of search patterns, each with
64 different programmable search locations.

B. Parallel mapping and programming methodology

Fig. 2 shows the parallel programming methodology for the
proposed video encoder. The methodology is divided into three steps.
We first implemented a bit-level verified sequential C video encoder,
which uses a traditional shared memory model on general-purpose
processors as shown in Fig. 2(a). Then the sequential algorithm is
partitioned into multiple parallel tasks which are implemented with
simple C programs separately as shown in Fig. 2(b). The H.264/AVC
encoder can be divided into many tasks which can be combined
by linking their inputs and outputs using a GUI-based mapping
tool. We have developed a Linux-based parallel simulator based
on message passing interface (MPI) library to verify the parallel
C implementation. At the third step, the coarse-grained tasks are
repartitioned to fit on the resource-constrained fine-grain parallel
AsAP processors as shown in Fig. 2(c). By using the activity profile
of the processors reported by the simulator, we evaluate its throughput
and power consumption. This distributed processing approach is
suitable for video applications with streaming features so that large
shared memories are avoided and each processor can work on its own
piece of data.

C. Programming constraints of AsAP platform

Three main differences in programming AsAP versus other chips
or using MPI are the size of the data and instruction memory available
and the number of input buffers per processor.

1) Data Memory: Video encoding is a highly memory-intensive
application. Since each processor occupies 128 16-bit words of data
memory, even if one macro block data is packed, it would not fit onto
a single processor and would have to be split into at least two, with
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Fig. 3. Dataflow cases with three or more inputs per processor (a) simple
case without feedback path (b) complex case with feedback path

the luma data packed (two pixels per word) into one processor and
the chroma data into another processor. Some processors are used
solely for memory purposes, which would have to be separated from
the computational processors. Multiple memory processors can be
connected in a loop to form a FIFO like buffer.

2) Instruction Memory: The small instruction memory available
for each processor is fairly adequate for simple tasks. However, pro-
grams need to be splitted up into smaller blocks for computationally-
intensive tasks. This creates more parallelism if programs can be
broken up in such a manner that the smaller blocks can be executed
at the same time. The challenge is to find good breaking points in
the programs where branching off to another processor would require
little overhead because certain control information and data would be
needed by both/multiple processors.

3) Limited Input Port: The fine-grained AsAP platform has limited
number of inputs to both the chip and each individual processors.
The AsAP chip has one external input and output for off chip
communication. Due to the limited size of on-chip memories, the
current and reference frames are stored off chip, when a processor
requests a macroblock, it sends a request signal to off-chip. The
request signals and encoded video output must share the same I/O
port, requiring that control bits be sent to off-chip for determining
where each output should be routed. In order to save buffer size, each
processor only has two 64-word input FIFOs. Because of the limited
instruction memory, many of the modules need to be broken up to
smaller tasks, and at some later point combined again to re-construct
the data, which creates input port congestions. As shown in Fig. 3,
there are two cases in which the processors in the H.264 encoder
requires there or more input ports. Fig. 3(a) shows a simple case
without feedback path in the data flow. Fig. 3(b) shows a complicate
case with feedback path. Generally, both cases can be solved by using
processors for routing purpose to combine data from multiple sources
or distribute data to multiple destination.

III. FINE-GRAINED TASK-LEVEL PARALLELIZATION OF

H.264/AVC ENCODER

Fig. 4 shows the proposed H.264/AVC baseline encoder block
diagram. The motion estimation is implemented with dedicated
hardware motion estimator which supports several programmable
search patterns and all H.264-specified block sizes. As shown in
Fig. 4, an input frame is processed in units of macro-block which
is composed of 16x16 luma pixels and 8x8x2 chroma pixels. This
type of block-based video compression are very suited for the fine-
grained many-core systems which exploit fine-grained task-level par-
allelism. An ideal data-flow application pass data among processors
in a streaming style. However, data-dependencies and conditional
execution complicate the data-flow control of H.264 encoding, thus
requiring large memories for storing temporary data.
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Fig. 4. H.264/AVC encoder block diagram

A. The overview of H.264 encoder parallelization on AsAP

1) Memory organization: Three memory intensive tasks in the
H.264 encoding are the current/reference frame management, motion
vector management and non-zero coefficient management in entropy
encoding. They arise from the fact that the encoding is based not
only on the current macro-block but also previously encoded ones.

As shown in Fig. 4, the current/reference frame is stored off-chip,
which allows the proposed encoder support flexible frame size. The
off-chip memory is divided into three banks which holds the current
encoding frame, the reconstructed current frame and the previously
reconstructed frame in macro-block order with luma data followed
by chroma data.

As macro-block are processed in raster scan order, a large memory
is needed to store the motion vectors of the top and left blocks
for motion vector prediction of current block and the number of
the nonzero coefficients of those data-dependent blocks for CAVLC
encoding. The H.264 standard supports sub-partitions of blocks for
inter prediction, with two motion vectors per block this becomes a
possible maximum of 32 motion vectors when using the smallest
partition size(16 4x4 blocks). For motion vector prediction the
preceding row of macro-block motion vectors must be saved. A
maximum of 3840-word memory is required for the 1080p resolution.
Similar to motion vectors, the number of non-zero coefficients has to
be predicted in the CAVLC using the top and left block data. Because
the CAVLC process is performed on 4x4 blocks, at least 4x120 word
memory space has to be reserved for a frame of 1080p resolution
requiring the use of on-chip shared memory.

2) Data-flow control: One of the greatest challenges of parti-
tioning a program over such a large area is controlling the flow
of data between processors. Ensuring that data is present when
needed, and buffered when un-used is vital in preventing dead lock.
Since video encoding is done on a macro-block basis, for intra
prediction this requires each macroblock to go through the intra
prediction process, integer transform, quantization, scaling, inverse
transform, and reconstruction before the next macro-block can be
predicted. At each step proper control information must be present
to ensure accuracy. The chroma prediction process is much faster
than luma prediction and the predicted value used must be buffered
prior to being sent to the reconstruction blocks to prevent a dead
lock situation at the integer transform. Basic macroblock and frame
information is also sent along each stage to ensure accuracy and
increase code reuse. Parameters such as frame width, frame height,
macro block width, macro block number, encoding mode (intra/inter)
and block mode are used at nearly every stage and transmitted to save
limited size of instruction memory. Many processors can start some
initial computation without all of the current data being present, this
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Fig. 5. H.264 intra-prediction data-flow diagram
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however requires that the control information be broadcasted to many
processors via long distance interconnects creating an additional
mapping issue.

B. Detailed parallelization of H.264/AVC encoder

The major encoding blocks of H.264 baseline encoder include
intra-prediction, inter-prediction, integer transform, quantization and
CAVLC encoding. Due to space limit, we only give a brief illustration
of parallel mapping of inter-prediction and intra-prediction on AsAP.
The detailed illustration of the CAVLC encoder can be found in [8].

1) Intra Prediction: As mentioned before, the H.264 intra-
prediction introduces dependencies between current macro-block and
left, top and top right macroblocks. The proposed intra-predictor
on AsAP supports 5 prediction modes for luma and 3 prediction
modes for chroma, which reduce the dependencies between the
current macroblock and the top right macroblock. The intra prediction
process constitutes a rather large amount of computation. Fig. 5
shows a high level block diagram for the intra prediction module.
Data in and control in contain information for the current macroblock
being predicted, the request MB signal is for requesting neighboring
macroblock used for prediction. The residue output goes to a re-
ordering processor for the integer transform process and the predicted
macroblock goes to the reconstruction processor to be added to the
reconstructed residue data. Fig. 6 shows the parallel mapping of
chroma intra-prediction. The dash line represents the long-distance
communication links. Since one macroblock contains only 8x8 and
8x8 chroma Cb/Cr blocks, only one processor is needed for storage
while three are used for computation. To reduce the number of routing
processors, data is automatically sent to the DC mode computation
processors for computing the SAD for each mode and requested
individually at the second pass for computing residue. The luma intra-
prediction can be parallelized with a similar approach.
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Custom Mapping Mapping Tool
Number of Processors 115 147
Number of Memory Proc. 33 33
Number of Routing Proc. 21 53
Computational Proc. 61 61
Long Distance Links 48 52

TABLE I
COMPARISON OF CUSTOM LAYOUT AND PROPOSED MAPPING FROM ASAP

ARBITRARY MAPPING TOOL

2) Inter Prediction: The inter-prediction is the bottleneck of the
H.264 encoder which can be speeded up by a programmable motion
estimation accelerator. The motion estimator basically consists of (a)
a parallel array of processing elements for pixel level SAD operations;
(b) a local memory to exploit data reuse to reduce the external
memory access; (c) an I/O control unit. Fig. 7 shows the diagram
of the proposed H.264/AVC inter-predictor. The motion estimator
(ME ACC) is capable of holding a 4x4 macroblock region for the
search window. To speed up the prediction process, only a 3x3 search
window is used. A modified diamond search algorithm is used for
all block sizes. The modified algorithm uses only 5 search points as
opposed to the nine points generally tested, and is repeated 4 times
to find the best match. Although this process is not as accurate as
a full diamond search the only drawback would be slightly higher
entropy values to be encoded. Once the best set of motion vectors
are computed, they are sent to a residue calculation processor. The
data used for this prediction is read from the 11 AsAP memory
processors that hold a mirror copy of the ME ACC memory. The
data-flow diagram of Fig. 7 can be also mapped to AsAP array in
the same way as the chroma intra prediction module shown in Fig 6.

IV. IMPLEMENTATION RESULTS AND ANALYSIS

A. Resource Utilization

The proposed H.264 baseline encoder is implemented in sequential
C, parallel C with MPI simulator and AsAP assembly on the
AsAP chip simulator. The current implementation uses 115 AsAP
processors, 2 shared memories and the motion estimator. Table I
gives a comparison of overall processor number, memory processors,
routing processors, computational processors and long distance com-
munication links between the custom mapping and the initial mapping
using the automatic mapping tool. The custom mapping saves 22% of
number of processors by reducing the number of routing processors.

B. Processor Memory Usage

Fig. 8 shows the number of instruction memory used per processor
in the full encoder. The majority of the processors use around 45
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Fig. 8. Number of instruction memory words used per processor
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Fig. 9. Number of data memory words used per processor

instructions on average and the main computation processors uses
around 100 instructions. A greater usage of instruction memory would
reduce the number of processors required and increase the percentage
of time that each computation processor is active, however much of
this space might not be used because nearly half the processors are
used for routing and memory purposes. Increasing the amount of
code in each processors may also decrease throughput due to less
parallelization, but would also reduce the overhead of code splitting.
Many of the processors in intra prediction if further divided would
not provide any additional speed up through parallelization because
of data dependencies.

Fig. 9 shows the number of data memory words used by each
processor in the full encoder. All the 33 memory processors use up
the full 128-word data memory as shown in Fig. 9. The 21 routing
processors use little data memory. The 61 computation processors
use an average of 40-word of the 128-word available data memory.

C. Throughput and power consumption

The throughput of the proposed encoder is measured with the
average cycles to encode one QCIF (176x144) frame which can be
converted to frame per second at various voltages and maximum
available frequencies. Table II shows the throughput and power
number of H.264 encoder measured on AsAP chip. The performance
of intra and inter encoder are reported separately. The power number



Voltage Max Freq. Intra Inter Power Power
(V) (MHz) fps fps Intra (mW) Inter (mW)
0.8 172 19 95 108.8 365.1
0.9 295 33 160 213.6 452.6
1.0 410 49 233 419.0 662.3
1.1 539 66 324 696.3 908.4
1.2 651 82 427 802.7 1059
1.3 798 96 478 947.5 1189

TABLE II
PERFORMANCE OF H.264 VIDEO ENCODER (QCIF FRAME) ON ASAP CHIP

in Table II is based on the condition that all of the processors are set
to run at the same voltages and the maximum supported frequencies.

Since AsAP processor can be set to run at different frequencies and
two provided supply voltages, we can scale the processor frequencies
and voltages based on the average processor activities data profiled
by the simulator. In this way, processors can be active most of
the time at their individual frequencies and voltages. We use the
typical Foreman video sequences for testing purpose. The preliminary
results show the encoder is capable of encoding VGA (640 x 480)
video at 21 frames per second (fps) with 931 mW average power
consumption by adjusting each processor to workload-based optimal
clock frequencies and dual supply voltages with less than 1dB loss in
resolution compared to reference C model. Since integer transform,
quantization and CAVLC encoding are processed at a smaller block
size (4x4 block), we can further exploit more fine-grained parallelism
to achieve higher performance. In our implementation, the residual
encoder (integer transform, quantization and CAVLC) can encode
real-time 1080p HDTV at 30 frames per second (fps) with 424 mW
average power consumption.

D. Power break-down analysis

The main blocks in the intra and inter prediction process of the
H.264 encoder include prediction, integer transform and quantiza-
tion, reference macroblock reconstruction, and CAVLC. The power
breakdown helps to identify the power bottleneck for future opti-
mization. Fig. 10 shows the power distribution of major blocks in
intra-prediction encoder and inter-prediction encoder, separately. The
majority of power consumed during the encoding process is from
the prediction process. The intra prediction consumed 58% of the
total power as shown in Fig. 10(a). Fig. 10(b) shows that the inter-
prediction including ME ACC consumes 63% of the total power. The
CAVLC and the reconstruction consumes 22% of the total power for
the intra encoder and 25% of the total power for the inter encoder.
The integer transform and quantization consumes very little power
compared with the other modules (6% in intra encoder and 2% in
inter prediction encoder). Due to the memory constraint and the port
limitation, 8% to 13% of power are used for the control processors.

V. CONCLUSION

In this paper, we have implemented an energy-efficient H.264/AVC
encoder on a fine-grained many-core platform. The implementation
utilizes an array of 115 small processors coupled with two shared
memories and a hardware accelerator for motion estimation. The
proposed parallel H.264/AVC encoder is capable of encoding video
sequences with variable frame sizes. The preliminary implementation
is capable of encoding VGA (640 x 480) video at 21 frames per
second (fps) with 931 mW average power consumption with less than
1dB loss in resolution. Our parallel programming practices provides
a new method of coding over a large number of simple processors
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allowing for a higher level of parallelization and energy-efficiency
than conventional digital signal processors (DSP) while avoiding
the complexity of implementing a full application specific integrated
circuit (ASIC).
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