Modular Sorting on a Fine-Grained Many-Core Processor Array

VLSI Computation Laboratory
Aaron Stillmaker and Bevan Baas Department of Electrical and Computer Engineering
University of California, Davis

Fine-Grained Many-Core —
Processor Arrays
® Very efficient programmable processors
Very small area, simple architecture
Very low power when active (individual clock
frequency and supply voltage scaling)
Very low power when idle (individual clock
oscillator halting)
® No specialized instructions
Special-purpose accelerators if warranted
On-chip shared memories

5516 mm

= Shown to work very well for DSP, multimedia, = me——
embedded applications o (164 total)

. Area 017 mm?

This project examines domain extension to
enterprise workloads
Many-core array as a co-processor

Transistors
CMOS Tech.

325,000
65 nm low-leakage

Many-core array s a functional unit Max.frequency 119 GHz @13V
Many-core array computes entire applications poyer
or critical computational kernels (100% actve)

47 mW @1.06 GHz, 1.2V

®= Project commenced June 2010

Many-Core Array as a Co-Processor

* General-purpose CPU example kernel sort code

out2 =

= Example code with

a;
b;

out2 = a;
Datapath «» memory loop is *long” and built with
high power circuits

y P or
write 100kB unsorted data;

read 100kB sorted data;

Fine-grain cores typically abut and are built

with very efficient circuits

* Key points

Minimize total data movement distance in computational kernels
Can view as a highly-flexible programmable functional unit
Challenge: extracting kernels!

Sorts With Very Large Data Sets

= “External” sorts typically utilize two distinct phases:
Sort all records that fit in memory

* We initially focus on this phase since it is where the greatest improvements
appears to be possible

Successively merge lists into one final sorted list

Phase 1 Sorting on AsAP2

" “Database” records
10 GB -1 TB of data
100 Byte records Key

TFroeyes

" This work focuses on the first
phase of external sorting Payload }90 Bytes
Large part of the sort, so we targeted
this to give the greatest returns Key
Serial CPUs already handle merging 10+ GB
large lists well Payload

= Streaming sorting
Keys are kept with payloads so that O
unsorted data can be input, and sorted o
data i streamed out -
No need for a CPU to reattach
payloads

Sorting on AsAP2

= “Snake Sort” algorithm
Insertion sort inside each processor
functions like a bubble sort on the chip
Exact same code in every processor
Simple but not highly efficient
* Every record passes through every core
* Every record is compared by every core
" “Row Sort” algorithm
Round-robin distribution processors
Linear sort processors in rows
Merging processors
“Flush” command packet signals sorting

Snake Sort

processors that the block has completed 5 B
and is ready for merging
" No globally-accessible memory
such as a cache -
Extremely power efficient e

Limited sorting algorithms possible
=

Row Sort

SAlSort Kernel

" Pseudo Code of the main Serial Array of Insertion Sort (SAlSort)
kernel used in all of the sorts:

‘Algorithm T SATSort
while truc do
if inputTag # Reset then

i input < lowest then
output — input
else
output — lowest
Place input in appropriate position
endif

else
Save the number of records (o pass
Output Reset command
Ad mumber of records in processor 1o the number or records (o pass, and output
Flush all records in processor
ass given number of records straight from the input to output
endif
end while

SAlSort Phase 1 Sorting on AsAP2:
Using Large Shared Memories

= “Snake Sort” and “Row Sort” using three 16 kB shared
memories at the bottom of the array
* Runs are saved in memories, then merged after the memories
are filled
" Processors are required for transmission and merging

™
O
L]

Snake Sort

Row Sort

Processor Activity During Sort

* Heatmaps showing the active
percentages of the processors
" In the “Snake Sort”, activity
reaches a plateau of 30% for
most of the mid processors
* In the “Row Sort", the input and
output processors are the
bottleneck
* The processors stall when o
waiting for input or output
® Each processor consumes
essentially zero power while
stalled
* This shows one run, with multiple
runs, there would be overlap,
removing some of the
underutilized processors

0% 17%

0% 3% 2ex 1o 12% 5%
Row Sort

Sorting Results With 100-Byte Records

Thruput
(1000

0ol Com 200 quksant a0
e 12v as00
Row Sort 075V 2200
2 el Core2Duo uikson a0
ey 12v 40
Srake son s s
7 ol Co 200 quksant 200
rsaez, 12v 060
RovSotuonchn ey o
T ol cors 200 quksant a0
12v 2000 s o0
aanotes 08V 50 P s

* Sorting 10 GB of 100-Byte records including a 10-Byte key
All Intel Core 2 Duo results utilize an unoptimized quicksort
Results are scaled for technology
ASAP2 Sorting uses up to 200x less energy
ASAP2 Sorting recognizes up to 9x higher throughput per area

Records per Energy (Rec/iuJ)

Sorting Results With 100-Byte Records

Core 2 - 296 & 329 Rec:
Core 2 - 753 & 785 Rec:
ASAP2 (1.2 V)

RowSort - 296 Recs
ASAP2 (1.2 V)

SnakeSort - 329 Recs.
ASAP2 (0.75 V)
RowSort - 296 Recs
ASAP2 (0.75 V)
SnakeSort - 329 Recs
ASAP2 (1.2V)

RowSort - 753 Recs
ASAP2 (12V)
SnakeSort - 785 Recs
ASAP2 (0.75 V)

RowSort - 753 Recs
ASAP2 (0.75 V)
SnakeSort - 785 Recs

x+

3

xE X

5

X X %X X 4+ 4+ + 4+ pp

10° 10° 10°
Throughput per Area ((Rec/Sec)/mm?))

Example Enterprise Application:
Database RegExp + Sort + Statistics

® 200-Byte records

D sort
o 156 procs
oo | 2
Foame |
. Y e | @
&6 6910 < Salary < | g R
13000 ey %
* Mapping algorithm S, |8
Each search portionis | sow .
mapped to a core Bnmont | 4
Inter-core data: complete [g | 2
record plus a pointer 0 the [sreseme |
next search’s beginning | serecal | 3 7 \
character — highly . x o \
reusable programs

”
Thruput 0
(2 Seavans

070MHz 1520

Supy
Voltage
12

v

075V 260MHz 369 31 81

0675V G6MHz 143 056 57

Current / Future Work
" “Dynamic Sort” algorithm
Radix sort performed on 3 MSBs of
incoming keys
Admin processor will dynamically
allocate the processors in between rows
to the row filling up the fastest
* Goal is to have rows that can
dynamically resize based on the

* Should show speedup for evenly
distributed records, as it is similar to the
“Row Sort” without the need for merging
in the end
*® Core Scaling
* Run simulations on how the sorting
versions will perform with different sized
processor arrays

Dynamic sort

VLSI Computation LAB

