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  Very efficient programmable processors 
  Very small area, simple architecture 
  Very low power when active (individual clock 

frequency and supply voltage scaling) 
  Very low power when idle (individual clock 

oscillator halting) 
  No specialized instructions 

  Special-purpose accelerators if warranted 
  On-chip shared memories 
  Shown to work very well for DSP, multimedia, 

embedded applications 
  This project examines domain extension to 

enterprise workloads  
  Many-core array as a co-processor 
  Many-core array as a functional unit 
  Many-core array computes entire applications 

or critical computational kernels 
  Project commenced June 2010 

AsAP2 Single Tile (164 total) 

Area 0.17 mm2 

Transistors 325,000 

CMOS Tech. 65 nm low-leakage 

Max. frequency 1.19 GHz @ 1.3 V 

Power  
(100% active) 47 mW @ 1.06 GHz, 1.2 V 

3.4 mW @ 260 MHz, 0.75 V 
608 µW @ 66 MHz, 0.675 V 

5.
93

9 
m

m
 

410 µm 

41
0 

µm
 

FFT Vit 
Mot. 
Est. Mem Mem 

5.516 mm 

Mem 

 General-purpose CPU example kernel sort code 
  if a < b 
    out1 = a; 
    out2 = b; 
else 
    out1 = b; 
    out2 = a; 

 Datapath ↔ memory loop is “long” and built with  
high power circuits 

 Example code with many-core co-processor or functional unit 
  write 100kB unsorted data; 
read  100kB sorted data; 

  Fine-grain cores typically abut and are built  
with very efficient circuits 

 Key points 
 Minimize total data movement distance in computational kernels 
 Can view as a highly-flexible programmable functional unit 
 Challenge: extracting kernels! 

                   Memory 

Many- 
core 

Float. 
point 

ALUs 

f1 f2 

  “External” sorts typically utilize two distinct phases: 
1)  Sort all records that fit in memory 

  We initially focus on this phase since it is where the greatest improvements 
appears to be possible 

2)  Successively merge lists into one final sorted list 
10 Bytes 

90 Bytes Payload 

Key 

Payload 

Key 

  “Database” records 
  10 GB – 1 TB of data 
  100 Byte records 

  This work focuses on the first 
phase of external sorting 
  Large part of the sort, so we targeted 

this to give the greatest returns 
  Serial CPUs already handle merging 

large lists well 

  Streaming sorting 
  Keys are kept with payloads so that 

unsorted data can be input, and sorted 
data is streamed out 

  No need for a CPU to reattach 
payloads 

10+ GB 

 “Snake Sort” algorithm 
  Insertion sort inside each processor 

functions like a bubble sort on the chip 
  Exact same code in every processor 
  Simple but not highly efficient 

  Every record passes through every core 
  Every record is compared by every core 

 “Row Sort” algorithm 
 Round-robin distribution processors 
  Linear sort processors in rows 
 Merging processors 
  “Flush” command packet signals sorting 

processors that the block has completed 
and is ready for merging 

 No globally-accessible memory 
such as a cache 
  Extremely power efficient 
  Limited sorting algorithms possible 

if in < LowestLocal { 
  out = in; 
  } 
else { 
  //Find rank out of the 
  //10 local keys and 
  //save ptr accordingly; 
  out = LowestLocal; 
  } 

Snake&Sort&

Row&Sort&

 Pseudo Code of the main Serial Array of Insertion Sort (SAISort) 
kernel used in all of the sorts: 

Algorithm 1 SAISort
while true do

if inputTag 6= Reset then
if input  lowest then

output input

else
output lowest

Place input in appropriate position
end if

else
Save the number of records to pass
Output Reset command
Add number of records in processor to the number or records to pass, and output
Flush all records in processor
Pass given number of records straight from the input to output

end if
end while

achieved from more significant bits. A significant portion of the code length was dedicated to dealing with
administrative overhead of sorting keys that are larger than our platform’s 16-bit instruction set architecture.
The algorithm, when implemented on the AsAP2 chip, took 126 assembly instructions out of the available
128, and was found to have a throughput of around 160 clock cycles per record. Keep in mind that 50 clock
cycles are taken just to transmit the 100 byte (50 word) record from one processor to another. The code
is unoptimized, and was written in a relatively short amount of time. Further optimization could lead to
decreased code length, and higher throughput.

3.1.1 Distribution

The second modular program kernel is the distribution kernel, shown in Algorithm 2. This program will
evenly distribute entries between one of the outputs from the processor. The program would be set up prior
to run time with the ratio of how many SAISort kernels are going to use each of the output streams. If for
example there were four times as many SAISort kernels using the records from the south output, it would
output four out of five entries to the south. This algorithm was written with 50 assembly instructions, and
was shown to have a throughput of 55 clock cycles per record.

3.2 Merge

The last modular program kernel is the merge kernel, shown in Algorithm 3. The merge kernel will output
the lower of its two inputs. If it receives a reset signal from either input, then it will just pass the other input
until that one gives a reset signal, at which point the kernel will output a reset signal and wait for another
input. This kernel was written in 80 assembly instructions and found to have a throughput of around 70
clock cycles per record.

4 Parallel Stream Sorting Implementations and Variations

The kernels are used as building blocks to construct the two presented sorting schemes, described in Sec-
tions 4.1, 4.2 and 4.3. Each processor works independently of the others throughout the sort. As previously
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 “Snake Sort” and “Row Sort” using three 16 kB shared 
memories at the bottom of the array 
 Runs are saved in memories, then merged after the memories 

are filled 
 Processors are required for transmission and merging 
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 Heatmaps showing the active 
percentages of the processors  
 In the “Snake Sort”, activity 

reaches a plateau of 30% for 
most of the mid processors 

 In the “Row Sort”, the input and 
output processors are the 
bottleneck 

 The processors stall when 
waiting for input or output 
 Each processor consumes 

essentially zero power while 
stalled 

 This shows one run, with multiple 
runs, there would be overlap, 
removing some of the 
underutilized processors 

Snake&Sort&

Row&Sort&

 Sorting 10 GB of 100-Byte records including a 10-Byte key 
  All Intel Core 2 Duo results utilize an unoptimized quicksort 

  Results are scaled for technology 
  AsAP2 Sorting uses up to 200x less energy 
  AsAP2 Sorting recognizes up to 9x higher throughput per area 

Records Per 
Block 

Processor Thruput  
(1,000 rec/sec) 

Thruput per Area  
((rec/sec)/mm^2) 

Energy per 
Rec (nJ/rec) 

296 Intel Core 2 Duo quicksort 3,700 23,000 4,000 

AsAP2,  
Row Sort 

  1.2 V 8,900 220,000 90.8 

0.75 V 2,200 55,000 19.8 

329 Intel Core 2 Duo quicksort 3,700 23,000 4,000 

AsAP2, 
Snake Sort 

  1.2 V 4,400 110,000 670 

0.75 V 1,070 27,000 146 

753 Intel Core 2 Duo quicksort 3,000 19,000 4,900 

AsAP2,  
Row Sort w/ On Chip 
Memories 

  1.2 V 6,600 170,000 108 

0.75 V 1,600 41,000 25.6 

785 Intel Core 2 Duo quicksort 3,000 19,000 4,900 

AsAP2,  
Snake Sort w/ On 
Chip Memories 

  1.2 V 3,800 95,000 646 

0.75 V 910 23,000 143 
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Core i7 − 296 & 329 Recs
Core i7 − 753 & 785 Recs
AsAP2 (1.2 V)
RowSort − 296 Recs
AsAP2 (1.2 V)
SnakeSort − 329 Recs
AsAP2 (0.75 V)
RowSort − 296 Recs
AsAP2 (0.75 V)
SnakeSort − 329 Recs
AsAP2 (1.2 V)
RowSort − 753 Recs
AsAP2 (1.2 V)
SnakeSort − 785 Recs
AsAP2 (0.75 V)
RowSort − 753 Recs
AsAP2 (0.75 V)
SnakeSort − 785 Recs
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  200-Byte records 
 Search query: 

  “CA” == State 
&& “.*son_” ϵ 
LastName  
&& “.*l.n”  ϵ City  
&& 6910 < Salary < 
13000 

 Mapping algorithm 
  Each search portion is 

mapped to a core 
  Inter-core data: complete 

record plus a pointer to the 
next search’s beginning 
character → highly 
reusable programs 

Salary&
“>&6910”&
“<13000”&

State&
“CA”&

City&
“.*l.n”&

LastName&
“.*son_”&
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Supply 
Voltage 

Max 
Freq. 

Thruput  
(MB/s) 

Power 
(mW) 

Energy 
(nJ/Byte) 

1.2 V 1070 MHz 1520 44 27 

  0.75 V   260 MHz 369 3.1 8.1 

    0.675 V     66 MHz 143 0.56 5.7 

salary_minimum = 1137; 
salary_maximum = 32614; 
salary_sum = 2953502; 
tax_minimum = 88; 
tax_maximum = 6523; 
tax_sum = 384848; 

Field Size 
(Bytes

) 

Employee ID 
FirstName 
LastName 
State 
City 
Salary 
Tax with. 
allow. 
Birth month 
Birth day 
Birth year 
Phone, home 
Phone, cell 
Phone, work 
Phone, fax 

20 
20 
20 
4 

36 
2 
2 
4 
4 
8 

20 
20 
20 
20 

 “Dynamic Sort” algorithm 
 Radix sort performed on 3 MSBs of 

incoming keys 
  Admin processor will dynamically 

allocate the processors in between rows 
to the row filling up the fastest 
  Goal is to have rows that can 

dynamically resize based on the 
demand 

  Should show speedup for evenly 
distributed records, as it is similar to the 
“Row Sort” without the need for merging 
in the end 

 Core Scaling 
 Run simulations on how the sorting 

versions will perform with different sized 
processor arrays 

Dynamic&Sort&
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