
Modular Sorting on a Fine-Grained Many-Core Processor Array
Aaron Stillmaker and Bevan Baas

VLSI Computation Laboratory
Department of Electrical and Computer Engineering

University of California, Davis

  Very efficient programmable processors
  Very small area, simple architecture
  Very low power when active (individual clock

frequency and supply voltage scaling)
  Very low power when idle (individual clock

oscillator halting)
  No specialized instructions

  Special-purpose accelerators if warranted
  On-chip shared memories
  Shown to work very well for DSP, multimedia,

embedded applications
  This project examines domain extension to

enterprise workloads
  Many-core array as a co-processor
  Many-core array as a functional unit
  Many-core array computes entire applications

or critical computational kernels
  Project commenced June 2010

AsAP2 Single Tile (164 total)

Area 0.17 mm2

Transistors 325,000

CMOS Tech. 65 nm low-leakage

Max. frequency 1.19 GHz @ 1.3 V

Power
(100% active) 47 mW @ 1.06 GHz, 1.2 V

3.4 mW @ 260 MHz, 0.75 V
608 µW @ 66 MHz, 0.675 V

5.
93

9
m

m

410 µm

41
0

µm

FFT Vit
Mot.
Est. Mem Mem

5.516 mm

Mem

 General-purpose CPU example kernel sort code
  if a < b
 out1 = a;
 out2 = b;
else
 out1 = b;
 out2 = a;

 Datapath ↔ memory loop is “long” and built with
high power circuits

 Example code with many-core co-processor or functional unit
  write 100kB unsorted data;
read 100kB sorted data;

  Fine-grain cores typically abut and are built
with very efficient circuits

 Key points
 Minimize total data movement distance in computational kernels
 Can view as a highly-flexible programmable functional unit
 Challenge: extracting kernels!

 Memory

Many-
core

Float.
point

ALUs

f1 f2

  “External” sorts typically utilize two distinct phases:
1)  Sort all records that fit in memory

  We initially focus on this phase since it is where the greatest improvements
appears to be possible

2)  Successively merge lists into one final sorted list
10 Bytes

90 Bytes Payload

Key

Payload

Key

  “Database” records
  10 GB – 1 TB of data
  100 Byte records

  This work focuses on the first
phase of external sorting
  Large part of the sort, so we targeted

this to give the greatest returns
  Serial CPUs already handle merging

large lists well

  Streaming sorting
  Keys are kept with payloads so that

unsorted data can be input, and sorted
data is streamed out

  No need for a CPU to reattach
payloads

10+ GB

 “Snake Sort” algorithm
  Insertion sort inside each processor

functions like a bubble sort on the chip
  Exact same code in every processor
  Simple but not highly efficient

  Every record passes through every core
  Every record is compared by every core

 “Row Sort” algorithm
 Round-robin distribution processors
  Linear sort processors in rows
 Merging processors
  “Flush” command packet signals sorting

processors that the block has completed
and is ready for merging

 No globally-accessible memory
such as a cache
  Extremely power efficient
  Limited sorting algorithms possible

if in < LowestLocal {
 out = in;
 }
else {
 //Find rank out of the
 //10 local keys and
 //save ptr accordingly;
 out = LowestLocal;
 }

Snake&Sort&

Row&Sort&

 Pseudo Code of the main Serial Array of Insertion Sort (SAISort)
kernel used in all of the sorts:

Algorithm 1 SAISort
while true do

if inputTag 6= Reset then
if input  lowest then

output input

else
output lowest

Place input in appropriate position
end if

else
Save the number of records to pass
Output Reset command
Add number of records in processor to the number or records to pass, and output
Flush all records in processor
Pass given number of records straight from the input to output

end if
end while

achieved from more significant bits. A significant portion of the code length was dedicated to dealing with
administrative overhead of sorting keys that are larger than our platform’s 16-bit instruction set architecture.
The algorithm, when implemented on the AsAP2 chip, took 126 assembly instructions out of the available
128, and was found to have a throughput of around 160 clock cycles per record. Keep in mind that 50 clock
cycles are taken just to transmit the 100 byte (50 word) record from one processor to another. The code
is unoptimized, and was written in a relatively short amount of time. Further optimization could lead to
decreased code length, and higher throughput.

3.1.1 Distribution

The second modular program kernel is the distribution kernel, shown in Algorithm 2. This program will
evenly distribute entries between one of the outputs from the processor. The program would be set up prior
to run time with the ratio of how many SAISort kernels are going to use each of the output streams. If for
example there were four times as many SAISort kernels using the records from the south output, it would
output four out of five entries to the south. This algorithm was written with 50 assembly instructions, and
was shown to have a throughput of 55 clock cycles per record.

3.2 Merge

The last modular program kernel is the merge kernel, shown in Algorithm 3. The merge kernel will output
the lower of its two inputs. If it receives a reset signal from either input, then it will just pass the other input
until that one gives a reset signal, at which point the kernel will output a reset signal and wait for another
input. This kernel was written in 80 assembly instructions and found to have a throughput of around 70
clock cycles per record.

4 Parallel Stream Sorting Implementations and Variations

The kernels are used as building blocks to construct the two presented sorting schemes, described in Sec-
tions 4.1, 4.2 and 4.3. Each processor works independently of the others throughout the sort. As previously

4

 “Snake Sort” and “Row Sort” using three 16 kB shared
memories at the bottom of the array
 Runs are saved in memories, then merged after the memories

are filled
 Processors are required for transmission and merging

Snake&Sort& Row&Sort& Slide 2 Slide 2

16#kB# 16#kB# 16#kB#

Unsorted
data

Sorted
data

Distribution

SAISort

Merge

SAISort Row

Memory
Admin/
Trans.

 Slide 4 Slide 4

Unsorted
data Sorted

data

SAISort Snake

16#kB# 16#kB# 16#kB#

SAISort

Merge

Memory
Admin/
Trans.

40%$ 33%$ 19%$ 12%$ 5%$26%$

30%$ 28%$ 25%$ 22%$ 20%$ 17%$

 Heatmaps showing the active
percentages of the processors
 In the “Snake Sort”, activity

reaches a plateau of 30% for
most of the mid processors

 In the “Row Sort”, the input and
output processors are the
bottleneck

 The processors stall when
waiting for input or output
 Each processor consumes

essentially zero power while
stalled

 This shows one run, with multiple
runs, there would be overlap,
removing some of the
underutilized processors

Snake&Sort&

Row&Sort&

 Sorting 10 GB of 100-Byte records including a 10-Byte key
  All Intel Core 2 Duo results utilize an unoptimized quicksort

  Results are scaled for technology
  AsAP2 Sorting uses up to 200x less energy
  AsAP2 Sorting recognizes up to 9x higher throughput per area

Records Per
Block

Processor Thruput
(1,000 rec/sec)

Thruput per Area
((rec/sec)/mm^2)

Energy per
Rec (nJ/rec)

296 Intel Core 2 Duo quicksort 3,700 23,000 4,000

AsAP2,
Row Sort

 1.2 V 8,900 220,000 90.8

0.75 V 2,200 55,000 19.8

329 Intel Core 2 Duo quicksort 3,700 23,000 4,000

AsAP2,
Snake Sort

 1.2 V 4,400 110,000 670

0.75 V 1,070 27,000 146

753 Intel Core 2 Duo quicksort 3,000 19,000 4,900

AsAP2,
Row Sort w/ On Chip
Memories

 1.2 V 6,600 170,000 108

0.75 V 1,600 41,000 25.6

785 Intel Core 2 Duo quicksort 3,000 19,000 4,900

AsAP2,
Snake Sort w/ On
Chip Memories

 1.2 V 3,800 95,000 646

0.75 V 910 23,000 143

104 105 10610−1

100

101

102

Throughput per Area ((Rec/Sec)/mm2))

R
ec

or
ds

 p
er

 E
ne

rg
y

(R
ec

/µ
J)

104 105 106 10710−1

100

101

102

Throughput per Area ((Rec/Sec)/mm2))

R
ec

or
ds

 p
er

 E
ne

rg
y

(R
ec

/µ
J)

Core i7 − 296 & 329 Recs
Core i7 − 753 & 785 Recs
AsAP2 (1.2 V)
RowSort − 296 Recs
AsAP2 (1.2 V)
SnakeSort − 329 Recs
AsAP2 (0.75 V)
RowSort − 296 Recs
AsAP2 (0.75 V)
SnakeSort − 329 Recs
AsAP2 (1.2 V)
RowSort − 753 Recs
AsAP2 (1.2 V)
SnakeSort − 785 Recs
AsAP2 (0.75 V)
RowSort − 753 Recs
AsAP2 (0.75 V)
SnakeSort − 785 Recs

2&
2&

  200-Byte records
 Search query:

  “CA” == State
&& “.*son_” ϵ
LastName
&& “.*l.n” ϵ City
&& 6910 < Salary <
13000

 Mapping algorithm
  Each search portion is

mapped to a core
  Inter-core data: complete

record plus a pointer to the
next search’s beginning
character → highly
reusable programs

Salary&
“>&6910”&
“<13000”&

State&
“CA”&

City&
“.*l.n”&

LastName&
“.*son_”&

sort&

sort&

sta=s=cs&

histoA&
gram&

sort
156 procs

Supply
Voltage

Max
Freq.

Thruput
(MB/s)

Power
(mW)

Energy
(nJ/Byte)

1.2 V 1070 MHz 1520 44 27

 0.75 V 260 MHz 369 3.1 8.1

 0.675 V 66 MHz 143 0.56 5.7

salary_minimum = 1137;
salary_maximum = 32614;
salary_sum = 2953502;
tax_minimum = 88;
tax_maximum = 6523;
tax_sum = 384848;

Field Size
(Bytes

)

Employee ID
FirstName
LastName
State
City
Salary
Tax with.
allow.
Birth month
Birth day
Birth year
Phone, home
Phone, cell
Phone, work
Phone, fax

20
20
20
4

36
2
2
4
4
8

20
20
20
20

 “Dynamic Sort” algorithm
 Radix sort performed on 3 MSBs of

incoming keys
  Admin processor will dynamically

allocate the processors in between rows
to the row filling up the fastest
  Goal is to have rows that can

dynamically resize based on the
demand

  Should show speedup for evenly
distributed records, as it is similar to the
“Row Sort” without the need for merging
in the end

 Core Scaling
 Run simulations on how the sorting

versions will perform with different sized
processor arrays

Dynamic&Sort&
 Slide 2 Slide 2

SAISort Row

Unsorted
data

Sorted
data

Distribution

SAISort

3 MSB
Radix Sort /
Admin

Core%

Core%

Core% Core%

Core%

Core%

