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Abstract

As the number of processing elements (PE) on a single chip increases with each generation of CMOS

technology, network on-chip (NoC) has become a de-facto communication fabric for these PEs. Due to

high design and test costs for real many-core chips, simulators which allow exploring the best design

options for a system before actually building it have been becoming highly necessary in system design

and optimization flows. This paper presents NoCTweak, a highly parameterizable NoC simulator used

for early exploration of performance and energy efficiency of on-chip networks. The simulator has been

developed in SystemC, a C++ plugin, which allows fast modeling of concurrent hardware modules at

the cycle-level accuracy. The statistic output results provided by the simulator are the average network

latency, throughput, router power and energy per transferred data packet corresponding to a given net-

work configuration, a certain traffic pattern and load. Area, timing and power of router components are

post-layout data based on standard-cell libraries.

1 Introduction

Due to high design and test costs for real many-core chips, simulators, which allow exploring the best design

options for a system before actually building it, have been becoming highly necessary in system design and

optimization flows. Simulators are normally developed using high-level languages such as C/C++ and Java

which run much faster than RTL modeling languages such as Verilog and VHDL. Besides that, high-level

languages allow programmers to build highly flexible simulators which are easy to tweak their parameters

for fast exploration of design trade-offs. In this paper, we present NoCTweak, an open-source NoC simulator

for early exploration of performance and energy efficiency of on-chip networks. The simulator has been

developed using SystemC [1], a C++ plugin, which allows fast modeling of concurrent hardware modules

at the cycle-level accuracy.

This paper is organized as follows: Section 2 presents the network architecture and configurable parame-

ters for the routers supported by our NoCTweak simulator. Statistic output results reported by the simulators

are described in Section 3. A few common network configuration examples run by the simulator is shown

in Section 4. Section 5 reviews related work and, finally, Section 6 concludes this paper.
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Figure 1: A simulated platform includes multiple cores interconnected by a 2-D mesh network of routers

2 Configurable Simulation Parameters

Fig. 1 depicts a platform including multiple cores interconnected by a 2-D mesh network of routers which

is simulated by NoCTweak version 1.0 (current version). Each node consists of a processor (core + NI)

and an associated router. Each router connects with four nearest neighboring routers forming a 2-D mesh

network [2]. Each processor core generates data packets and injects into the network through its router.

Packets are routed on the network of routers by a selected routing algorithm to their destinations at which

the packets are immediately consumed.

The users can choose network parameters through changing their default values in the source code

before compiling or through a terminal (command line window) when running the simulator. Below are

lists of network and router parameters which can be set for the simulator (these options are also displayed

in the command line window with the command “./noctweak -help”):

Listing 1: Platform Options

−p l a t f o r m [ o p t i o n ] a p p l i c a t i o n t r a f f i c s i m u l a t e d on t h i s p l a t f o r m .

o p t i o n = s y n t h e t i c : a s y n t h e t i c t r a f f i c p a t t e r n ( d e f a u l t )

o p t i o n = embedded : an embedded a p p l i c a t i o n t r a c e

−seed [ v a l u e ] random seed f o r t h e s i m u l a t i o n .

( t h e same random seed w i l l d r i v e t h e same o u t p u t r e s u l t s f o r

t h e same ne twork c o n f i g u r a t i o n . I t ’ s used f o r e a s i e r debugg ing .

D e f a u l t v a l u e = sys tem t ime . )

− l o g [ f i l e n a m e ] l o g f i l e f o r s i m u l a t i o n o u t p u t s

−vcd [ f i l e n a m e ] VCD f i l e f o r s i g n a l waveform t r a c e s

−simmode [ o p t i o n ] s i m u l a t i o n mode ( p a c k e t o r c y c l e )

−s imt ime [ v a l u e ] s i m u l a t i o n r u n n i n g t ime

v a l u e = N. D e f a u l t = 1 0 0 , 0 0 0 .

i f simmode o p t i o n = p a c k e t : s t o p s i m u l a t i o n a f t e r t r a n s f e r r i n g N p a c k e t s

i f simmode o p t i o n = c y c l e : s t o p s i m u l a t i o n a f t e r r u n n i n g N c l o c k c y c l e s

−warmtime [ v a l u e ] warmup t ime f o r t h e ne twork t o become s t a b l e

v a l u e = M (M < N ) . D e f a u l t = 1 0 , 0 0 0 .

i f simmode o p t i o n = p a c k e t : do n o t c o n s i d e r t h e f i r s t M r e c e i v e d p a c k e t s

i f simmode o p t i o n = c y c l e : warmup t ime i s M c l o c k c y c l e s

Listing 2: Synthetic Traffic Patterns

−dimx [ v a l u e ] X d imens ion l e n g t h o f t h e 2−D mesh ne twork . D e f a u l t v a l u e = 8 .
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−dimy [ v a l u e ] Y d imens ion l e n g t h o f t h e 2−D mesh ne twork . D e f a u l t v a l u e = 8 .

− t r a f f i c [ o p t i o n ] s y n t h e t i c t r a f f i c p a t t e r n s used f o r t h e s i m u l a t i o n .

o p t i o n = random : un i fo rm random ( d e f a u l t )

o p t i o n = t r a n s p o s e : t r a n s p o s e

o p t i o n = b i t c : b i t −complement

o p t i o n = b i t r : b i t − r e v e r s e

o p t i o n = t o r n a d o : t o r n a d o

o p t i o n = s h u f f l e : b i t − s h u f f l e

o p t i o n = r o t a t e : b i t − r o t a t e

o p t i o n = n e i g h b o r : n e a r e s t n e i g h b o r t r a f f i c

o p t i o n = r e g i o n a l : communica t ion d i s t a n c e <= 3

o p t i o n = h o t s p o t : c e n t r a l o r c o r n e r h o t s p o t s

−nhs [ v a l u e ] t h e number o f h o t s p o t s . D e f a u l t = 4 .

−h s t y p e [ o p t i o n ] hot − s p o t t y p e

o p t i o n = c e n t r a l : h o t s p o t s a t t h e c e n t r a l c o r e s

o p t i o n = c o r n e r : h o t s p o t s a t t h e c o r n e r s ( d e f a u l t )

−p e r c e n t [ v a l u e ] p e r c e n t a g e o f t r a f f i c s go ing t o n e i g h b o r i n g o r r e g i o n a l o r h o t s p o t c o r e s

Listing 3: Embedded Application Traces

− a p p f i l e [ o p t i o n ] a p p l i c a t i o n ’ s t a s k communica t ion graph used f o r t h e s i m u l a t i o n .

o p t i o n = vopd . app : v i d e o o b j e c t p l a n d e c o d e r wi th 16 t a s k s ( d e f a u l t )

o p t i o n = mms . app : m u l t i m e d i a sys tem wi th 25 t a s k s

o p t i o n = mwd . app : m u l t i −window d i s p l a y wi th 12 t a s k s

o p t i o n = w i f i r x . app : WiFi baseband r e c e i v e r wi th 25 t a s k s

o p t i o n = c a v l c . app : H. 2 4 CAVLC e n c o d e r wi th 16 t a s k s

o p t i o n = mpeg4 . app : MPEG4 d e c o d e r wi th 12 t a s k s

o p t i o n = vce . app : v i d e o c o n f e r e n c e e n c o d e r wi th 25 t a s k s

o p t i o n = a u t o i n d u s t . app : E3S auto − i n d u s t benchmark wi th 24 t a s k s

o p t i o n = consumer . app : E3S consumer benchmark wi th 12 t a s k s

o p t i o n = t e l e c o m . app : E3S t e l e c o m benchmark wi th 30 t a s k s

−mapping [ o p t i o n ] mapping a l g o r i t h m used t o map t h e t a s k graph t o t h e p r o c e s s o r a r r a y

o p t i o n = random : random mapping

o p t i o n = nmap : near −o p t i m a l mapping u s i n g t h e NMAP a l g o r i t h m

Listing 4: Traffic Options

− f i r [ v a l u e ] f l i t i n j e c t i o n r a t e ( number o f f l i t s i n j e c t e d by each c o r e p e r c y c l e )

0 < f i r <= 1 . D e f a u l t = 0 . 2

− d i s t [ o p t i o n ] p r o b a b i l i t y d i s t r i b u t i o n o f t h e p e r i o d between two i n j e c t e d p a c k e t s

o p t i o n = e x p o n e n t i a l : e x p o n e n t i a l d i s t r i b u t i o n ( d e f a u l t )

o p t i o n = i d e n t i c a l : i d e n t i c a l d i s t r i b u t i o n

−p l e n g t h t y p e [ o p t i o n ] p a c k e t l e n g t h i s f i x e d o r v a r i a b l e

o p t i o n = f i x e d : f i x e d p a c k e t l e n g t h ( d e f a u l t )

o p t i o n = v a r i a b l e : v a r i a b l e p a c k e t l e n g t h

−p l e n g t h [ v a l u e ] t h e number o f f l i t s p e r p a c k e t .

( on ly f o r t h e f i x e d p a c k e t l e n g t h o p t i o n . D e f a u l t = 5 . )

−p l e n g t h m i n [ v a l u e ] t h e minimum number o f f l i t s p e r p a c k e t

( on ly f o r t h e v a r i a b l e p a c k e t l e n g t h o p t i o n . D e f a u l t = 2 . )

−pleng thmax [ v a l u e ] t h e maximum number o f f l i t s p e r p a c k e t

( on ly f o r t h e v a r i a b l e p a c k e t l e n g t h o p t i o n . D e f a u l t = 1 0 . )

Listing 5: Router Settings

− r o u t e r [ o p t i o n ] t h e s i m u l a t e d r o u t e r

o p t i o n = wh : wormhole r o u t e r ( d e f a u l t )
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o p t i o n = vc : v i r t u a l −c h a n n e l r o u t e r

o p t i o n = r o s h a q : RoShaQ s h a r e −queues r o u t e r

o p t i o n = b u f f e r l e s s : b u f f e r l e s s r o u t e r

o p t i o n = cs : c i r c u i t − s w i t c h e d r o u t e r

−p p t y p e [ v a l u e ] p i p e l i n e t y p e and t h e number o f p i p e l i n e s t a g e s . D e f a u l t = 3 s t a g e s

−b s i z e [ v a l u e ] b u f f e r d e p t h ( 2 , 4 , 8 , 16 , 32 f l i t s ) . D e f a u l t = 4 f l i t s .

− s b s i z e [ v a l u e ] sha red −b u f f e r queue d e p t h ( 2 , 4 , 8 , 16 , 32 f l i t s ) . D e f a u l t = 4 f l i t s .

−nvc [ v a l u e ] t h e number o f v i r t u a l −c h a n n e l b u f f e r s p e r i n p u t p o r t . D e f a u l t = 2 queues .

−nsb [ v a l u e ] t h e number o f sha red −b u f f e r queues i n RoShaQ r o u t e r s . D e f a u l t = 5 queues .

− r o u t i n g [ o p t i o n ] r o u t i n g a l g o r i t h m

o p t i o n = xy : XY dimens ion −o r d e r e d r o u t i n g ( d e f a u l t )

o p t i o n = nfmin ima l : Nega t ive − F i r s t minimal a d a p t i v e r o u t i n g

o p t i o n = wfminimal : West− F i r s t minimal a d a p t i v e r o u t i n g

o p t i o n = n l m i n i m a l : North−L a s t minimal a d a p t i v e r o u t i n g

o p t i o n = oeminimal : Odd−Even minimal a d a p t i v e r o u t i n g

o p t i o n = t a b l e : lookup t a b l e based r o u t i n g

− o u t s e l [ o p t i o n ] choose an o u t p u t p o r t among m u l t i p l e ones r e t u r n e d by an a d a p t i v e r o u t i n g

o p t i o n = x y o r d e r e d : t h e X d imens ion f i r s t ( d e f a u l t )

o p t i o n = n e a r e s t d i m : t h e d imens ion n e a r e s t t o t h e d e s t i n a t i o n f i r s t

o p t i o n = f a r t h e s t d i m : t h e d imens ion f a r t h e s t t o t h e d e s t i n a t i o n f i r s t

o p t i o n = r o u n d r o b i n : round− r o b i n among o u t p u t p o r t s

o p t i o n = c r e d i t : t h e o u t p u t p o r t h a v i n g t h e h i g h e s t c r e d i t f i r s t

−sa [ o p t i o n ] s w i t c h a r b i t r a t i o n p o l i c y

o p t i o n = r r : round− r o b i n ( d e f a u l t )

o p t i o n = o l d e s t : o l d e s t f i r s t

o p t i o n = t a k e a l l : winner t a k e s a l l ( on ly f o r v i r t u a l −c h a n n e l r o u t e r s )

o p t i o n = i s l i p : iSLIP based a l g o r i t h m ( on ly f o r v i r t u a l −c h a n n e l r o u t e r s )

−vca [ o p t i o n ] v i r t u a l −c h a n n e l a l l o c a t i o n p o l i c y ( on ly f o r v i r t u a l −c h a n n e l r o u t e r s )

o p t i o n = r r : round− r o b i n ( d e f a u l t )

o p t i o n = o l d e s t : o l d e s t f i r s t

o p t i o n = i s l i p : iSLIP based a l g o r i t h m

− l l e n g t h [ v a l u e ] i n t e r − r o u t e r l i n k l e n g t h ( i n um ) . D e f a u l t = 1000 um .

Listing 6: Environmental Settings

− t e c h n o d e [ v a l u e ] CMOS t e c h n o l o g y p r o c e s s ( 9 0 , 65 , 45 , 32 , 22 nm ) . D e f a u l t = 65 nm .

−f reqmode [ o p t i o n ] c l o c k f r e q u e n c y s e t t i n g

o p t i o n = f i x e d : f i x e d c l o c k f r e q u e n c y ( i n MHz)

o p t i o n = max : t h e maximum c l o c k f r e q u e n c y s u p p o r t e d by t h e r o u t e r

− f r e q [ v a l u e ] f o r f i x e d c l o c k f r e q u e n c y ( i n MHz ) . D e f a u l t = 1000 MHz.

− v o l t [ v a l u e ] s u p p l y v o l t a g e ( i n V ) . D e f a u l t = 1 . 0 V.

3 Statistic Outputs

Simulation’s statistic results are displayed in the command line window and also be written into a log file

for later use. Activities of circuit components of all routers in the network are tracked for router power and

energy evaluation [3]. These activities are also recorded into another log file for later check.

3.1 Network Latency

Latency of a packet is measured from the time its head flit is generated by the source to the time its tail flit is

consumed by the destination. Clearly, packet latency also includes the time when packet waits at the source
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queue due to network congestion. When a processor receives a packet, it subtracts the packet’s generating

time (in the packet’s head flit) from the current simulation time to get the packet latency. Network latency is

the mean of latency of all packets transferred by the network. For more accuracy, we only consider packets

received after the warmup time.

Let Li j be the packet latency of packet j and Ni be the number of packets received by processor i (after

the warmup time), then the average network latency is given by:

Lavg =
1

N

∑

i=1..N

(
1

Ni

∑

∀ j

Li j) (1)

where N is the number of processors in the platform.

3.2 Network Throughput

Network throughput is defined as the rate at which the network can successfully accept and deliver the in-

jected packets. Let Tsim and Twarm be the simulation and warmup time, then the average network throughput

(in packets per unit time per node) is given by:

Tavg =
1

N(Tsim − Twarm)

∑

i=1..N

Ni (2)

Given a clock frequency and a packet length, we easily drive the network latency in terms of cycles or

seconds and the network throughput in terms of packets per cycle or packets per second or flits per cycle

or flits per second. All these terms are shown in the output results, hence the user can choose any terms

suitable for her needs.

3.3 Power Consumption

RTL designs in Verilog of all router components were synthesized with Synopsys Design Compiler and

placed & routed with Cadence SoC Encounter using a 65 nm CMOS standard cell library. Post-layout

power data of these components are fed to the simulator for power and energy estimation based on the

activities of components while running a certain traffic pattern. Let Pact, j and Pinact, j be post-layout active

power and inactive power of component j at 1.0 V and 1.0 GHz; let αi j be active percentage of component j

in router i (after the warmup time), then the average power of router i is:

Pi =

∑

∀ j

[αi jPact, j + (1 − αi j)Pinact, j] (3)

Hence, the average router power at 1.0 V and 1.0 GHz is given by:

Pavg =
1

N

∑

i=1..N

Pi =
1

N

∑

i=1..N

∑

∀ j

[αi jPact, j + (1 − αi j)Pinact, j] (4)

Router power at a certain supply voltage and a given clock frequency is scaled from the power calculated

above.
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3.4 Energy Consumption

Average energy dissipated by each router after warming up is:

Eavg = Pavg(Tsim − Twarm) (5)

Hence, the average energy dissipated per packet by each router is given by:

Ep =
Eavg

Np

=

(Tsim − Twarm)

NNp

∑

i=1..N

∑

∀ j

[αi jPact, j + (1 − αi j)Pinact, j] (6)

where Np is the total number of packets transferred on the network and is given by Np =
∑

i=1..N Ni.

Similar to router power, energy can be scaled correspondingly to the supply voltage and clock frequency.

Power and energy can also scaled to a given CMOS process node from the data at 65 nm CMOS based on the

scaling rule described in the book by Rabaey et al. [4]; however, due to the differences in technology factors

of standard cells made by different vendors even at the same CMOS technology node, we recommend using

post-layout data of router components according to a certain CMOS cell library for getting accurate results

rather than only naively scaling to that technology node [5]. If used for relative comparison among router

designs, NoCTweak can be incorporated with the ORION tool [6, 7] for easily obtaining the power data at

different CMOS nodes based on its computational power models although they may be far from accurate

compared to the post-layout and real chip data.

4 Simulation Examples

We show here the statistic results on network latency, throughput, router power and energy per packet

reported by NoCTweak for a few common network configurations. Wormhole routers with 3-pipeline stages,

round-robin arbiters and 1000-µm links are used in all examples. Assuming the technology node is 65 nm

CMOS and the network operates at 1.0 V and 1.0 GHz. Traffic pattern is uniform random with packet inter-

injection time has an exponential distribution and packet length is ten flits. Each simulation runs in 100,000

cycles with 20,000 cycles for warmup.

4.1 Different Network Sizes

Listing 7: Running NoCTweak Simulator In a Terminal

. / noctweak −seed 1234 − v o l t 1 . 0 −f reqmode f i x e d − f r e q 1000 −dimx 8 −dimy 8

−p p t y p e 3 1 −p l a t f o r m s y n t h e t i c − t r a f f i c random −simmode c y c l e −sim 100000

−warm 20000 − r o u t i n g xy − o u t s e l c r e d i t −b s i z e 8 −p l e n g t h f i x e d − l e n g t h 10

−sa r r − l l e n g t h 1000 − f i r 0 . 3 0 − l o g o u t p u t . l o g −vcd waveform . vcd

For running NoCTweak, we open a terminal and type a command similar to the one in Listing A.7

above. This command runs a simulation for a 8x8 2-D mesh network of 3-stage wormhole routers with 8-flit

buffers, XY routing and round-robin switch arbitration at a flit injection rate of 0.30 flits/cycle/node over

uniform random synthetic traffic. The results will be written into the “output.log” file and signal waveform

traces will be recorded in the “waveform.vcd” file.

In this example, we simulate the performance, power and energy consumption of the same router in

different network sizes. Four network sizes considered are 4×4, 6×6, 8×8 and 10×10. To change network
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Figure 2: Performance of the networks in different sizes: a) Average packet latency vs. flit injection rate; b)

Average network throughput vs. flit injection rate.

Table 1: Performance, saturation power and energy of routers in networks with different sizes

Zero-Load Saturation Saturation Saturation

Buffer Size Latency Throughput Power Energy

(cycles) (flit/cycle/node) (mW/router) (pJ/packet/router)

4×4 network 20.79 0.492 10.150 13.061

6×6 network 25.41 0.349 9.611 7.794

8×8 network 28.83 0.265 9.085 5.361

10×10 network 33.09 0.214 8.769 4.129

size, we adjust the values of “dimx” and “dimy” in Listing A.7. For each run, we change the value of “fir” so

that we can get the results of network latency, throughput, router power and energy corresponding to various

flit injection rates for quantitative comparisons.

Fig. 2 shows the network latency and throughput of wormhole routers in different network sizes. All

routers have the same buffer size of 8 flits per input port. As shown, increasing network size increases

network latency and reduces network throughput. This is because, over random traffic, a larger network

size causes longer the average source-destination distance hence the packets would take more cycles to

travel to their destinations given the same router design. In the same effect, because packets must travel on

more immediate routers causing more network congestion hence reducing the overall network throughput.

Therefore, a network with larger size would saturate sooner a smaller one. For reference, Column 2 and 3

in Table 1 lists the absolute values of zero-load latency and saturation throughput of networks with different

sizes.1

Router power and energy per packet corresponding to various injection rates of networks are shown in

Fig. 3. Router consumes more power when the injection rate increases because the router is more active.

When the network becomes saturated, router’s activities also become stable hence router power no longer

increases and is stable at a value called saturation power. At the first glance, when the network load is

1Because the simulator cannot run with flit injection rate be equal to zero (which means there is no packet injected into the

network), hence the zero-load latency is taken at an very low injection rate of 0.001 flits/cycle/node.
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Figure 3: Power and energy consumption of routers in different network sizes: a) Average router power vs.

flit injection rate; b) Average energy per packet vs. flit injection rate.

low (e.g. less than 0.2 flits/cycle/node), at the same injection rate, routers in a network with larger size

consume more power than in a smaller one. This is because although having the same injection rate, the

larger network has larger number of processors hence inject more packets into the network. Therefore, each

router would have more packets to handle thus is more active and consumes more power. However, routers

in a larger network size consume less saturation power than in a smaller one because they saturate sooner as

explained in the saturation throughput of networks.

Lower saturation power consumption along with the larger number of packets transferred in a larger

network size make its routers consume less average energy per packet than routers in a network with smaller

size as shown in Fig. 3(b). Saturation power and energy per packet of routers in different network sizes are

listed in Column 4 and 5 of Table 1.

4.2 Different Buffer Depths

In this example, we consider the effect of buffer depth on performance and energy of routers in the same

network size of 8×8. Four buffer depths considered are 2, 4, 8 and 16 flits per buffer queue. To change

buffer size of router, we adjust the value of “bsize” in Listing A.7. Network latency and throughput of

routers over the random traffic pattern is shown in Fig. 4. Clearly, increasing buffer depth improves network

performance as shown in the figure. Because the router has 3 pipeline stages, routers with at least 5 flits per

buffer have the same zero-load network latency. Due to not enough buffers to cover round-trip flow control

signaling, the router with buffer depth of 2 flits achieves the worst network performance.

Increasing buffer depth from 2 flits to 4 and 8 flits improves saturation network throughput by 2.1 and

3.4 times, and reduces zero-load latency by 26.9% and 35.8%, respectively; while increasing from 8 flits to

16 flits only improves 1.2 times in throughput and has the same zero-load latency. Zero-load latency and

saturation throughput of routers are listed in Column 2 and 3 of Table 2.

Due to high power buffer cost, increasing buffer depth dramatically increases the overall router power

(note that each router has five input buffers). As shown in Fig. 5, increasing buffer depth from 2 flits to 4, 8

and 16 flits increases the saturation power by 2.2, 4.1 and 7.5 times. However, because larger buffer depth

achieves higher network throughput which allows transferring more packets in a certain time window, the
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Figure 4: Performance of the networks of routers with different buffer depths: a) Average packet latency vs.

flit injection rate; b) Average network throughput vs. flit injection rate.

Table 2: Performance, saturation power and energy of routers with different buffer depths

Zero-Load Saturation Saturation Saturation

Buffer Size Latency Throughput Power Energy

(cycles) (flit/cycle/node) (mW/router) (pJ/packet/router)

2 flits/buffer 44.93 0.078 2.195 4.419

4 flits/buffer 32.84 0.162 4.729 4.572

8 flits/buffer 28.83 0.265 9.085 5.361

16 flits/buffer 28.83 0.319 16.524 8.099

router with 4 flits per buffer consumes almost the same saturation energy per packet as the one with 2 flits

per buffer. Router with 8 and 16 flits per buffer are 17.3% and 77.1% higher energy per packet compared to

the router with 4 flits per buffer. Router saturation power and energy per packet are listed in Column 4 and

5 of Table 2.

5 Related Work

A few on-chip network simulators have been developed recently. Booksim developed in C++ by Jiang et al.

allows simulating on-chip networks in a broad range of topology, buffer size, routing algorithm, arbitration

policy configurations [8]. Currently, Booksim only supports virtual-channel (VC) routers with synthetic

traffic patterns. The output results are only network latency and throughput versus an injection rate. Our

NoCTweak supports multiple router types (wormhole, virtual-channel, shared queues, bufferless, circuit-

switched) over both synthetic traffic and embedded application patterns. Moreover, it also reports power

and energy consumption of routers in the network at different CMOS technologies, operating voltages and

clock frequencies.

NIRGAM developed by Jain et al in SystemC is a NoC simulator for mesh and torus topologies [9]. It

can simulate different routing algorithms, buffer depths and configurable traffic patterns. Currently, it sup-

ports VC routers and reports only network performance. Similarly, Noxim was also developed in SystemC

9
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Figure 5: Power and energy consumption of routers with different buffer depths: a) Average router power

vs. flit injection rate; b) Average energy per packet vs. flit injection rate.

by Palesi et al. [10], it allows computing router power and energy based on the ORION tool [7]. Noxim

only supports wormhole routers over synthetic traffic patterns. It allows changing simulation parameters

via a command line which was adopted by our NoCTweak. NoCTweak uses post-layout timing and power

data from commercial CMOS standard-cell libraries which show highly accurate within 5% compared to

measurement results on a chip [11, 12].

Al-Nayeem and Islam developed gpNoCsim in Java which supports butter fly, fat tree, torus and mesh

networks [13]. Simulators having similar features are NoCsim by Jones [14], NoCSim by Grecu et al. [15]

and Nostrum by Lu et al. [16]. These simulators only support VC routers with synthetic traffics and do not

report router power and energy. Ocin tsim by Prabhu [17], GARNET by Agarwal et al. [18], SICOSYS by

Puente et al. [19] and Darsim by Lis et al. [20] support computing router power but based on the ORION

model [7] which may be far from accurate compared to the post-layout power data. They, however, can

incorporate with full-system multicore simulators to run parallel benchmarks such as SPLASH-2 [21] or

PARSEC [22]. Supporting these benchmarks in NoCTweak is left for our future work.

6 Summary

We have described NoCTweak, a simulator for early exploration of performance and energy efficiency of

networks on-chip. The simulator is an open-source tool based on SystemC, a C++ plugin, which is more

flexible and provides higher simulation speed than RTL simulators. The tool is highly parameterizable

allowing users to setup and simulate a broad range of network configurations such as router type, network

size, buffer size, routing algorithm, arbitration policy, pipeline stages, supply voltage, clock frequency, traffic

pattern, packet length, injection rate, simulation and warmup times. The statistic output results provided by

the simulator are the average network latency, throughput, router power and energy per transferred packet.

Area, timing and power of router components are post-layout data based on a commercial 65 nm CMOS

standard-cell library.

10



Acknowledgments

This work was supported by a VEF Fellowship, SRC CSR Grant 1659 and SRC GRC Grant 1971, NSF

Grants 0903549, 1018972 and CAREER Award 0546907, ST Microelectronics, UC Micro and Intel.

References

[1] Accellera, “Download SystemC,” Online, http://www.accellera.org/downloads/standards/systemc/.

[2] A. T. Tran and B. M. Baas, “DLABS: A dual-lane buffer-sharing router architecture for networks on

chip,” in IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2010, pp. 327–332.

[3] A. T. Tran and B. M. Baas, “RoShaQ: High-performance on-chip router with shared queues,” in IEEE

International Conference on Computer Design (ICCD), Oct. 2011, pp. 232–238.
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