
Energy-Efficient AES Ciphers on a Fine-Grained
Many-Core System

Bin Liu and Bevan M. Baas
Department of Electrical and Computer Engineering

University of California, Davis

Abstract—By exploring different granularities of data-level
and task-level parallelism, we propose 16 implementations of an
Advanced Encryption Standard (AES) cipher with both online
and offline key expansion on a fine-grained many-core system.
The smallest design utilizes only 6 cores for offline key expansion
and 8 cores for online key expansion, while the largest requires
107 cores and 137 cores, respectively. With frequency and voltage
scaling, the power of different implementations could be reduced
as much as 32%. In comparison with published AES cipher
implementations on other software platforms, our design has 3.3–
15.6 times higher throughput per chip area and 3.4–21.7 times
higher energy efficiency.

I. INTRODUCTION

The Rijndael algorithm was selected by the National In-
stitute of Standards and Technology (NIST) as the Advanced
Encryption Standard (AES) [1] to replace the Data Encryp-
tion Standard (DES) in 2001. Since then some AES imple-
mentations based on different software platforms have been
reported in the literature. Matsui et al. proposed a bitslice
AES implementation on Intel Core 2, which achieves a 9.2
clock cycles per byte throughput for a data chunk longer than
2048 bytes, equaling 1.85 Gbps when the core is running
at its maximum frequency of 2.13 GHz [2]. Bernstein et al.
investigated the opportunities of reducing instruction count and
cycles by combining different instructions together for various
architectures [3]. Both bitslice and specific sets of instructions
from SSSE3 (Supplemental Streaming SIMD Extensions 3)
are utilized to enhance the performance of Intel Core i7 920
as high as 6.92 clock cycles per byte [4]. There is also a trend
to use GPUs (Graphic Processing Units) and DSP processors
to implement the AES algorithm. Wollinger et al. compared
different encryption algorithms on a TMS320C6X processor
and achieved a 14.25 clock cycles per byte [5]. Manavski
presented an AES implementation with a peak throughput of
8.28 Gbps on a GeForce 8800 GTX chip when the input data
block is longer than 8 MB [6].

In this paper, we present various software implementations
of the AES algorithm with different data and task parallelism
granularity, and shows that AES implementations on a fine-
grained many-core system can achieve high performance,
throughput per unit of chip area and energy efficiency com-
pared to other software platforms. Both the online and offline
key expansion process for each implementation model are
discussed. The reminder of this paper is organized as follows.
Section II introduces the AES algorithm and the features of
the targeted fine-grained many-core system. In Section III,

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Ciphertext

(Nr -1) loops

Plaintext

Key

KeySubWord

KeyRotWord

KeyXOR

KeySubWord

KeyRotWord

KeyXOR

MUXMUX

(Nr -1) loops

Fig. 1. Block diagram of AES encryption

various implementations are mapped on the targeted platform.
Section IV presents the power optimization methodology.
Section V compares our work with other software designs.
Finally, Section VI concludes the paper.

II. AES AND TARGETED MANY-CORE ARCHITECTURE

A. Advanced Encryption Standard

AES is a symmetric encryption algorithm, and it takes a
128-bit data block as input and performs several rounds of
transformations to generate output ciphertext. Each 128-bit
data block is processed in a 4-by-4 array of bytes, called
the state. The round key size can be 128, 192 or 256 bits.
The number of rounds repeated in the AES, Nr, is defined by
the length of the round key, which is 10, 12 or 14 for key
lengths of 128, 192 or 256 bits, respectively. Fig. 1 shows
the AES encryption steps with the key expansion process.
For encryption, there are four basic transformations applied
as follows:

1) SubBytes: The SubBytes operation is a non-linear byte
substitution. Each byte from the input state is replaced
by another byte according to the substitution box (called



Fig. 2. Block diagram of the targeted many-core platform [7].

the S-box). The S-box is computed based on a multi-
plicative inverse in the finite field GF(28) and a bitwise
affine transformation.

2) ShiftRows: In the ShiftRows transformation, the first row
of the state array remains unchanged. The bytes in the
second, third and forth rows are cyclically shifted by
one, two and three bytes to the left, respectively.

3) MixColumns: During the MixColumns process, each
column of the state array is considered as a polynomial
over GF(28). After multiplying modulo x4 + 1 with a
fixed polynomial a(x), given by

a(x) = {03}x3+ {01}x2+ {01}x+ {02} (1)

the result is the corresponding column of the output
state.

4) AddRoundKey: A round key is added to the state array
using a bitwise exclusive-or (XOR) operation. Round
keys are calculated in the key expansion process. If
Round keys are calculated on the fly for each data block,
it is called AES with online key expansion. On the other
hand, for most applications, the encryption keys do not
change as frequently as data. As a result, round keys
can be calculated before the encryption process, and
kept constant for a period of time in local memory or
registers. This is called AES with offline key expansion.

Similarly, there are three steps in each key expansion round.

1) KeySubWord: The KeySubWord operation takes a four-
byte input word and produce an output word by substi-
tuting each byte in the input to another byte according
to the S-box.

2) KeyRotWord: The function KeyRotWord takes a word
[a3,a2,a1,a0], performs a cyclic permutation, and
returns the word [a2,a1,a0,a3] as output.

3) KeyXOR: Every word w[i] is equal to the XOR of
the previous word, w[i−1], and the word Nk positions
earlier, w[i−Nk]. Nk equals 4, 6 or 8 for the key lengths
of 128, 192 or 256 bits, respectively.

Sub-

16

Input Key

Sche
Key

Sub

Output

Mix-

16
Sub-

Shift

Add

Key

Shift

Rows
Add

Key

Add

Key

Fig. 3. One-task One-processor (OTOP) 9 cores AsAP mapping.

B. Fine-grained Many-core Processor Array

The targeted Asynchronous Array of Simple Processors
(AsAP) architecture is an example of a fine-grained many-
core computation platform, supporting globally-asynchronous
locally-synchronous (GALS) on-chip network and dynamic
voltage and frequency scaling (DVFS) [7].

Fig. 2 shows the block diagram of AsAP. The computational
platform is composed of 164 small identical processors, three
hardware accelerators and three 16 KB shared memories. All
processors and shared memories are clocked by local fully
independent oscillators and are connected by a reconfigurable
2D-mesh network that supports both nearby and long-distance
communication [8]. Each tile on the platform can be statically
configured to take input data from two links, while sending
its output to other processors via dynamic configuration.

Each simple processor has a 6-stage pipeline, which issues
one instruction per clock cycle. Moreover, no application-
specific instructions are implemented. Each processor has a
128×32-bit instruction memory and a 128×16-bit data mem-
ory. Each processor occupies 0.17 mm2 and has a maximum
clock frequency of 1.2 GHz. The 167-processor chip was
fabricated in 65 nm CMOS technology [7]. And each processor
can run at one of the two power supply voltages to achieve
the highest energy efficiency.

III. PROPOSED AES IMPLEMENTATIONS

In this section, we present the eight AES implementations
with online key expansion in detail, since the offline imple-
mentations can be derived by removing the cores used for key
expansion from the online designs. For simplicity, we focus
on the situation with a 128-bit key and Nr = 10 in this paper.

1) One-task One-Processor (OTOP): The most straightfor-
ward implementation is to map each task in the AES
algorithm on one processor, as shown in Fig. 3. With-
out impairing performance, the SubBytes and ShiftRows
processors in the last round are fused into one processor
(as SubShift) to save one processor.

2) Parallel-MixColumns: To increase the throughput of
OTOP, each MixColumns-16 processor can be split
into four MixColumns-4s. The reason is that each
MixColumns-16 operates on a four-column data block,
and the operation on each column of the data block is
independent.

3) Parallel-SubBytes-MixColumns: Besides parallelizing
the MixColumns-16 processor, we parallelize one
SubBytes-16 into four SubBytes-4s to increase the
throughput further. In order to save three processors, we



TABLE I
THROUGHPUT AND THE NUMBER OF CORES REQUIRED BY DIFFERENT IMPLEMENTATIONS. COMMUNICATION CORES ARE USED FOR ROUTING ONLY,

INCLUDING MergeCores AND DispatchCores. ALL OF THE THROUGHPUT PER CORE NUMBERS ARE NORMALIZED TO THE PARALLEL-MIXCOLUMNS
MODEL WITH ONLINE KEY EXPANSION.

Online Key Expansion Offline Key Expansion
Implementation 1/Throughput Total Comm. Normalized Total Comm. Normalized

(cycles/byte) Cores Cores Throughput/Core Cores Cores Throughput/Core
Small 167.375 8 0 1.53 6 0 2.04
One-task one-processor 223.875 9 0 1.01 7 0 1.30
Parallel-Mixcolumns 136.250 15 3 1 12 2 1.25
Parallel-SubBytes-Mixcolumns 84.375 18 3 1.35 15 2 1.61
Loop-unrolled Three Times 68.625 23 0 1.29 15 0 1.99
Loop-unrolled Nine Times 16.625 50 0 2.46 30 0 4.10
No-merge-parallelism 9.500 59 0 3.65 39 0 5.52
Full-parallelism 4.375 137 30 3.41 107 20 4.37

Input

Sub-

4

Add &

Shift

Sub-

4

Sub-

4

Key

Sub

Mix-

4

Output

Sub-

4

Mix-

4

Key

Sche

Merge

Core

Merge

Core

Merge

Core
Sub-

4

Add &

Shift

Sub-

4

Sub-

4

Sub-

4

Sub-

4

Add &

Shift

Sub-

4

Sub-

4

Sub-

4

Merge

Core

Key

Sub

Merge

Core

Key

Sche

Merge

Core

Add

Key

Mix-

4

Mix-

4

Fig. 4. Full-parallelism 137 cores AsAP mapping.

alternate the sequence of the SubBytes and the ShiftRows
stages, which would not affect encryption results.

4) Loop-unrolled Three Times: Instead of parallelizing
single processor from OTOP model, another way to
increase the throughput is loop unrolling. In this im-
plementation, the nine loops in the AES main algorithm
are split into three blocks, and each block loops three
times.

5) Loop-unrolled Nine Times: The loops in the AES main
algorithm and the key expansion process are unrolled
by nine and ten times, respectively. The SubBytes and
ShiftRows processors in the same loop are fused into one
processor, which saves 10 processors without impairing
throughput.

6) Full-parallelism: The implementation combines the
Parallel-SubBytes-MixColumns model and loop un-
rolling to achieve the highest throughput among all of
the models introduced in this paper. It also requires
137 cores as shown in Fig. 4, which is the largest
implementation of all. The MergeCores are used for
routing only.

7) Small: The Small model implements an AES cipher with
the fewest cores.

8) No-merge-parallelism: The No-merge-parallelism model

exploits as much parallelism as possible without intro-
ducing any cores dedicated to communication and highly
optimized for area and throughput [9].

The throughput, number of cores used and normalized
throughput per core of all implementations are listed in Table I.
All implementation mappings are described in detail in [10].

IV. ENERGY OPTIMIZATION BASED ON DVFS

The power number of each implementation working under
1.3 V and 1.2 GHz is listed in Column 3 of Table II. Since
AsAP cores can be set to run at different frequencies and two
supplied voltages, it provides an opportunity to optimize the
power of each implementation further.

A. Frequency Scaling

Based on the execution activity, each processor has an
optimal running frequency. The optimized frequencies make
processors execute in 100% activity as much as possible
without impairing performance.

For example, the critical processors of the full-parallelism’s
model are MixColumn-4s, which execute 70 cycles and de-
cide the throughput of the implementation. As a result, the
MixColumn-4s must run at a frequency as high as possible to
guarantee the best throughput performance of the system. For
other processors in the same model, the optimal frequency is
obtained as:

fOpt.i =
NExe.i

70
· fMixColumn−4 (2)

where NExe.i is the number of execution cycles of the ith

processor for processing one data block, respectively.
By running at these optimal frequencies, the power wasted

by processors waiting for available input or output buffer is
eliminated. The optimized power based on frequency scaling
of each implementation is listed in Column 4 of Table II.
Compared with the case of all processors running at 1.2 GHz,
frequency scaling could reduce the power up to 15.42%.

B. Dual Supply Voltage Scaling

Since only the critical processors in each implementation are
required to be run at the highest frequency, the supply voltages
could be decreased for other processors depending on their
own frequencies. The supply voltage reduction can lower the



TABLE II
THROUGHPUT AND POWER NUMBER OF EACH AES IMPLEMENTATION WITH ONLINE KEY EXPANSION WHEN ALL THE CORES WORK UNDER 1.3 V AND

1.2 GHZ.

Max. Power Freq. Scaling Freq. and Volt. Scaling
Implementation Throughput Before Opt. Power Saving Power Saving

(Mbps) (mW) (mW) Perc. (mW) Perc.
Small 57.83 179.5 157.7 12.14% 141.3 21.28%
One-task one-processor 43.24 169.0 146.2 13.49% 130.0 23.08%
Parallel-Mixcolumns 71.05 333.7 316.2 5.24% 294.0 11.90%
Parallel-SubBytes-Mixcolumns 114.73 412.9 391.8 5.11% 365.3 11.53%
Loop-unrolled Three Times 141.06 413.2 362.9 12.17% 315.0 23.77%
Loop-unrolled Nine Times 582.26 1353.3 1203.7 11.05% 929.4 31.32%
No-merge-parallelism 1018.95 2357.9 2075.8 11.96% 1732.4 26.53%
Full-parallelism 2212.57 6064.7 5129.8 15.42% 4534.7 25.23%

system’s power consumption further as a result of the quadratic
relationship between supply voltage and power. Our targeted
computational platform can support two different supply volt-
ages, VddHigh and VddLow. For each implementation, we can
choose either one of these voltages for each processor. If at
VddLow the processor can reach its optimal running frequency,
its supply voltage should be set as VddLow; otherwise, VddHigh
is applied.

The total power after frequency and voltage optimization of
each implementation is listed in Column 6 of Table II. And
the power saving could be achieved up to 31.32%.

V. RELATED WORK AND COMPARISON

In order to make a fair comparison, all of the referenced data
are scaled to 65 nm CMOS technology with a supply voltage
of 1.3 V. The area data are scaled to 65 nm with a 1/(s2)
reduction, where s equals the ratio between the minimum
feature size of the old technology and 65 nm. The delay and
power data are scaled by SPICE simulation results of a fanout-
of-4 (FO4) inverter under different technologies and supply
voltages with predictive technology model (PTM) [11].

In this section, we use the metrics of throughout per chip
area (Mbps/mm2) and energy per workload bit (nJ/bit) to
compare the area efficiency and energy efficiency of various
designs. Compared to the highly optimized AES ciphers on
CPUs with bitslice [2], [4], the proposed AES cipher on AsAP
has 3.5–15.6 times higher throughput per unit of chip area
and consumes 9.8–21.7 times less energy to encrypt a fixed
amount of data. Compared with TI DSP C6201, an 8-way
VLIW architecture for high performance DSP applications, our
design has 2 times higher throughput. Compared to GeForce
8800 GTX, our design shows a 3.3 times higher throughput
per unit of chip area and 3.4 times higher energy efficiency.

VI. CONCLUSION

We have presented 16 different AES cipher implementations
with both online and offline key expansion on a fine-grained
many-core system and optimized their power with frequency
and voltage scaling. The smallest design requires only 6
processors, equaling 1.02 mm2 in a 65 nm fine-grained many-
core system. The fastest design achieves a throughput of 4.375
cycles per byte, which is 2.21 Gbps when the processors are

running at a frequency of 1.2 GHz. The design on the fine-
grained many-core system achieves energy efficiencies approx-
imately 3.4–21.7 times higher than other software platforms,
and performance per area on the order of 3.3–15.6 times
higher.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge support from NSF
Grant 0430090, 0903549 and CAREER Award 0546907, SRC
GRC Grant 1598 and 1971, CSR Grant 1659, UC Micro, ST
Microelectronics, Intel, and Intellasys.

REFERENCES

[1] NIST, “Advanced encryption standard (AES),”
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, Nov. 2001.

[2] Mitsuru Matsui and Junko Nakajima, “On the power of bitslice
implementation on intel core2 processor,” in Cryptographic Hardware
and Embedded Systems - CHES 2007, vol. 4727 of Lecture Notes in
Computer Science, pp. 121–134. 2007.

[3] Daniel Bernstein and Peter Schwabe, “New AES Software speed
records,” in Progress in Cryptology - INDOCRYPT 2008, vol. 5365
of Lecture Notes in Computer Science, pp. 322–336. 2008.

[4] Emilia Kasper and Peter Schwabe, “Faster and timing-attack resistant
AES-GCM,” in Cryptographic Hardware and Embedded Systems -
CHES 2009, vol. 5747 of Lecture Notes in Computer Science, pp. 1–17.
2009.

[5] T. Wollinger, M. Wang, J. Cuajardo, and C. Paar, “How well are high-
end DSPs suited for the AES algorithm?,” in The Third AES Candidate
Conference, Apr. 2000, pp. 94–105.

[6] S.A. Manavski, “CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography,” in Signal Processing and Commu-
nications, 2007. ICSPC 2007. IEEE International Conference on, Nov.
2007, pp. 65–68.

[7] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson,
G. Landge, M. J. Meeuwsen, A. T. Tran, Z. Xiao, E. W. Work, J. W.
Webb, P. Mejia, and B. M. Baas, “A 167-processor computational
platform in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol.
44, no. 4, pp. 1130–1144, Apr. 2009.

[8] A. T. Tran, D. N. Truong, and B. M. Baas, “A reconfigurable
source-synchronous on-chip network for GALS many-core platforms,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 29, no. 6, pp. 897–910, Jun. 2010.

[9] Bin Liu and Bevan M. Baas, “A high-performance area-efficient AES
cipher on a many-core platform,” in IEEE Asilomar Conference on
Signals, Systems and Computers (ACSSC), Nov. 2011.

[10] Bin Liu and B. M. Baas, “Parallel AES encryption engines for many-
core processor arrays,” to appear on IEEE Transactions on Computers.

[11] Aaron Stillmaker, “Exploration of technology scaling of CMOS circuits
from 180 nm to 22 nm using PTM models in HSPICE,” Technical
Report UC Davis, June 2011.


