536

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.3, MARCH 2013

Parallel AES Encryption Engines
for Many-Core Processor Arrays

Bin Liu, Student Member, IEEE, and Bevan M. Baas, Senior Member, |IEEE

Abstract—By exploring different granularities of data-level and task-level parallelism, we map 16 implementations of an Advanced
Encryption Standard (AES) cipher with both online and offline key expansion on a fine-grained many-core system. The smallest design
utilizes only six cores for offline key expansion and eight cores for online key expansion, while the largest requires 107 and 137 cores,
respectively. In comparison with published AES cipher implementations on general purpose processors, our design has 3.5-15.6 times
higher throughput per unit of chip area and 8.2-18.1 times higher energy efficiency. Moreover, the design shows 2.0 times higher
throughput than the TI DSP C6201, and 3.3 times higher throughput per unit of chip area and 2.9 times higher energy efficiency than

the GeForce 8800 GTX.

Index Terms—Advanced encryption standard (AES), AsAP, fine-grained, many-core, parallel processor, software, synchronous

dataflow

1 INTRODUCTION
WITH the development of information technology,

protecting sensitive information via encryption is
becoming more and more important to daily life. In 2001,
the National Institute of Standards and Technology (NIST)
selected the Rijndael algorithm as the Advanced Encryption
Standard (AES) [1], which replaced the Data Encryption
Standard (DES) [2]. Since then, AES has been widely used ina
variety of applications, such as secure communication
systems, high-performance database servers, digital video/
audio recorders, RFID tags, and smart cards.

To satisfy different applications’ requirements, numerous
hardware implementations of AES have been reported.
Verbauwhede et al. described the first AES implementation
on silicon, which can provide a 2.29 Gbps throughput with a
nonpipeline architecture [3]. Mukhopadhyay and Roy-
Chowdhury improved their AES system to 8 Gbps with
pipelining [4], which is a common technique used to enhance
the performance of a system [5]. The first AES implementa-
tion with a throughput over 10 Gbps was proposed by
applying T-box [6], which is a combination of the SubBytes,
ShiftRows, and MixColumns phases in the AES algorithm [7].
Furthermore, the area-throughput tradeoffs of fully pipe-
lined AES processors with throughputs between 30 and
70 Gbps have been presented [8]. Recently, Mathew et al.
implemented a 53 Gbps AES accelerator in 45 nm CMOS
technology [9]. Besides application specific integrated circuit
(ASIC) designs, configurable hardware is another choice for
AES implementations. For example, there are several FPGA
implementations that achieve a throughput approximately

o The authors are with the Department of Electrical and Computer
Engineering, University of California, Davis, CA 95616.
E-mail: {binliu, bbaas}@ucdavis.edu.

Manuscript received 15 Aug. 2011; revised 18 Nov. 2011; accepted 6 Dec.
2011; published online 22 Dec. 2011.

Recommended for acceptance by J. Plusquellic.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-08-0546.
Digital Object Identifier no. 10.1109/TC.2011.251.

0018-9340/13/$31.00 © 2013 IEEE

20 to 30 Gbps [10], [11], [12] by applying loop unrolling and
pipelining. Recently, Qu et al. demonstrated a 73.7 Gbps AES
system on a Xilinx XC5VLX85 chip running at 570 MHz [13].

Although hardware implementations generally offer
higher throughput and better energy efficiency than soft-
ware designs, they are difficult to upgrade and adapt for
future possible protocol changes. Moreover, ASIC designs
are very time consuming and costly. For example, it takes
generally 18 to 24 months for a full custom ASIC product
and costs approximately 50 Million USD to design [14]. One
advantage of the Rijndael algorithm is that it is not only fit
for hardware implementations, but also suitable for efficient
software designs. Matsui and Nakajima proposed a bitslice
AES implementation on Intel Core 2, which achieves a
9.2 clock cycles per byte throughput for a data chunk longer
than 2,048 bytes, equaling 1.85 Gbps when the core is
running at its maximum frequency of 2.13 GHz [15]. The
bitslice technique was first proposed by Biham for fast DES
implementation on a software platform with a word size
longer than 16 bits [16]. Bernstein and Schwabe investigated
the opportunities of reducing instruction count and cycles
by combining different instructions together for various
architectures [17]. Both bitslice and specific sets of instruc-
tions from Supplemental Streaming SIMD Extensions 3
(SSSE3 [18]) are utilized to enhance the performance of Intel
Core i7 920 as high as 6.92 clock cycles per byte [19]. Besides
pure general software AES implementations, the Intel AES-
NI utilizes specialized hardware to support six AES
instructions, and achieves a throughput of 1.28 clock cycles
per byte [20]. There is also a trend to use Graphic Processing
Units (GPUs) and DSP processors to implement the AES
algorithm. Wollinger et al. compared different encryption
algorithms on a TMS320C6X processor and achieved a
14.25 clock cycles per byte [21]. Manavski presented an AES
implementation with a peak throughput of 8.28 Gbps on a
GeForce 8,800 GTX chip when the input data block is longer
than 8 MB [22].

Published by the IEEE Computer Society

LIU AND BAAS: PARALLEL AES ENCRYPTION ENGINES FOR MANY-CORE PROCESSOR ARRAYS 537

Plaintext
Key
AddRoundKey |«
v \
MUX MUX
SubBytes KeySubWord
ShiftRows KeyRotWord
(Ny-1) loops (Ny-1) loops
MixColumns KeyXOR |
AddRoundKey |«
\ Y

SubBytes KeySubWord

ShiftRows KeyRotWord
AddRoundKey (< KeyXOR

Ciphertext

Fig. 1. Block diagram of AES encryption.

This paper presents various software implementations of
the AES algorithm with different data and task parallelism
granularity, and shows that AES implementations on a fine-
grained many-core system can achieve high performance,
throughput per unit of chip area and energy efficiency
compared to other software platforms. Both the online and
offline key expansion process for each implementation
model are discussed. The reminder of this paper is
organized as follows: Section 2 introduces the AES algo-
rithm. Section 3 briefly describes the features of the targeted
fine-grained many-core system. In Section 4, various
implementations are analyzed by synchronous dataflow
(SDF) models, mapped and measured on the targeted
platform. Section 5 presents the area optimization metho-
dology and compares the area efficiency among different
implementations. Section 6 compares the energy efficiency.
Section 7 compares our work with other software designs.
Finally, Section 8 concludes the paper.

2 ADVANCED ENCRYPTION STANDARD

AES is a symmetric encryption algorithm, and it takes a
128-bit data block as input and performs several rounds of
transformations to generate output ciphertext. Each 128-bit
data block is processed in a 4-by-4 array of bytes, called the
state. The round key size can be 128,192 or 256 bits. The number
of rounds repeated in the AES, N,, is defined by the length of
the round key, which is 10, 12 or 14 for key lengths of 128,192 or
256 bits, respectively. Fig. 1 shows the AES encryption steps
with the key expansion process. For encryption, there are four
basic transformations applied as follows:

1. SubBytes: The SubBytes operation is a nonlinear byte
substitution. Each byte from the input state is
replaced by another byte according to the substitu-
tion box (called the S-box). The S-box is computed
based on a multiplicative inverse in the finite field
GF(2®%) and a bitwise affine transformation.

2. ShiftRows: In the ShiftRows transformation, the first
row of the state array remains unchanged. The bytes in

the second, third, and forth rows are cyclically shifted
by one, two, and three bytes to the left, respectively.
3. MixColumns: During the MixColumns process, each
column of the state array is considered as a
polynomial over GF(2%). After multiplying modulo
4
z* + 1 with a fixed polynomial a(z), given by

a(x) = {03} + {01}2? + {01}z + {02}, (1)

the result is the corresponding column of the
output state.

4. AddRoundKey: A round key is added to the state array
using a bitwise exclusive-or (XOR) operation. Round
keys are calculated in the key expansion process. If
Round keys are calculated on the fly for each data
block, it is called AES with online key expansion. On
the other hand, for most applications, the encryption
keys do not change as frequently as data. As a result,
round keys can be calculated before the encryption
process, and kept constant for a period of time in local
memory or registers. This is called AES with offline
key expansion. In this paper, both the online and
offline key expansion AES algorithms are examined.

Similarly, there are three steps in each key expansion

round.

1. KeySubWord: The KeySubWord operation takes a four-
byte input word and produce an output word by
substituting each byte in the input to another byte
according to the S-box.

2. KeyRotWord: The function KeyRotWord takes a word
[as, ag, a1, ao], performs a cyclic permutation, and
returns the word [as, a1, ag, as] as output.

3. KeyXOR: Every word w[i] is equal to the XOR of the
previous word, w[i — 1], and the word Nk positions
earlier, w[i — Nk|. Nk equals 4, 6 or 8 for the key
lengths of 128, 192 or 256 bits, respectively.

The decryption algorithm applies the inverse transfor-
mations in the same manner as the encipherment. As a
result, we only consider the encryption algorithm in this
work for simplicity, since the decipherment yields very
similar results.

3 TARGETED MANY-CORE ARCHITECTURE

3.1 Fine-Grained Many-Core Architecture

According to Pollack’s Rule, the performance increase of an
architecture is roughly proportional to the square root of its
increase in complexity [23]. The rule implies that if we
double the logic area in a processor, the performance of the
core speeds up around 40 percent. On the other hand, a
many core architecture has the potential to provide near
linear performance improvement with complexity. For
instance, instead of building a complicated core twice as
large as before, a processor containing two cores (each is
identical to the other) could achieve a possible 2x perfor-
mance improvement if the application can be fully paralle-
lized. Therefore, if the target application has enough
inherent parallelism, an architecture with thousands of
small cores would offer a better performance than one with
a few large cores within the same die area [23].

538

Input Output

Tile

o] |

Core \

ﬂ Comm L:
p== =3

3
"

Fig. 2. Block diagram of the 167-processor computational platform [26].

3.2 Asynchronous Array of Simple Processors
(AsAP)

The targeted Asynchronous Array of Simple Processors

architecture is an example of a fine-grained many-core

computation platform, supporting globally-asynchronous

locally-synchronous (GALS) on-chip network and dynamic

voltage and frequency scaling (DVFS) [24].

Fig. 2 shows the block diagram of AsAP. The computa-
tional platform is composed of 164 small identical proces-
sors, three hardware accelerators and three 16 KB shared
memories. All processors and shared memories are clocked
by local fully independent oscillators and are connected by
a reconfigurable 2D-mesh network that supports both
nearby and long-distance communication [25]. Each tile
on the platform can be statically configured to take input
data from two links, while sending its output to other
processors via dynamic configuration.

Each simple processor has a 6-stage pipeline, which issues
one instruction per clock cycle. Moreover, no application-
specific instructions are implemented. Each processor has a
128 x 32-bit instruction memory and a 128 x 16-bit data
memory. Each processor occupies 0.17 mm? and has a
maximum clock frequency of 1.2 GHz. The 167-processor
chip was fabricated in 65 nm CMOS technology. [26].

3.3 Programming Methodology on AsAP
Programming the AsAP array follows three basic steps [27]:

1. Each task of the application is mapped to one or few
processors on the array. Each processor is pro-
grammed using either C or assembly language.

2. The inputs and outputs of different tasks are
interconnected using a configuration file or a GUI
mapping tool [28].

3. After compiled by our C compiler and assembler,
the programs of tasks are mapped to the 2D mesh
AsAP array.

4 AES IMPLEMENTATIONS ON AsSAP

In this section, we present 16 different complete and fully-
cunctional AES ciphers. The throughput of each design is
measured from simulations on a cycle-accurate Verilog RTL
model of the actual silicon chip.

Table 1 shows the execution delays of different proces-
sors. For example, MixColumns-16 executes the MixColumns

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.3, MARCH 2013

TABLE 1
Execution Delays of Processors on AsAP2
Processors Execution Delays on AsAP2 | IMEM Usage
SubBytes-1 10 cycles/byte 9%
SubBytes-4 40 cycles/four bytes 9%
SubBytes-16 132 cycles/block 10%
ShiftRows 38 cycles/block 18%
MixColumns-16 266 cycles/block 63%
MixColumns-4 70 cycles/column 31%
AddRoundKey 22 cycles/block 18%
KeySubWord 56 cycles/block 13%
KeySchedule 60 cycles/block 22%

Each data block is a 4-by-4 byte array.

process on a whole 16-byte data block, while MixColumns-4
performs on a single 4-byte column. The execution time of
MixColumns-4 is more than one fourth of the delay of
MixColumns-16 due to programming overhead on AsAP.
Similarly, SubBytes-16 requires 132 clock cycles to process a
16-byte data block, and it takes 10 clock cycles for SubBytes-
1 to substitute 1 byte. In our proposed implementations, the
key expansion process is divided into two processing units,
KeySubWord and KeySchedule. Each KeySchedule processor
contains two steps of the key expansion process, KeyRot-
Word and KeyXOR.

In the following sections, we present the eight AES
implementations with online key expansion in detail, since
the offline implementations can be derived by removing the
cores used for key expansion from the online designs. For
simplicity, we focus on the situation with a 128-bit key and
N, =10 in this paper, and the impact of different key
lengths to our designs is discussed in detail in Section 4.9.

4.1 One-Task One-Processor (OTOP)

The most straightforward implementation of an AES
cipher is to apply each step in the algorithm as a task in
the dataflow diagram as shown in Fig. 3a. Then, each task
in the dataflow diagram can be mapped on one processor
on the targeted many-core platform. We call this imple-
mentation one-task one-processor. For simplicity, all of the
execution delay (shown in Table 1), input rates, and output
rates in the following dataflow diagrams are omitted. Since
the key expansion is processing in parallel with the main
algorithm, the throughput of the OTOP implementation is
determined by the nine (N, — 1 = 9) loops in the algorithm.
The OTOP implementation requires 10 cores on AsAP as

Nine Loops

Sub- | [shift] [Mix-] [Add] [sub-
16 [« [Rows[~|_16_["] Key [16
I SLAN

Input _[Add | _|Key [*|'KeyT Tshift{™| Add [Output
Key ™ sub [™sche| [Rows[™] Key

(b)

Fig. 3. One-task One-processor (a) dataflow diagram and (b) 10 cores
AsAP mapping.

LIU AND BAAS: PARALLEL AES ENCRYPTION ENGINES FOR MANY-CORE PROCESSOR ARRAYS 539

Sub Sub Shift Add |Output
16 16 Rows| " | Key

I'r
Input_| Add |L|[Sub-|._[shitt
Key |I')[16 Rows
[N
L

Key Key
Sub Sche

Fig. 4. Loop-unrolled Nine Times (a) dataflow diagram and (b) 60 cores
AsAP mapping.

shown in Fig. 3b. The throughput of the OTOP imple-
mentation is 3,582 clock cycles per data block, equaling
223.875 clock cycles per byte.

4.2 Loop-Unrolled Nine Times

To enhance the AES cipher’s throughput, we apply loop
unrolling to the OTOP model and obtain the Loop-unrolled
Nine Times dataflow diagram as shown in Fig. 4a. The loop
unrolling breaks the dependency among different loops
and allows the nine loops in the AES algorithm to operate
on multiple data blocks simultaneously. To improve the
throughput as much as possible, we unroll the loops in
both the AES algorithm and the key expansion process by
N, —1 and N, times, which equals 9 and 10, respectively.
After loop unrolling, the throughput of the AES imple-
mentation is increased to 266 cycles per data block,
equaling 16.625 cycles per byte. The mapping of the
Loop-unrolled Nine Times model is shown in Fig. 4b,
which requires 60 cores.

4.3 Loop-Unrolled Three Times

To achieve a moderate throughput with fewer cores, we
could unroll the main loops in the AES algorithm by
S times (S is divisible by NN, — 1), instead of N, — 1 times.
For this example, the nine loops in the AES algorithm
could be split into three blocks, and each block loops three
times. The dataflow diagram and mapping of the Loop-
unrolled Three Times implementation are shown in
Figs. 5a and 5b, respectively. Compared to the OTOP
model, the throughput is improved to 1,098 cycles per data
block, which equals 68.625 cycles per byte; while the
mapping requires 24 cores, 36 fewer than the Loop-
unrolled Nine Times implementation.

4.4 Parallel-MixColumns

Besides loop unrolling, another way to increase the
throughput of the OTOP model is to reduce the main loop’s
latency in the AES algorithm. In a single loop, the execution
delay of MixColumns-16 results in 60 percent of the total
latency. Each MixColumns-16 operates on a four-column data
block, and the operation on each column is independent.
Therefore, each MixColumns-16 processor can be replaced by

Add |Output
Key

Input_[Add | LI
Key [I']

I three loops | | I
|————mRl

Fig. 5. Loop-unrolled Three Times (a) dataflow diagram and (b) 24 cores
AsAP mapping.

four MixColumns-4s. Each MixColumns-4 actor computes
only one column rather than a whole data block. As a result,
the throughput of the Parallel-MixColumns implementation
is increased to 2,180 cycles per block, equaling 136.25 cycles
per byte. The dataflow diagram and mapping of the Parallel-
MixColumns model are shown in Figs. 6a and 6b.

Each core on our targeted computational platform can
only support two statically configured input ports. Three
cores, each called MergeCore, are used to merge the four
data streams from MixColumns-4s into one stream for
AddRoundKey.

Nine Loops

Mix- | _ Mergd
4 /_: Core
4| (]
Mix-| Mergel
| 4 Core
4 Ay
Sub- [3|'Shift| | Add [, | Sub-
16 _|—[Rews|— Key [—| 16
Py by
Input_[Add | | Mix- | [Merde ‘Fhift
Keyl| |14 |#|Cor¢| |Rows
YV | | V¥
Key Mix- Key | |Add [Output
Sub [~ [—4—[+{Sche Key

Fig. 6. Parallel-MixColumns (a) dataflow diagram and (b) 16 cores AsAP
mapping.

540

Nine Loops

Fig. 7. Parallel-SubBytes-MixColumns (a) dataflow diagram and
(b) 22 cores AsAP mapping.

The dependence among bytes in one column diminishes
the performance improvement for further parallelization.
For instance, if we parallelize one MixColumns-4 into two
MixColumns-2s, the effective execution delay of the MixCol-
umns process is reduced to 64 cycles from 70 cycles. This
saves only 6 cycles while it requires eight more processors
(four extra MixColumns cores and four extra MergeCores).
Therefore, further parallelization on the MixColumns process
would impair the area and energy efficiency of the entire
system without significant performance improvement.

4.5 Parallel-SubBytes-MixColumns

In the Parallel-MixColumns implementation, SubBytes-16
requires 132 cycles to encrypt one data block, which
contributes the largest execution delay in one loop. In order
to increase the throughput further, we parallelize one
SubBytes-16 into four SubBytes-4s, which is shown in Fig. 7a.
In this implementation, each SubBytes-4 processes 4 bytes
rather than 16 bytes in one data block. The effective
execution delay of the SubBytes process is decreased to
40 cycles per block, only around one fourth as before.
Therefore, the throughput of the Parallel-SubBytes-MixCol-
umns model is increased to 1,350 cycles per block, equaling
84.375 cycles per byte. The mapping graph of the Parallel-
SubBytes-MixColumns implementation on AsAP shown in
Fig. 7b requires 22 cores.

Instead of parallelizing SubBytes-16 into four SubByte-4s,
we can replace it with 16 SubBytes-1s. The effective execution
delay of the SubBytes process is reduced to 10 cycles. As a
result, the latency of one-loop decreases to 120 cycles.
Therefore, the throughput of the cipher is increased to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.3, MARCH 2013

Fig. 8. Full-parallelism (a) dataflow diagram and (b) 164 cores AsAP
mapping.

67.5 cycles per byte. However, it requires seven additional
cores dedicated to communication (four MergeCores and
three DispatchCores), which impair the area and energy
efficiency of the implementation.

4.6 Full-Parallelism

The Full-parallelism AES implementation combines the
Parallel-SubBytes-MixColumns model and loop unrolling.
The dataflow diagram and the mapping of the Full-
parallelism model are shown in Figs. 8a and 8b. As
expected, the throughput of this design is the highest
among all of the models introduced in this paper since it
employs most data and task parallelism. The throughput of
the Full-parallelism model is 70 cycles per block, equaling
4.375 cycles per byte. It also requires 164 cores, which is the
largest implementation of all.

In the Full-parallelism model, the MixColumns-4 proces-
sors are the throughput bottlenecks which determine the
performance of the cipher. Therefore, parallelizing the
SubBytes process with more than four processors would
only increase the area and power overhead without any
performance improvement.

4.7 Small

The Small model implements an AES cipher on AsAP with
the fewest processors. As shown in Fig. 9, it requires at least
eight cores to implement an AES cipher with online key
expansion process, since each core on AsAP has only a
128 x 32-bit instruction memory and a 128 x 16-bit data
memory. The throughput of the Small model is 2,678 cycles
per data block, which equals 167.375 cycles per byte.

LIU AND BAAS: PARALLEL AES ENCRYPTION ENGINES FOR MANY-CORE PROCESSOR ARRAYS 541

Input _ | Add Sub- [[SRiff3{™] Shift
" key [] 16 [*iMix-1d |Rows
1] LY L]
Key [*] Rey]] Add Add | Outpyt
Sub [™] Sche_> Key ™ Key

Fig. 9. Eight cores AsAP mapping of the Small implementation.

4.8 No-Merge-Parallelism

In contrast to the Small model, the No-merge-parallelism
model exploits as much parallelism as possible without
introducing any cores dedicated to communication, includ-
ing MergeCores and DispatchCores. The mapping graph of the
No-merge-parallelism implementation on AsAP is shown in
Fig. 10. To speed up the implementation, loop unrolling is
applied in this model. Each MixColumns-16 is divided into
two MixColumns-8s, which helps reduce the effective delay
of the MixColumns process. In order to eliminate additional
communication processors and simplify the routing, we
combine the SubBytes and the ShiftRows stages in one core.
This implementation requires 59 cores, and has a through-
put of 152 cycles per block, equaling 9.5 cycles per byte.

4.9 Designs with Longer Keys

As introduced in Section 2, besides the 128-bit key, the AES
algorithm also supports key lengths of 192 and 256 bits.
Encrypting with longer keys results in two major areas of
additional computation. First, the number of loops in the
AES algorithm is increased. Second, the key expansion
cores require more clock cycles to process round keys.

For the designs without loop-unrolling (Small, OTOP,
Parallel-MixColumns, and Parallel-SubBytes-MixColumns),
no extra cores are required. These mappings operate with
longer keys by increasing the number of round loops, N,,
and reprogramming the key expansion related cores. The
throughputs of these designs are decreased due to the
increased number of N, rounds.

For the designs with loop-unrolling, additional cores are
added depending on the number of rounds required. For
example, 12 and 24 more cores are required for the No-
merge-parallelism designs with a 192-bit and 256-bit key,
respectively. The throughputs of the Loop-unrolled and the
No-merge-parallelism are kept the same as before, which is
determined by the MixColumns operation. On the other
hand, for the Full-parallelism implementation, the through-
put is decreased since the bottlenecks of the system are
shifted from the MixColumn-4 processors to the key expan-
sion cores, due to the overhead of processing longer keys.

Due to the significant effort required, 192-bit and 256-bit
designs are not implemented in this work.

5 AREA EFFICIENCY ANALYSIS

Area is a significant metric in system design. Less area
means less silicon, therefore less cost. From a many-core
processor perspective, area is represented by the number of
cores required to implement applications. Smaller area
translates into fewer used cores and leaves more opportu-
nities for dealing with other applications on the same
platform simultaneously. To evaluate the area efficiency
between various AES implementations, a metric called

== 777 nine loops in serial!

l-r——————— 1= :
input [Add [LIlsub-1¢ [Mix- | [Mix- || Isub-14 Bub-14 [Add Joutput
Key |TTlesnif™|—s_| 3] 8 Juffasnit| ™ snif™| Key [~
Y LAY oo JI [}
\ Key Key Add [Key Key Key
—H Sub ™| Sche [~ [-ey- :»f Sub ™| sub [sche
|

Fig. 10. Fifty Nine cores AsAP mapping of the No-merge-parallelism
implementation.

ThroughputPerCore is defined as the ratio between the
throughput of each design to the number of cores used to
implement it,

Throughput

ThroughputPerCore = (2)

Number of Cores’

5.1 Area Optimization Methodology

Before comparing area efficiency among different AES
implementations, area optimization is applied to all of the
models without impairing performance. In this section, the
area optimization methodology is illustrated through a
detailed example of minimizing the number of cores used
by the Full-parallelism model. As shown in Fig. 8b, there are
17 cores in one loop of the Full-parallelism mapping,
including five communication-dedicated cores, which are
used for routing only. And the final round operation requires
11 cores. Therefore, the number of cores utilized for the
unoptimized Full-parallelism model is (N, — 1) X Nope-joop +
Nigst-round = 9 X 17+ 11 = 164.

Two optimization steps are applied to the Full-paralle-
lism model. First, since the ShiftRows process is only byte-
rotation, alternating the sequence of the SubBytes and the
ShiftRows stages would not affect encryption results. How-
ever, this alternation reduces two MergeCores for each loop.
As a result, 18 cores are reduced from the Full-parallelism
model. Second, the throughput of the Full-parallelism model
is 70 cycles per block, which is determined by the operation
delay of MixColumns-4s. Any actors with less execution
delay would not impair the performance of the system.
Therefore, a processor fusion of the ShiftRows in the Nth loop
and the AddRoundKey in the (N — 1)th loop can reduce one
more core for each loop, while keeping the same throughput
since these new combination processors take only 60 cycles
to process one data block. The dataflow diagram and
mapping of the optimized Full-parallelism model are shown
in Figs. 11a and 11b, respectively.

In summary, without losing any performance, the
number of cores required by the online Full-parallelism
model is decreased by approximately 16 percent to 137.

5.2 Area Efficiency Comparison

Based on the optimization methods discussed above, the
number of cores utilized for each implementation is
optimized as follows:

1. Small: Optimization methods are not applicable.

2. OTOP: The SubBytes and ShiftRows processors in the
last round are fused into one processor, saving one
processor.

542

|
| |
: || Sub- || Mix- | pIMerge) I Sub- [1sub-| [Mergd -
i 4 4r>Core|| 4 | 4 |- kgore \
7 I T By
I $ub- [| Mix-I Mergd. [subd : hub-*MergLa Add |Output
| I |4 4 core[|\ 4 | L4 Cord| | Key
. T Y L 1
Inputl _'ladd & | Key Key ['.l]Add & Add &| | Keyl [| Key
[T snitt [7] sub [™] $che]:‘l_sm; - .II' shift]»| Subj [™] Sche
1Ty L q] T |
| [ub- || Mix- _>Merge| | Subl I Sub- | .[Mergej
|||4 4r>Core|| 4 I|4 Core
¥ l) | ¥ IA
| || Sub- Ly Mix- | I Sub- Sub-|_ _
K 4 N Il 4
|L__ _ _oneloopl, __ |

Fig. 11. Optimized Full-parallelism (a) dataflow diagram and (b) 137 cores
AsAP mapping.

Parallel-MixColumns: The SubBytes and ShiftRows
processors in the last round are fused into one
processor, saving one processor.
Parallel-SubBytes-MixColumns: The sequence of the
SubBytes and the ShiftRows stages is alternated,
which saves three processors. The SubBytes and
ShiftRows processors in the last round are fused into
one processor, saving one more processor.
Loop-unrolled Three Times: The SubBytes and
ShiftRows processors in the last round are fused into
one processor, saving one processor.

Loop-unrolled Nine Times: The SubBytes and Shif-
tRows processors in the same round are fused into
one processor, which saves 10 processors.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.3, MARCH 2013

7. No-merge-parallelism: Optimization methods are
not applicable.
8. Full-parallelism: The optimization has been dis-
cussed in detail in Section 5.1
5.2.1 Implementations with Online Key Expansion

The number of cores used for each optimized implementa-
tion is shown in Column 3 of Table 2. As expected, the
Small implementation uses the fewest cores due to its
simplicity. On the other hand, the Full-parallelism model
occupies 137 cores, exploiting the greatest range of types of
data parallelism. As a result, the Full-parallelism imple-
mentation requires 17x as many cores as the Small model,
while it also gains a 40x throughput increase.

As defined in (2), ThroughputPerCore is used to compare
the area efficiency between different models. The higher the
throughput, the better the performance. The fewer the cores
used, the smaller the area. As a result, a larger Throughput-
PerCore ratio shows a higher area efficiency. In Table 2,
Column 5 shows the ThroughputPerCore numbers of various
implementations normalized to the Parallel-MixColumns
model with online key expansion. The No-merge-paralle-
lism implementation has the highest throughput per core
rate, since it avoids any dedicated communication cores and
exploits as much parallelism as possible simultaneously.
The Full-parallelism and the Loop-unrolled models also
offer high throughput per unit of chip area. Although the
Small model has a relatively low throughput, it still offers a
good area efficiency due to its extremely small area.

5.2.2 Implementations with Offline Key Expansion

Besides the online key expansion AES algorithm, the
detailed results of AES with offline key expansion are also
shown in Columns 6, 7, and 8 of Table 2. The processors
used for key expansion process can be eliminated for the
AES implementations with offline key expansion, which
results in 29 percent improvement in average throughput
per area compared to the implementations with online
key expansion.

The throughput versus the number of cores of the eight
offline implementations is shown in Fig. 12. The through-
put is obtained when all processors are running at 1.2 GHz.
Besides the basic implementations discussed above, we
duplicate each implementation two and four times to scale
the throughput and area. On the targeted platform, for any
scaled implementation with a 4x duplication, two merge-
cores are required to gather the outputs for the subsequent
processor by assuming each processor could take only two
inputs.

TABLE 2
Throughput and the Number of Cores Required by Different Implementations

Online Key Expansion Offline Key Expansion
Implementation 1/Throughput [Total | Comm. Normalized Total | Comm. Normalized
(cycles/byte) Cores Cores Throughput/Core | Cores Cores Throughput/Core
Small 167.375 8 0 1.53 6 0 2.04
One-task one-processor 223.875 9 0 1.01 7 0 1.30
Parallel-Mixcolumns 136.250 15 3 1 12 2 1.25
Parallel-SubBytes-Mixcolumns 84.375 18 3 1.35 15 2 1.61
Loop-unrolled Three Times 68.625 23 0 1.29 15 0 1.99
Loop-unrolled Nine Times 16.625 50 0 2.46 30 0 4.10
No-merge-parallelism 9.500 59 0 3.65 39 0 5.52
Full-parallelism 4.375 137 30 3.41 107 20 4.37

Communication cores are used for routing only, including MergeCores and DispatchCores. All of the throughput per core numbers are normalized to

the Parallel-Mixcolumns model with online key expansion.

LIU AND BAAS: PARALLEL AES ENCRYPTION ENGINES FOR MANY-CORE PROCESSOR ARRAYS 543

10 %
4X -7
»*
ox 1P
= o L 3
S 10° o %
= 4, .7
g T
< . .2 V| = A= Small
= A -¢-0TOP
3 B
© 10 P ~ ‘| = - Para—Mix
|£ Fid s 5 Vof ‘| = B = Para—Sub-Mix
& - = P>= Loop-unrolled Three
:| =< = Loop-unrolled Nine
- © - No-merge
; - % - Full-para
10 ; ; ‘
5 10 50 100 500

Number of Cores

Fig. 12. Throughput versus the number of cores for the AES
implementations with offline key expansion. All processors are running
at 1.2 GHz. 1x, 2x and 4x represent the throughput when each
implementation is duplicated once, twice, and four times, respectively.

6 ENERGY EFFICIENCY ANALYSIS

In this section, the power consumption and energy
efficiency of the previously discussed eight implementa-
tions are investigated based on chip measurement results.

6.1 Power Numbers from Chip Measurements

Each core on AsAP can operate up to 1.2 GHz at 1.3 V [26].
The maximum frequency and power consumption of cores
on AsAP have a near-linear and quadratic dependence on
the supply voltage, as shown in Fig. 13. The average power
dissipation of one core and communication link at 1.3 V and
1.2 GHz is shown in Table 3. This supply voltage and clock
frequency are used in the power estimation and optimiza-
tion case study in the next section. The table also shows
during stalls (i.e., nonoperation while the clock is active),
the processors still consume a significant portion, approxi-
mately 50 percent, of its active power. The leakage power is
decreased to a negligible number when the clock is halted.

6.2 Power Estimation Methodology

On our targeted platform, each processor has four states:
active, NOP with active clock, stall with active clock, and

1200t 160
7 1000} 50
I
= —
> 800t 1402
g £
c ~
[} —
2 600f 130 &
9 (o)
[T o
% 400 120
=
200t 10
0 0

06 07 08 09 10 11 12 13
Supply Voltage (V)

Fig. 13. Maximum operation frequency and 100 percent active power
dissipation of one core versus supply voltage.

TABLE 3
Average Power Dissipation Measured at 1.3 V and 1.2 GHz [26]

Operation of ‘ 100% Active Stall ~ Leakage
(mW) (mW) (mW)
Processor 59.5 31.0 0.13
Nearest-neighbor comm. 5.9 NA ~0
Long-distance comm. one tile 12.1 NA ~0

standby with halted clock. The active mode means that the
processor is busy with instruction execution, while the NOP
with active clock represents the NOP operation in programs
due to data and control hazards. Either an empty input or a
full output FIFO is capable of halting each processor’s clock
and causing the processor to sleep in the standby with halted
clock mode. Finally, the stall with active clock is the transition
state between active and stall with halted clock. As a result, the
overall power dissipated by all of the processors utilized in
any implementation can be derived by

Prota = Z Prrei + Z Psia i
+ Z PLeak.i + Z PCmnnLh

where Prgrei, Pstatis Preaki, and Poomm: are the power
consumed by computation execution, stalling (including
NOP) with active clock, standby with halted clock (leakage
only), and communication activities of the ith processor,
respectively, and are estimated as follows:

(3)

PExe? = Q- PEmeAvg
Psiani = B - Pstatiavg (4)
PLea/c.i = (1 — QG — 5&) : PLeukAvga

where Pryeavg, Pstatiavg, and Preqravg are the average power
of processors while performing 100 percent execution,
stalling (including NOP with active clock and stall with active
clock) or halting (leakage only); o, 5;, and (1 — o — 3;) are
the percentages of execution, stall, and standby activities of
processor i, respectively. The communication power can be
calculated as follows:

PComm.i =" PCommNear + 67 : PCommLonga (‘5)

where 7; and 6, are the percentages of communication
between neighboring and long-distance processors, respec-
tively. Poommnear 1S the 100 percent active power consumed by
a link when it is used for communication between neighbor-
ing processors, while Pcommong is for long-distance [29].

The optimized Full-parallelism model with offline key
expansion is used as an example to illustrate the power
estimation methodology discussed above. For the
ith processor, its «;, §; and (1 — a; — 3;) are derived from
Columns 3, 4, 5, and 6 of Table 4. Furthermore, v; and 6; are
obtained from Columns 7 and 8. Note that the throughput
of the Full-parallelism implementation is 70 cycles per
block.

Additionally, if the implementation works under 1.3 V
and 1.2 GHz, the power consumed by execution, stalling,
standby, and communication activities of each processor are
listed in Columns 9, 10, 11, and 12. In Column 2, the number
of processors with the same operation are listed. Therefore,

544

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.3, MARCH 2013

TABLE 4
Operation Cycles and Power Consumption of Offline Key Expansion Full-Parallelism Implementation at 1.3 V and 1.2 GHz
Execution NOP with Stall with Stall with|Nearby Long-dist.| Execution Stall Leakage Comm.| '™ Core

Processor Number| Time AC? AC? HC® [Comm. Comm. Power Power Power Power Power

(cycles) (cycles) (cycles) (cycles) |(cycles) (cycles) (mW) (mW) (mW) (mW) (mW)
AddKeyShiftRows 10 37 0 18 15 8 8 31.47 7.97 0.03 2.05 40.13
SubByte-1 40 27 12 16 15 4 0 2297 12.40 0.03 0.34 36.59
MixColumn-4 36 63 7 0 0 2 2 53.59 3.10 0 0.51 57.20
FinalRoundAddKey 1 18 0 40 12 16 0 15.31 17.71 0.02 1.35 21.60
MergeCore 20 10 0 44 16 0 8 8.34 19.49 0.03 1.38 18.63
Total 3.35 x 10° 1.09 x 10° 212 814 [4.52 x 10°

2AC stands for active clock. " HC stands for halted clock.

the total power number can be derived by the following
equation and is listed in the last row:

PTotal:ZNi'PTotaln (6)

where N; is the number of processors with the ith kind of
operation, and Pryy, is the total power dissipated by the
ith processor. The total power consumption is 4.52 W with
a 221 Gbps throughput. The communication power
consumed by FIFOs and switches is 81.4 mW, which is
1.8 percent of the total power, while the leakage power is
only 212 mW and 0.05 percent of the total power
dissipation.

6.3 Energy Efficiency Comparison

The energy efficiency of a system describes how much
energy is consumed for processing a specific workload. This
metric influences a critical design parameter, battery
lifetime, made more important by the increasing popularity
of mobile devices. In our discussion, the energy efficiency is
defined as the energy dissipated for processing one bit by

EnergyPerBityq = Powerygq/Throughputy g
= (Poweryqq X Delay)/ freqyaq x 128,

(7)

where Poweryqq and fregyqq are the power dissipation and
frequency for one model at supply voltage Vdd. Delay
represents the number of clock cycles required for processing
one data block. Since power has a general relationship with

—A— Small
3| —O—o0TOP i
—/— Para-Mix
— =0 Para-Sub-Mix
5 2:5] =P— Loop-unrolled Three,]
=S —<}— Loop-unrolled Nine
£ ,| —O0—No-merge]
A —¥— Full-para ;
qh.)
a 1.5
>
o
e 1 L. 4
[0}
c
L
0.5 |
0.7 0.8 0.9 1 1.1 1.2 1.3

Supply Voltage (V)

Fig. 14. Energy consumed for processing one bit of data versus supply
voltage. All of the implementations shown in this figure are associated
with offline key expansion.

supply voltage and operation frequency as Power o Vdd® - f,
from (7), it is expected that EnergyPerBityqq o< Vdd>.

As shown in Fig. 14, for the eight offline implementa-
tions discussed above, the energy dissipated for processing
one bit is nearly quadratically dependent on supply voltage,
which is consistent with the theoretical analysis. Further-
more, the no-merge model consumes the least energy to
encrypt one bit compared with other implementations,
which is from 0.39 to 1.54 nJ/bit depending on the supply
voltage and throughput. On the other hand, the Parallel-
MixColumns implementation shows the lowest energy
efficiency, which consumes approximately 2x the energy
to encrypt a data block as the No-merge-parallelism model.

Fig. 15 shows that the AES implementations with online
key expansion consume 35 to 55 percent more energy to
process same workload, compared to their counterparts
with offline key expansion.

7 RELATED WORK AND COMPARISON

Since the AES ciphers presented in this work are imple-
mented on a programmable platform without any applica-
tion-specific hardware, we compare our work with other
software implementations on programmable processors,
and do not compare with implementations that contain or
are composed of specialized hardware (e.g., ASICs, ASIPs,
FPGAs, etc.). AES hardware implementations have been
reported to achieve througthuts per area up to tens and
even hundreds of Gbps/mm” [9] and energy efficiencies in
the range of several p]/bit—they are in an entirely different
class both in efficiencies achieved and in the cost and effort
required to design.

60%

50%

40% [

30%

20% [

Energy Overhead

10%r

0%

Fig. 15. Energy overhead of the AES implementations with online key
expansion compared with the ones with offline key expansion.

LIU AND BAAS: PARALLEL AES ENCRYPTION ENGINES FOR MANY-CORE PROCESSOR ARRAYS 545

TABLE 5
Comparison of AES Cipher Implementations on Different Software Platforms
Max Scaled Scaled Scaled Scaled
Platform Method Tech. Area Vdd Freq. Throughput Power® Throughput Area Throughput/Area Energy/bit
(nm) (mm®) (V) (MHz) (cycles/byte) (W) (Mbps) (mm?) (Mbps/mm?) (n]/bit)
Pentium 4 561 90 112 1.2 3600 16 57.5 2570 58.42 43.99 17.50
[15]
Athlon 64 3500 90 193 1.2 2200 10.6 44.5 2370 101 23.55 14.69
[15]
Core2 Duo Bitslice 65 111 1.3 2130 9.19 32.5 1854 111 16.70 17.53
E6400 [15]
Core2 Quad ? Bitslice 65 286/2 1.3 2400 9.32 26.25 2060 143 14.41 12.74
Q6600 (one core)[19] + SSSE3 =143
Core2 Quad ? Bitslice 45 214/4 115 2830 7.59 11.88 1307 112 11.71 21.16
Q9550 (one core)[19] + SSSE3 =535
Core i7 ? Bitslice 45 263/4 115 2668 6.92 16.25 1351 137 9.84 28.00
920 (one core)[19] + SSSE3 = 65.75
TI C6201 180 NA 1.8 200 14.25 NA 509 NA NA NA
[21]
GeForce 8800 T-box 90 484 12 575 NA 67.5 11800 252 46.82 4.48
GTX [22]
This Work"® No-merge 65 6.63 13 1210 9.5 1.58 1019 6.63 153.70 1.55
AsAP [26] offline key expan.

The original data are presented with different CMOS technologies and supply voltages. For comparison, area, performance, and power consumption
are scaled to 65 nm technology with a supply voltage of 1.3 V. Area are scaled by 1/(s*). Throughput and power numbers are scaled based on the
PTM simulation results shown in Fig. 16. *The typical power is not available, so 50 percent of thermal design power (TDP) is used based on the
benchmark data of a general-purpose processor [30]. ® The throughput results from [19] are for only one core, so the area and power numbers are
scaled proportionally. < All referenced designs do not consider key expansion; therefore, the AES implementations on AsAP associated with offline

key expansion are applied for a fair comparison.

A comprehensive comparison of the state-of-the-art
software AES implementations is summarized in Table 5.
In order to make a fair comparison, all of the referenced
data are scaled to 65 nm CMOS technology with a supply
voltage of 1.3 V. The area data are scaled to 65 nm with a
1/(s*) reduction, where s equals the ratio between the
minimum feature size of the old technology and 65 nm. The
delay and power data are scaled by SPICE simulation
results of a fanout-of-4 (FO4) inverter under different
technologies and supply voltages with predictive technol-
ogy model (PTM) [31] as shown in Fig. 16.

As discussed in Section 5.2, we could always map one of
our designs for multiple times to get a higher throughput
while possibly introducing a small overhead. Therefore, it is
less meaningful to compare the throughput solely of each
design. In this section, we use the metrics of throughout per
chip area (Gbps/mm®) and energy per workload bit (n] /bit)
to compare the area efficiency and energy efficiency of
various designs. As shown in Table 5, compared to the highly
optimized AES ciphers on CPUs with bitslice [15], the
proposed AES cipher on AsAP has 3.5-9.2 times higher
throughput per unit of chip area and consumes 9.5-11.3 times
less energy to encrypta fixed amount of data. Besides bitslice,
SIMD instructions are applied to improve the throughput
and efficiency of AES implementations on CPUs further [19].
Even so, our design on AsAP still has 10.7-15.6 times higher
throughput per unit of chip area and 8.2-18.1 times lower
energy per bit. The TI DSP C6201 is an 8-way VLIW
architecture for high performance DSP applications. The
referenced data shows that our design has 2 times higher
throughput. The area and power numbers of the TI DSP
C6201 are not available, but we believe that AsAP has
significantly higher throughput per unit of chip area and
energy efficiency due to a much smaller core size.

The AES implementation on GeForce 8,800 GTX achieves
the highest throughput in the referenced designs, due to its

~@- Delay from PTM simulation (ps)

Delay from general scaling rule (ps)

1.8V
80 Y
70
— 60
a8 %
50 “\12v
© s
3 40 1.3v
30
20 S . 0.9V
... 0.8V
10 i S PO .
0
180 90 65 45 32 22
Technology Size (nm)
(a) Delay
--@- Power from PTM simulation (mW)
Power from general scaling rule (mW)
1200 18V
&
1000
% 800
- 1.3v
g °% 3\ 115V
3
& 400
0V oy
200 3
L — S
0 L TRV R O Py

180 90 65 45 32 22
Technology Size (nm)

(b) Power

Fig. 16. Delay and power of a FO4 inverter based on SPICE simulation
using predictive technology model [32]; the general scaling rule assumes
a 1/s reduction in delay and a 1/(v?) reduction in power where s is the
technology scaling factor and v is the voltage scaling factor [33].

546
700 : T T T T - -
< Pentium 4 %
600l O Athlon 64
O Core 2 Duo E6400
V Core 2 Quad Q6600
500 | A Core 2 Quad Q9500
o :
3 g Core i7
GeForce 8800
= 400}
=3 00 X AsAP (this work)
S
[0
0. 300
b2
m
200+ >
1001
9% o«
0

0 20 40 60 80 100 120 140 160
Throughput Per Area (Mbps/mmz)

Fig. 17. Comparison of peak performance per area and workload per
unit energy of programmable processors. All numbers are scaled based
on the PTM simulation results shown in Fig. 16.

large chip area and the utilization of the T-Box method,
which works effectively for SIMD architectures with large
memory [22]. However, our design still shows a 3.3 times
higher throughput per unit of chip area and 2.9 times higher
energy efficiency.

Fig. 17 shows that the software AES implementation on
AsAP outperforms other software platforms in terms of
energy efficiency and performance per area.

8 CONCLUSION

We have presented 16 different AES cipher implementa-
tions with both online and offline key expansion on a
fine-grained many-core system. Each implementation
exploits different levels of data and task parallelism. The
smallest design requires only six processors, equaling
1.02 mm? in a 65 nm fine-grained many-core system. The
fastest design achieves a throughput of 4.375 cycles per
byte, which is 2.21 Gbps when the processors are running
at a frequency of 1.2 GHz. We also optimize the area of
each implementation by examining the workload of each
processor, which reduces the number of cores used as
much as 18 percent. The design on the fine-grained many-
core system achieves energy efficiencies approximately
2.9-18.1 times higher than other software platforms, and
performance per area on the order of 3.3-15.6 times
higher. Overall, the fine-grained many-core system has
been demonstrated to be a very promising platform for
software AES implementations.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from US
National Science Foundation (NSF) Grants 0430090,
0903549 and CAREER Award 0546907, SRC GRC Grants
1598 and 1971, CSR Grant 1659, UC Micro, ST Microelec-
tronics, Center of Circuit and System Solutions (C252), Intel,
and Intellasys. The authors also acknowledge the support of
the C2S2 Focus Center, one of six research centers funded
under the Focus Center Research Program (FCRP), a
Semiconductor Research Corporation entity.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.3, MARCH 2013

REFERENCES

[1] NIST, “Advanced Encryption Standard (AES),” http:/ /csrc.nist.-
gov /publications/fips/fips197 /fips-197.pdf, Nov. 2001.

[2] NIST, “Data Encryption Standard (DES),” http://csrc.nist.gov/
publications/fips/fips46-3/fips46-3.pdf, Oct. 1999.

[3] I Verbauwhede, P. Schaumont, and H. Kuo, “Design and
Performance Testing of a 2.29 gb/s Rijndael Processor,” IEEE
J. Solid-State Circuits, vol. 38, no. 3, pp. 569-572, Mar. 2003.

[4] D. Mukhopadhyay and D. RoyChowdhury, “An Efficient end to
End Design of Rijndael Cryptosystem in 0.18um CMOS,” Proc.
18th Int’l Conf. VLSI Design, pp. 405-410, Jan. 2005.

[5] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, fourth ed. Morgan Kaufmann, 2007.

[6] S.Morioka and A. Satoh, “A 10-gbps full-AES Crypto Design with
a Twisted BDD s-Box Architecture,” IEEE Trans. Very Large Scale
Integration Systems, vol. 12, no. 7, pp. 686-691, July 2004.

[7] J. Daemen and V. Rijmen, The Design of Rijndael. Springer-Verlag,
2002.

[8] A.Hodjat and I. Verbauwhede, “Area-Throughput Trade-Offs for
Fully Pipelined 30 to 70 Gbits/s AES Processors,” IEEE Trans.
Computers, vol. 55, no. 4, pp. 366-372, Apr. 2006.

[9] S.K.Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S.K.
Hsu, H. Kaul, M.A. Anders, and R.K. Krishnamurthy, “53 gbps
Native GF((2*)?) Composite-Field AES-Encrypt/Decrypt Accel-
erator for Content-Protection in 45 nm High-Performance Micro-
processors,” IEEE]. Solid-State Circuits, vol. 46, no. 4, pp. 767-776,
Apr. 2011.

[10] A. Hodjat and I. Verbauwhede, “A 21.54 gbits/s Fully
Pipelined AES Processor on FPGA,” Proc. IEEE 12th Ann.
Symp. Field-Programmable Custom Computing Machines, pp. 308-
309, Apr. 2004.

[11] C.J. Chang, C.-W. Huang, K.-H. Chang, Y.-C. Chen, and C.-C.
Hsieh, “High Throughput 32-Bit AES Implementation in FPGA,”
Proc. IEEE Asia Pacific Conf. Circuits and Systems, pp. 1806-1809,
Nov. 2008.

[12] J. Granado-Criado, M. Vega-Rodriguez, J. Sanchez-Perez, and]J.
Gomez-Pulido, “A New Methodology to Implement the AES
Algorithm Using Partial and Dynamic Reconfiguration,” Integra-
tion, the VLSI]., vol. 43, no. 1, pp. 72-80, 2010.

[13] S. Qu, G. Shou, Y. Hu, Z. Guo, and Z. Qian, “High
Throughput, Pipelined Implementation of AES on FPGA,” Proc.
Int’l Symp. Information Eng. and Electronic Commerce, pp. 542-545,
May 2009.

[14] “Int’l Technology Roadmap for Semiconductors, Design,” http://
www.itrs.net/Links/2009ITRS /2009Chapters_2009Tables/
2009_Design.pdf, 2009.

[15] M. Matsui and J. Nakajima, “On the Power of Bitslice Implemen-
tation on Intel Core 2 Processor,” Proc. Cryptographic Hardware and
Embedded Systems (CHES "07), pp. 121-134, 2007.

[16] E. Biham, “A Fast New DES Implementation in Software,”
Proc. Fourth Int'l Workshop Fast Software Encryption, pp. 260-272,
1997.

[17] D. Bernstein and P. Schwabe, “New AES Software Speed
Records,” Proc. INDOCRYPT '08: Ninth Int’l Conf. Cryptology in
India: Progress in Cryptology, pp. 322-336, 2008.

[18] “Supplemental Streaming SIMD Extensions 3,” http://en.
ikipedia.org/wiki/SSSE3, 2012.

[19] E. Kasper and P. Schwabe, “Faster and Timing-Attack Resistant
AES-GCM,” Proc. 11th Int’'l Workshop Cryptographic Hardware and
Embedded Systems (CHES '09), pp. 1-17, 2009.

[20] S. Gueron, “Intel Advanced Encryption Standard (AES) Instruc-
tions Set,” Jan. 2010.

[21] T. Wollinger, M. Wang, J. Cuajardo, and C. Paar, “How Well are
High-end DSPs Suited for the AES Algorithm?,” Proc. Third AES
Candidate Conf., pp. 94-105, Apr. 2000.

[22] S.A. Manavski, “CUDA Compatible GPU as an Efficient Hard-
ware Accelerator for AES Cryptography,” Proc. IEEE Int’l Conf.
Signal Processing and Comm., pp. 65-68, Nov. 2007.

[23] S. Borkar, “Thousand Core Chips: A Technology Perspective,”
Proc. 44th Ann. Design Automation Conf., pp. 746-749, 2007.

[24] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, T. Jacobson, G. Landge,
M. Meeuwsen, C. Watnik, P. Mejia, A. Tran,]. Webb, E. Work, Z.
Xiao, and B. Baas, “A 167-Processor 65 nm Computational
Platform with Per-Processor Dynamic Supply Voltage and
Dynamic Clock Frequency Scaling,” Proc. IEEE Symp. VLSI
Circuits, June 2008.

LIU AND BAAS: PARALLEL AES ENCRYPTION ENGINES FOR MANY-CORE PROCESSOR ARRAYS 547

[25] AT. Tran, D.N. Truong, and B.M. Baas, “A Reconfigurable
Source-Synchronous On-Chip Network for GALS Many-Core
Platforms,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 29, no. 6, pp. 897-910, June 2010.

[26] D.N. Truong, W.H. Cheng, T. Mohsenin, Z. Yu, A.T. Jacobson, G.
Landge, M.]. Meeuwsen, A.T. Tran, Z. Xiao, EW. Work, J.W.
Webb, P. Mejia, and B.M. Baas, “A 167-Processor Computational
Platform in 65 nm CMOS,” IEEE]. Solid-State Circuits, vol. 44, no. 4,
pp- 1130-1144, Apr. 2009.

[27] B. Baas, Z. Yu, M. Meeuwsen, O. Sattari, R. Apperson, E. Work, J.
Webb, M. Lai, T. Mohsenin, D. Truong, and J. Cheung, “AsAP:
A Fine-Grained Many-Core Platform for DSP Applications,” IEEE
Micro, vol. 27, no. 2, pp. 34-45, Mar. 2007.

[28] E-W. Work, “Algorithms and Software Tools for Mapping
Arbitrarily Connected Tasks onto an Asynchronous Array of
Simple Processors,” MS thesis, Univ. of California, Davis, Sept.
2007.

[29] Z. Yu and B.M. Baas, “A Low-Area Multi-Link Interconnect
Architecture for GALS Chip Multiprocessors,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, vol. 18, no. 5, pp. 750-762,
May 2010.

[30] M. Butler, “AMD Bulldozer Core—A New Approach to Multi-
threaded Compute Performance for Maximum Efficiency and
Throughput,” Proc. IEEE HotChips Symp. High-Performance Chips
(HotChips '10), Aug. 2010.

[31] A. Stillmaker, “Exploration of Technology Scaling of CMOS
Circuits from 180 nm to 22 nm Using PTM Models in HSPICE,”
technical report, UC Davis, June 2011.

[32] W. Zhao and Y. Cao, “New Generation of Predictive Technology
Model for Sub-45 nm Early Design Exploration,” IEEE Trans.
Electron Devices, vol. 53, no. 11, pp. 2816-2823, Nov. 2006.

[33] J.M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated
Circuits: A Design Perspective, second ed. Prentice-Hall, 2003.

Bin Liu received the BS degree in information
engineering from Shanghai Jiao Tong Univer-
sity, China, in 2007, and the MS degree in
electrical and computer engineering from the
University of California, Davis, in 2010, where he
is currently toward the PhD degree. His research
interests include high-performance multicore
processor architecture, variation-aware dynamic
and frequency scaling algorithms and circuits,
and parallel encryption engine implementations.
He received the Best Paper nomination at Asilomar 2011. He is a
student member of the IEEE.

Bevan M. Baas received the BS degree in
electronic engineering from California Polytech-
nic State University, San Luis Obispo, in 1987,
and the MS and PhD degrees in electrical
engineering from Stanford University, CA, in
1990 and 1999, respectively. From 1987 to
1989, he was with Hewlett-Packard, Cupertino,
CA, where he participated in the development of
the processor for a high-end minicomputer. In
1999, he joined Atheros Communications, Santa
Clara, CA as an early employee and served as a core member of the
team which developed the first IEEE 802.11a (54 Mbps, 5 GHz) Wi-Fi
wireless LAN solution. In 2003 he joined the Department of Electrical
and Computer Engineering at the University of California, Davis, where
he is now an associate professor. He leads projects in architecture,
hardware, software tools, and applications for VLSI computation with an
emphasis on DSP workloads. Recent projects include the 36-processor
Asynchronous Array of simple Processors (AsAP) chip, applications,
and tools; a second generation 167-processor chip; low density parity
check (LDPC) decoders; FFT processors; viterbi decoders; and H.264
video codecs. Dr. Baas was a US National Science Foundation fellow
from 1990 to 1993 and a NASA Graduate Student Researcher fellow
from 1993 to 1996. He was a recipient of the US National Science
Foundation CAREER Award in 2006 and the Most Promising Engineer/
Scientist Award by AISES in 2006. He received the Best Paper Award at
ICCD 2011, and Best Paper nominations at Asilomar 2011 and BioCAS
2010. During the summer of 2006 he was a visiting professor in Intel’s
Circuit Research Lab. He is an associate editor for the IEEE Journal of
Solid-State Circuits and IEEE Micro guest editor in 2012. He has been
the program committee cochair of HotChips in 2011, and program
committee member of Hotchips in 2009-2010, of ICCD in 2004—2005
and 2007-2009, of ASYNC in 2010, and of the ISSCC SRP Forum in
2012. He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

