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Achieving High-Performance On-Chip Networks
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Abstract— On-chip routers typically have buffers dedicated
to their input or output ports for temporarily storing packets
in case contention occurs on output physical channels. Buffers,
unfortunately, consume significant portions of router area and
power budgets. While running a traffic trace, however, not all
input ports of routers have incoming packets needed to be
transferred simultaneously. Therefore, a large number of buffer
queues in the network are empty and other queues are mostly
busy. This observation motivates us to design router architecture
with shared queues (RoShaQ), router architecture that maxi-
mizes buffer utilization by allowing the sharing multiple buffer
queues among input ports. Sharing queues, in fact, makes using
buffers more efficient hence is able to achieve higher throughput
when the network load becomes heavy. On the other side, at
light traffic load, our router achieves low latency by allowing
packets to effectively bypass these shared queues. Experimental
results on a 65-nm CMOS standard-cell process show that
over synthetic traffics RoShaQ has 17% less latency and 18%
higher saturation throughput than a typical virtualchannel (VC)
router. Because of its higher performance, RoShaQ consumes
9% less energy per transferred packet than VC router given the
same buffer space capacity. Over real multitask applications and
E3S embedded benchmarks using near-optimal NMAP mapping
algorithm, RoShaQ has 32% lower latency than VC router
and targeting the same application throughput with 30% lower
energy per packet.

Index Terms— Application mapping, networks on-chip, router
architecture, shared-buffer, synthetic traffics.

I. INTRODUCTION

SYSTEMS on chip toward multicore design for taking
advantage of technology scaling and also for speeding

up system performance through increased parallelism in the
fact that power wall limits the increase of the clock frequency
[1]–[3]. Networks on chip are shown to be feasible and
easy to scale for supporting a large number of process-
ing elements rather than point-to-point interconnect wires or
shared buses [4]. A multicore system in which processors
communicate together through a 2-D mesh network of routers
is shown in Fig. 1. Each router has five ports that connect to
four neighboring routers and its local processor. A network
interface (NI) locates between a processor and its router for
transforming processor messages into packets to be transferred
on the network and vice versa.
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Fig. 1. Chip multiprocessors interconnected by a network of VC routers.
NI: network interface. R: router.

In a typical router, each input port has an input buffer for
temporarily storing the packets in case that output channel is
busy. This buffer can be a single queue as in a wormhole (WH)
router or multiple queues in parallel as in virtual channel (VC)
routers [5]. These buffers, in fact, consume significant portions
of area and power that can be more than 60% of the whole
router [6]. Bufferless routers remove buffers from the router
hence save much area [7], [8]; however, their performance
becomes poor in case packet injection rates are high. Because
of having no buffers, previous router designs proposed to
drop and retransmit packets or to deflect them once network
contention occurs that can consume even higher energy per
packet than a router with buffers [9].

Another approach is by sharing buffer queues that allows
utilizing idle buffers [10] or emulating an output buffer router
to obtain higher throughput [11]. Our work differs from
those router designs by allowing input packets at input ports
to bypass shared queues hence, it achieves lower zero-load
latency. In addition, the proposed router architecture has sim-
ple control circuitry making it dissipate less packet energy than
VC routers and achieving higher throughput by letting queues
share workloads when the network load becomes heavy.

Other techniques, such as dynamic voltage and frequency
scaling [12]–[14] and globally asynchronous locally synchro-
nous [15]–[17] can be used for reducing router power and
energy while having only small effect on network perfor-
mance. These techniques, however, are orthogonal to our work
here which only focuses on architectural designs of on-chip
routers. These techniques can be applied to this paper for
further reducing the network power consumption.
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Fig. 2. Typical router architectures and their pipelines. (a) Four-stage WH router. (b) Five-stage VC routers. QW: queue write. LRC: lookahead route
computation. VCA: virtual channel allocation. SA: switch allocation. ST: switch traversal. LT: output link traversal. (X): pipeline bubble or stall. P: number
of router ports.

The main contributions of this paper are:

1) exploring and analyzing shared-queue router architec-
tures that maximize buffer utilization for boosting net-
work throughput;

2) proposing a router architecture which allows input pack-
ets to bypass shared queues for reducing zero-load
packet latency;

3) evaluating and comparing the proposed router with VC
routers in terms of latency, throughput, power, area,
and packet energy over both synthetic and embedded
application traffic patterns.

This paper extends the previous version published in
the International Conference on Computer Design (ICCD
2011) [18] by providing more analysis on the router properties,
such as deadlock and livelock freedom as well as the sup-
ported routing algorithms and network topologies. We also add
more experimental results and comparison on both synthetic
traffic patterns and real application traces with the perfor-
mance, power, and energy data are based on cycle-accurate
simulations. This paper is organized as follows. Section II
provides the background on router designs and motivation of
this paper. Section III presents our router architecture with
all its components in details. The experimental results are
shown in Section IV with analysis and comparison against VC
routers. Section V reviews related work and, finally, Section VI
concludes this paper.

II. BACKGROUND AND MOTIVATION

We first review conventional on-chip router architectures
with brief evaluation of their performance, and then derive
the motivation of our new router design using shared queues.

A. Typical Router Architectures

A typical WH router with four pipeline stages is shown in
Fig. 2(a). This figure shows details of only one input port for

simple view. The traveling process of a flit through a WH
router is described as follows.

1) At first, when a flit arrives at an input port, it is written
to the corresponding buffer queue. This step is called
buffer write or queue write (QW).

2) Assuming without other packets in the front of the
queue, the packet starts deciding the output port for
its next router (based on the destination information
contained in its head flit) instead of for the current router
(known as lookahead routing computation (LRC) [19]).
Simultaneously, it arbitrates for its output port at the
current router because there may be multiple packets
from different input queues having the same output port.
This step is called switch allocation (SA).1

3) If it wins the output SA, it will traverse across the
crossbar. This step is called crossbar traversal or switch
traversal (ST).

4) After that, it then traverses on the output link toward
next router. This step is called link traversal (LT).

Both LRC and SA are done by the head flit of each packet;
body and tail flits will follow the same route that is already
reserved by the head flit, except the tail flit should release the
reserved resources once it leaves the queue.

In a WH router, if a packet at the head of a queue is blocked
(because it is not granted by the SA or the corresponding input
queue of the downstream router is full), all packets behind it
also stall. This head of line blocking problem can be solved
by a VC router [5] as shown in Fig. 2(b). In this VC router
design, an input buffer has multiple queues in parallel, each
queue is called a VC, that allows packets from different queues
to bypass each other to advance to the crossbar stage instead of
being blocked by a packet at the head of the queue (however,

1With LRC, a router sends both output port information along with the
packet to its downstream router. Therefore, the downstream router knows the
output port of the packet at the time it receives the packet; hence, it can do
both LRC (for next router) and SA at the same cycle.
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Fig. 3. Average packet latency simulated on a 8 × 8 2-D-mesh network
over uniform random traffic pattern.

Fig. 4. Power and area costs of circuit components in a VC router with two
VCs × eight flits per input port. (a) Power breakdown. (b) Area breakdown.

all queues at one input port can be still blocked if all of them
do not win SA or if all corresponding output VC queues are
full).

Because now an input port has multiple VC queues, each
packet has to choose a VC of its next router’s input port before
arbitrating for output switch. Granting an output VC for a
packet is given by a virtual-channel allocator (VCA); and this
VC allocation is performed in parallel with the LRC; hence the
router now has five stages as shown in Fig. 2(b). Therefore,
although a VC router achieves higher saturation throughput
than a WH router while having the same number of buffer
entries per input port, it also has higher zero-load latency due
to deeper pipeline.

The latency-throughput curves of a 8 × 8 2-D mesh network
over uniform random traffic pattern with packet length of
four flits are shown in Fig. 3. As shown in this figure, a
VC router with two queues per input port (each queue has
eight entries) has 11% throughput gain compared with a WH
router with 16 entries per queue; but its zero-load latency is
36 cycles which is also 20% higher than that of a WH router
(30 cycles).

B. Router Cost and Opportunities for Improving Performance

We synthesized a 32-bit datapath 2 × 8 VC router using
Synopsys Design Compiler with ultra optimization settings
targeting a 65-nm CMOS standard cell process. The envi-
ronmental parameters for the dc compiler are set at 1.2 V
and 25 °C with clock frequency of 1 GHz. The router is
hierarchically synthesized hence we could obtain the area and
power data for all its circuit components. The router area and
power breakdowns with the assumed switching activity factor

Fig. 5. Crossbar designs for a VC router. (a) P: P crossbar with V buffer
queues of an input port are multiplexed. (b) PV: P crossbar that connects
directly to all input buffer queues. P: the number of router ports. V: the
number of queues per input port.

of 25% are shown in Fig. 4. As shown, buffer queues occupy
54% area and consume 70% power of the whole router; while
crossbar consumes only 8%. If we use a higher radix crossbar,
we could achieve higher throughput with a cost overhead still
small compared with the cost of buffers as will be shown in
Section IV.

Two crossbar designs for VC routers are shown in Fig. 5.
The first one is for the traditional VC router where the input
queues of each input port are multiplexed before being con-
nected to the crossbar. The second one allows all input queues
to connect directly a full input degree crossbar. With this full-
degree crossbar, after allocated an output VC, a packet from
a queue can directly arbitrate for its output port then would
advance to next router if it wins; while with multiplexed-
input crossbar, queues of the same input port have to compete
together first before arbitrating for an output port. Clearly,
the probability of winning both arbitration stages is less than
winning only one arbitrator; hence, a VC router with full-
crossbar (full-Xbar) achieves higher throughput than a typical
VC router given the same number of VCs and buffer entries
as also shown in Fig. 3.

We also observe that, although the buffers are costly they
are not well utilized. When an output channel of an upstream
router does not sending packets, the input port of its down-
stream router is also idle while other input ports may be busy.
This situation frequently happens for nonrandom deterministic
traffic patterns after we mapped multitask applications onto a
many-core platform. Under these traffic patterns, at run time,
not all input ports of the routers have packets for processing.
At many routers in the platform, a few their input ports receive
packets all the time while others are often empty. Clearly, we
wish at this situation, idle queues would share their storage
capacity with busy queues of other input ports. This workload
sharing would allow more packets to advance rather than being
stalled at upstream routers hence, should improve the network
throughput. This motivates us to design a router that can
maximize the utilization of these high-cost buffer queues by
sharing them in the run-time rather than by firmly dedicating
them to each input port.

The proposed router should achieve the best performance
in both cases: when the traffic load becomes heavy, the router
allows utilizing shared buffers reducing packet stall times at
input ports hence it can achieve higher throughput than a full-
Xbar VC router; while at low-load packets can bypass shared
queues hence has low latency similar to a WH router.
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Fig. 6. Development of our ideas for sharing buffer queues in a router. (a) Shares all queues. (b) Each input port has one queue and shares the remaining
queues. (c) Allows input packets to bypass shared queues. P: the number of router ports. V: the number of VC queues per input port in a VC router. N: the
number of shared queues.

III. ROSHAQ: ROUTER ARCHITECTURE WITH

SHARED QUEUES

A. Initial Idea

For maximizing queue utilization, input ports of a router can
share all queues as shown in Fig. 6(a). With this architecture,
incoming packets from an input port can be written to any
shared queue. However, this architecture has critical draw-
backs explained as follows. Because there is no buffer at input
ports, when a packet from a upstream router needs to be for-
warded, it has to send a request to downstream router and wait
to receive the grant before sending data. Therefore, the shared
queue arbitrator for each router is highly complicated because
it must handle many external requests from multiple shared
queues of all neighboring routers. In addition, the round-trip
interrouter request/grant delay can take several cycles plus the
intrarouter pipeline making zero-load network latency very
high [20].

To alleviate this latency, each input port is dedicated one
buffer queue and shares all remaining queues as shown in
Fig. 6(b). With this design, as each output port connecting to
an input queue of downstream router, shared queues arbitrate
for an output port that is similar to a WH router. Input queues
of each router also compete together to get grants to the
shared queues. All request/grant signals are intrarouter signals,
hence reduces latency and also allocation complexity. With
this architecture, however, packets from input queues must be
buffered into the shared queues again before being sent to
output ports. This is actually unnecessary in case the network
load becomes low that unlikely causes much contention at
output channels.

From this observation, we move on one more step by
allowing input queues to bypass the shared queues as shown
in Fig. 6(c). With this design, a packet from an input queue
simultaneously arbitrates for both shared queues and an output
port; if it wins the output port, it would be forwarded to
the downstream router at the next cycle. Otherwise, that
means having congestion at the corresponding output port,
it can be buffered to the shared queues. Intuitively, at low
load, the network would have low latency because packets
seem to frequently bypass shared queues. While at heavy
load, shared queues are used to temporarily store packets
hence reducing their stall times at input ports that would
improve the network throughput. In the next section, we will

Fig. 7. RoShaQ router microarchitecture. SQA: shared-queue allocator. OPA:
output port allocator. SQ Rx state: shared queue receiving/writing state. SQ Tx
state: shared queue transmitting/reading state. P: the number of router ports.
N: the number of shared queues.

show in detail circuit components that realize this router
architecture.

B. RoShaQ Architecture

RoShaQ, a router architecture with shared queues based on
the idea of Fig. 6(c), is shown in Fig. 7. When an input port
receives a packet, it calculates its output port for the next
router (lookahead routing), at the same time it arbitrates for
both its decided output port and shared queues. If it receives a
grant from the output port allocators (OPAs), it will advance
to its output port in the next cycle. Otherwise, if it receives a
grant to a shared queue, it will be written to that shared queue
at the next cycle. In case that it receives both grants, it will
prioritize to advance to the output port.

Shared-queues allocator (SQA) receives requests from all
input queues and grants the permission to their packets for
accessing nonfull shared queues. Packets from input queues
are allowed to write to a share queue only if: 1) the shared
queue is empty or 2) the shared queue is containing packets
having the same output port as the requesting packet. This
shared queue writing policy guarantees deadlock-free for the
network as will be explained in Section III-E.

The OPA receives requests from both input queues and
shared queues. Both SQA and OPA grant these requests in
round-robin manner to guarantee fairness and also to avoid
starvation and livelock. Input queue, output port, and shared-
queue states maintain the status (idle, wait, or busy) of all
queues and output ports, and incorporate with SQA and OPA
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Fig. 8. RoShaQ pipeline characteristics. (a) Four stages at light load.
(b) Seven stages at heavy load. QW: queue write. LRC: lookahead routing
computation. OPA: output port allocation. SQA: shared queue allocation.
OST: output switch/crossbar traversal. LT: output link traversal. SQST: shared-
queue switch/crossbar traversal. SQW: shared-queue write. (X): pipeline
bubble or stall.

to control the overall operation of the router. Only input queues
of RoShaQ have routing computation logic because packets in
the shared queues were written from input queues hence they
already have their output port information. RoShaQ has the
same I/O interface as a typical router that means they have
the same number of I/O channels with flit-level flow control
and credit-based backpressure management [21].

C. RoShaQ Datapath Pipeline

After a packet is written into an input queue in the first
cycle, in the second cycle it simultaneously performs three
operations: LRC, OPA, and SQA. At low network load, there
is a high chance the packet to win the OPA due to low
congestion at its desired output port; hence it is granted to
traverse through the output crossbar and output link toward
next router. Therefore, it incurs four stages including link
traversal as shown in Fig. 8(a) that is similar to a WH router
pipeline.

When network load becomes heavy, the packet at an input
queue may fail to get granted from OPA, but it can get a
grant from SQA and is allowed to traverse the shared-queue
crossbar and write to the granted shared queue in next cycles.
After that, it arbitrates for the output port again and would
traverse across the output crossbar and output channel toward
the next router at next cycles if it is granted by the OPA at this
time. Thus, in this situation, it incurs seven interrouter stages
as shown in Fig. 8(b). This larger number of traversing stages,
in fact, allows the router to use shared queues for reducing stall
times of packets at input queues, hence improves throughput
at heavy network load.

In both cases, body and tail flits of a packet traverse through
the router in the same way as its head flit, except they do not
need to arbitrate for the resources (output ports and shared
queues) that are already reserved by the head flit. The tail flit
should also release these reserved resources once it leaves the
queue.

Fig. 9. Output VCA in a VC router. P: the number of router ports. V: the
number of virtual channels per input port.

Fig. 10. Output switch allocator (SA) in (a) VC router with crossbar inputs
multiplexed and (b) VC router with full crossbar. P: the number of router
ports. V: the number of virtual channels per input port.

D. Design of Allocators

This section describes the design of allocators for VC and
RoShaQ routers. Let P and V be the number of router ports
and number of VC queues per port in a VC router, respectively.
Its VCA circuit is shown in Fig. 9 that has two stages of
arbiters [22]. Each arbiter in the first stage chooses which
output VC for a specific input VC; while an arbiter in the
second stage chooses an input VC among several input VCs
that are granted to the same output VC at the first stage. In
total, this VCA consists of 2PV (PV :1) arbiters.

The SA circuit designs for a typical VC router and for a VC
router with full crossbar are shown in Fig. 10. Because input
queues in the typical VC router are multiplexed before being
connected to the crossbar, its SA has two stages as shown
in Fig. 10(a). The first stage decides which input VC wins
the input crossbar port; while the second stage chooses one
among these winning input VCs for output ports. This SA
consists of P (V :1) and P (P:1) arbiters. For a full-Xbar VC
router, all input VCs directly arbitrate for output ports; hence
its SA consists of P (PV :1) arbiters, each for one output port
as shown in Fig. 10(b).
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Fig. 11. OPA and SQA structures in a RoShaQ router. P: the number of
router ports. N: the number of shared queues.

The OPA and SQA of RoShaQ router are shown in Fig. 11.
The OPA includes P (P+N :1) arbiters; each chooses one
queue among input queues and shared queues that have the
same output ports, where N is number of shared queues. For
the total number of buffer queues to be identical to that of
a VC router (PV queues in total), N is equal to P(V − 1)
because each input port has one queue. Therefore, the OPA is
exactly the same as the SA of a full-Xbar VC router. The SQA
includes two stages to allocate P input queues to N shared
queues; hence its circuit is the same as the SA of a VC router.
This SQA is much low cost than a VCA; therefore, OPA and
SQA of RoShaQ consume less area and lower power than
VCA and SA of both typical and full-Xbar VC routers as will
be shown in next section.

E. RoShaQ’s Properties

1) A network of RoShaQ routers is deadlock-free. At
light load, packets normally bypass shared queues, so
RoShaQ acts as a WH router hence the network is
deadlock-free [23]. At heavy load, if a packet cannot
win the output port, it is allowed to write only to a
shared queue which is empty or contains packets having
the same output port. Clearly, in this case RoShaQ acts
as an output-buffered router which is also shown to be
deadlock-free [24].

2) A network of RoShaQ routers is livelock-free. Because
both OPA and SQA use round-robin arbiters, each packet
always has a chance to advance to the next router closer
to its destination; hence the network is also free from
livelock.

3) RoShaQ supports any adaptive routing algorithm. The
output port for each packet is only computed at its input
queue, not at shared queues. Therefore, any adaptive
routing algorithm which works for WH routers also
works for RoShaQ.

4) RoShaQ can be used for any network topology. If we
hide all design details inside RoShaQ, we would see
RoShaQ only has one buffer queue at each input port
similar to a WH router. Therefore, we can change the
number of RoShaQ’s I/O ports to make it compatible
with any network topology known in the literature along
with an appropriate routing algorithm.

TABLE I

ROUTER CONFIGURATION USED IN EXPERIMENTS. EACH ROUTER HAS

80 BUFFER ENTRIES IN TOTAL

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Six router configurations used in our experiments are listed
in Table I. VC2 and VC4 have two and four VC queues per
input port, respectively. For fair evaluation, each queue of VC2
has eight flit-entries while each queue of VC4 has 4 flit-entries.
VC2-fullXbar and VC4-fullXbar have the same buffer config-
urations as VC2 and VC4 except their crossbars are in full-
degree (10:5 crossbar for VC2-fullXbar and 20:5 crossbar for
VC4-fullXbar). For comparing with VC2 and VC2-fullXbar
where each has total of ten queues, RoShaQ5 that has five
shared queues is used. Similarly, for comparing with VC4
and VC4-fullXbar where each has total of 20 queues, we use
RoShaQ15 that has 15 shared queues. All routers have the
same 80 flit buffer entries in total.

For evaluating performance of VC, full-Xbar VC and
RoShaQ routers, we developed three cycle-accurate simula-
tors, each for one router model [25]. Experiments are per-
formed over eight common synthetic traffic patterns, seven
real-world multitask applications and three E3S embedded
benchmarks that have large number of tasks.

B. Latency and Throughput

1) Synthetic Traffic Patterns: We conducted the experiments
over eight common synthetic traffic patterns which cover
a wide range of interconnect patterns on 2-D mesh net-
works [21]. For uniform random traffic, each source processor
chooses its destination randomly with uniform distribution in
packet-by-packet basic. For other patterns, destination of each
source node is decided based on the location of the source as
follows:2

1) bit-complement: from [x , y] to [x̄, ȳ];
2) transpose: from [x , y] to [y, x];
3) bit-shuffle: from [x2x1x0, y2y1y0] to [x1x0 y2, y1y0x2];
4) tornado: from [x , y] to [(x+3)%8, (y+3)%8];
5) bit-rotate: from [x2x1x0, y2 y1y0] to [x0x2x1, y0y2 y1];
6) neighbor: destination is randomly chosen among four

nearest neighbors of the source on a probability of 80%,
and is randomly among other processors on a probability
of 20%;

7) regional: destination is randomly chosen among proces-
sors with distances to the source of at most three on

2Here x and y are values of horizontal and vertical coordination of a node
in a 8 × 8 mesh; x2x1x0 and y2 y1 y0 are binary representatives of x and y,
respectively.
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TABLE II

ZERO-LOAD LATENCY AND SATURATION THROUGHPUT OF ROUTERS OVER EIGHT DIFFERENT SYNTHETIC TRAFFIC PATTERNS

Fig. 12. Latency-throughput curves over uniform random traffic.

a probability of 70%, and is randomly among other
processors on a probability of 30%.

Performance of each router is evaluated by running simu-
lations of 100 000 cycles with 20 000 warmup cycles on a
8 × 8 2-D mesh network where each network node consists
of a processor and a router. Processors inject and consume
packets into and out off the network, and each packet length
is four 32-bit flits. As mentioned in Section III-E, we can
employ any routing algorithm proposed in the literature [26]
for routers; however, for comparing the performance purely
achieved by different architectural designs, we use the same
XY dimension-ordered routing algorithm for all routers in
this paper. Latency of a packet is measured from the time
its head flit is generated by the source to the time its tail flit is
consumed by the destination. Average network latency is the
mean of latency of all packets in the network.

The average packet latency of networks corresponding to six
router configurations over uniform random traffic is shown in
Fig. 12. As shown, even having the same number of buffer
entries, VC4 has higher saturation throughput than VC2 that
is identical with results reported by Peh et al. [22].3 Increasing
the number of crossbar input ports improves throughput signif-
icantly. As shown, VC2-fullXbar achieves saturation through-
put even higher than VC4. VC4-fullXbar has 15% saturation
throughput higher VC4 (0.39 flits/cycle versus 0.35 flits/cycle).

3Saturation throughput is defined as the injection rate at which network
latency reaches about three times of the zero-load latency [27]. In this paper,
the saturation throughput is assumed when network latency is 100 cycles.

RoShaQ5 achieves a saturation throughput of 0.37 flits/cycle
which is 3% higher than VC2-fullXbar. RoShaQ15 achieves
0.40 flits/cycle throughput that is 3% higher VC4-fullXbar and
14% higher than VC4. More importantly, both RoShaQ5 and
RoShaQ15 have zero-load latency of 30 cycles similar to a
WH router that is 17% lower than all VC routers with and
without a full-degree crossbar (36 cycles). From these results,
for simplicity, from now on we only provide the comparison
results among RoShaQ15, VC4 and VC4-fullXbar in the rest
of this paper. Comparison among RoShaQ5, VC2 and VC2-
fullXbar gives a similar conclusion.

We run simulations for all eight synthetic traffic patterns;
zero-load latency and throughput of routers are listed in
Table II. As shown, RoShaQ outperforms both VC routers
in seven traffic patterns, except in transpose pattern. For
transpose traffic, routers on the same row send packets to the
same output direction; therefore, at saturation, throughput is
limited by the output channel of the last router on that row.
Therefore all routers have the same saturation throughput of
0.17 flits/cycle.

Especially, for neighbor and regional patterns, because des-
tination of each packet is quite close to its source, the network
incurs less congestion. Therefore, packets in RoShaQ routers
often bypass shared queues to achieve both lower latency and
higher throughput than both VC routers. On average over
all eight traffic patterns, RoShaQ has 18% and 5% higher
throughput than VC and VC-fullXbar routers, respectively,
with 17% lower zero-load latency.

2) Real Application Communication Traffic: Many DSP and
embedded applications can be represented by a communication
task graph where each task can be mapped onto one or
multiple processing units (processors, accelerators, or memory
modules) [28]. The task graph of a video object plan decoder
(VOPD) application [29] which also shows the intertask com-
munication bandwidth requirements is shown in Fig. 13(a).

For generating the experimental traffic of this application,
we adopted the method proposed by Hu et al. [30] and
Lan et al. [31]. In this method, we transform the required
bandwidth on each intertask connection into the injection rate
of the corresponding sending task. A task which requires
large sending bandwidth also has large injection rate, and
vice versa. Let bwi and bw j be the required bandwidth of
tasks Ti and Tj to other tasks in the communication graph,
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Fig. 13. Communication graph of the VOPD application and the corresponding injection rate of each processor used in our simulation. (a) Required intertask
bandwidths in Mb/s. (b) Corresponding injection rates of processors in flits per cycle.

TABLE III

SEVEN EMBEDDED APPLICATIONS AND THREE E3S BENCHMARKS USED

IN OUR EXPERIMENTS

then injection rates of tasks Ti and Tj on the corresponding
links follow the equation f iri/ f ir j = bwi/bw j . There-
fore, if given an injection rate of any task, we can easily
calculate injection rates for all other tasks on all links in
the graph.

An example for setting the injection rates of tasks which are
corresponding to the communication graph of VOPD applica-
tion are shown in Fig. 13(a) and (b). In this example, if we
choose injection rate for task T0 to task T1 is 0.07 flits/cycle,
then injection rate for task T1 to task T2 is 0.07 × 362 / 70 =
0.362 flits/cycle. Similarly, we can derive injection rates for
all tasks in the application graph as shown in the figure.

In this paper, we use communication graphs of seven real-
world applications and three E3S embedded benchmarks [38]
which have large numbers of tasks for our experiments. Appli-
cation names and their number of tasks are shown in Table III.
Depending on the number of application tasks, we decide
the network size correspondingly. For example, an application
with 16 tasks is mapped on a 4 × 4 network, an application
with 24 tasks is mapped on a 6 × 4 network, and so on
which are also shown in Table III. After network size for each
application is decided, each task is mapped to one processor in
the network using both random and near-optimal NMAP-based
mapping techniques. In this section, we present the results with
random mapping; results with NMAP mapping are analyzed in
Section IV-D.

Fig. 14. Normalized latency of real applications with task-to-core random
mapping.

For evaluation of these embedded applications, we fix the
injection rates of all tasks, then application running latency is
measured after a total of one million packets are successfully
transferred. For each application, we assume that the most
busy task spends 50% times for execution and 50% times
for communication which means it aggressively executes one
cycle and then sends one output to the downstream task in
next cycle, repeatedly. With this assumption, the most busy
task in each application has an injection rate of 0.5; the
injection rates of other tasks are computed according to the
their required bandwidth given in the graph using the method
described above.

For clear comparison, we normalize the latency of each
application running on different routers to the latency when
running on the typical VC router which are shown in
Fig. 14. As shown, RoShaQ has lower latency than both
VC routers in all ten applications. On average, RoShaQ has
26% and 12% less latency than VC and VC-fullXbar routers,
respectively.

C. Power, Area, and Energy

Three router models (VC4, VC4-fullXbar, and RoShaQ15)
in Verilog RTL are synthesized targeting a 65 nm low-
power CMOS standard-cell process using synopsis design
compiler. Buffer queues are built from flip-flop registers;
while each crossbar is a set of multiple multiplexers. Envi-
ronmental parameters for the compiler are set at 1.2 V,
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Fig. 15. Synthesis results. (a) Power. (b) Area.

TABLE IV

ROUTER POWER AT 1.2 V, 1 GHZ AND AREA COMPARISON

25 °C. We let the synthesis tool do all optimization steps
and automatically pick standard cells in the library in order
for all routers to meet 1 GHz clock frequency in the
worst case.

For accurate evaluation and comparison, postlayout data
are highly desired. Unfortunately, our limited EDA software
infrastructure prevents us to have post-layout data for compar-
ison. However, for fair comparison using synthesis data, we
compare router designs in a relative basic by normalizing all
data to the VC router data. The comparison fairness is achieved
by conducting the experiments on large number of different
synthetic traffic patterns and real multitask application traces
based on cycle-accurate simulations.

The 100%-active synthesis power and area of three routers
are shown in Fig. 15. Other circuits in this figure include
state of queues, routing computation, and credit calculating
circuitry. For considering the pipelined architecture of routers,
the reported power and area of all components are also
included in their output pipeline registers. As seen in this
figure, in the typical router VC4, buffers are expensive that
occupy 54% area and consume 70% power of the whole
router; while its crossbar only occupies 8%. VC4-fullXbar
increases number of crossbar input ports that makes its router
7% larger area and 19% larger power than VC4 as listed in
Table IV.

Because RoShaQ15 has two crossbars, its crossbars are
56% larger and consume 35% higher power than the VC4-
fullXbar’s crossbar. However, due to the simplicity of its
allocators’ circuits and fewer routing computation blocks (5 for
5 input queues compared with 20 for 20 VCs in VC routers), 4

the total router area and power of RoShaQ15 is 3% less than

4Because LRC routing is done at the same cycle with SA or VCA, each input
queue must be equipped with a routing circuit block. VC routers have multiple
buffer queues per input port; therefore, they have larger routing circuitry area
and power than RoShaQ.

Fig. 16. Normalized energy per packet over synthetic traffic patterns.

VC4-fullXbar router. Compared with VC4, RoShaQ is 4% and
16% larger power and area.

Another metric to compare among router designs is the
energy that routers in the network dissipate for transferring
data packets over a traffic pattern [39]. The power consumption
of a circuit is formulated by P = αCV 2 f where α is the
circuit switching activity factor, C is the circuit capacitance
(which is proportional to the circuit area), V is the supply
voltage and f is the clock frequency. Therefore, at the same
supply voltage and clock frequency a circuit with low activity
would consume low power even it has large capacitance
(which causes high 100%-active power). Let Pi be 100%-
active synthesis power of component i (queues, crossbar,
routing computation, arbiters, states, and credit calculation)
of a router; let nri be the number of cycles in which the
component i of router r is active in the whole simulation time,
then the total energy router r consumes is

Er =
∑

all i

nri Pi Tclk (1)

where Tclk is the clock period.
Therefore, the average packet energy spent on each router

in the network is given by the following:

E p = 1

Np Nr

∑

all r

Er = Tclk

Np Nr

∑

all r

∑

all i

nri Pi (2)

where Nr is the number of routers in the network and Np is
the total number of consumed packets in the whole simulation
time.

For each synthetic traffic pattern, we choose the injection
rates at which networks have the same packet latency of 100
cycles that is where the networks start reaching saturation.
For each simulation, we run 100 000 cycles, then router
activity information and the number of received packets are
collected after 20 000 warmup cycles. Applied these statistic
information into (2) with Tclk of 1 ns (1 GHz clock rate) and
Nr of 64 (8 ×8 network), the normalized energy per packet
of each router over eight synthetic traffic patterns is shown in
Fig. 16.

As shown in the figure, although VC-fullXbar has higher
throughput than VC router, it consumes more energy over
three traffic patterns transpose, bit-shuffle and neighbor. This is
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Fig. 17. Normalized energy per packet over real application traffic patterns
using task-to-core random mapping.

because it has higher active power than VC routers as listed
in Table IV. However, averaged over all eight traffic patterns,
VC-fullXbar router has 2% lower energy per packet than VC
router. RoShaQ has lower energy than VC router over seven
traffic patterns, except transpose because they have the same
throughput over this pattern but RoShaQ has higher active
power. RoShaQ consumes lower energy than VC-fullXbar
routers over all traffic patterns. Averaging from all eight traffic
patterns, RoShaQ15 consumes 9% and 7% lower energy per
packet than VC4 and VC4-fullXbar, respectively.

For each real application, we set the injection rate for
the task with largest required bandwidth to 0.5 flits/cycle,
and then derive the injection rates for other tasks using the
method presented in Section IV-B2. In this experiment, we
map tasks of the application to the core array randomly (near-
optimal mapping experimental results are presented in next
section). Statistic activity information of each router and the
total simulation cycles are collected after one million packets
are received. Again, these information are applied into (2) for
evaluating packet energy of each router.

The normalized energy per packet each router consumes
over ten real applications is shown in Fig. 17. As shown,
VC-fullXbar has higher energy than VC router over five
applications vce, cavlc, autoindust, consumer and telecom;
while RoShaQ consumes lower energy than both VC and VC-
fullXbar routers over all applications. Averaged over all ten
applications, RoShaQ has 23% and 14% lower energy per
packet than VC and VC-fullXbar routers, respectively.

D. On the Effect of Application Mapping

Given a many-core platform, a good application mapping
algorithm can significantly improve the data communication
time and network energy consumption [30]. For example, the
mapping results of the same 16-task VOPD application (shown
in Fig. 13) to a 4 × 4 network using random and NMAP [40]
algorithms are shown in Fig. 18. As shown, NMAP algorithm
gives a higher-desired mapping result than the random one
by allowing mapping tasks with high-bandwidth links near
together, hence reduce not only the time packets traveling
but also packet contention on the network. These reductions
clearly help to achieve better overall application performance

Fig. 18. Mapping results of VOPD application to a 4 × 4 platform using
(a) random mapping and (b) NMAP algorithm.

Fig. 19. Normalized latency of real application traffic patterns with task-to-
core mapping using NMAP algorithm.

and energy consumption. We can find in the literature several
other mapping algorithms which could lead to the same effect,
such as CMAP [41], A3MAP [42], and UNISM [43].

In this section, for more practical than random mapping, we
present the comparison results of router architectures over real
multitask application traffic traces using NMAP algorithm.

The normalized latency using NMAP algorithm of each
application running on different routers to the latency when
running on the typical VC router is shown in Fig. 19.
The NMAP algorithm reduces the communication distance
and congestion of tasks, hence improves the latency for all
applications. As shown, for all applications, the latency while
running on VC-fullXbar and VC routers are almost the same.
This is because VC and VC-fullXbar routers have the same
internal router latency; hence under low-congested network
traffic, their contributions to the overall application latency
are not much different. On average over all ten applications,
VC-fullXbar has only 4% less latency than VC router.

On the other hand, for low-congested traffic packets often
bypass the shared-queues of RoShaQ hence achieve less inter-
nal router latency. Therefore, under NMAP mapping, RoShaQ
achieves much better application latency reduction than VC
routers. Averaged over ten applications, RoShaQ has 32%
and 28% less application latency compared with VC and VC-
fullXbar routers, respectively.

With NMAP mapping, while the VC-fullXbar latency is
only slightly less, its higher active power makes it con-
sume higher energy than VC router as shown in Fig 20.
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Fig. 20. Normalized energy per packet over real application traffic patterns
with task-to-core mapping using NMAP algorithm.

VC-fullXbar now has higher energy than VC router over
all applications which results in 5% greater packet energy
on average over ten applications. On the other side,
because RoShaQ achieves much better latency reduction
with NMAP mapping, it also consumes less communica-
tion energy. On average, RoShaQ consumes 30% and 33%
less energy per packet than VC and VC-fullXbar routers,
respectively.

V. RELATED WORK

Peh et al. [22] and Mullins et al. [44] proposed speculative
techniques for VC routers allowing a packet to simultaneously
arbitrate for both VCA and SA giving a higher priority for
nonspeculative packets to win SA; therefore reducing zero-
load latency in which the probability of failed speculation
is small. This low latency, however, comes with the high
complexity of SA circuitry and also wastes more power each
time the speculation fails. A packet must stall if even it wins
SA but fails VCA, and then has to redo both arbitration at
next cycle. Reversely, RoShaQ is nonspeculative architecture.
An incoming packet in RoShaQ only stalls if it fails both OPA
and SQA; therefore, it has high chance to advance either to be
written to a shared queue (if it wins SQA) or be sent to output
port (if it wins OPA) instead of stalling at an input port, and
also reducing rearbitration times.

Increasing crossbar input ports, that allows directly con-
necting to all VCs of an input port instead of muxing
them, improves much network throughput for VC routers.
Using a large-radix crossbar is feasible and low-cost than
adding more buffers as the results reported by DeMicheli
et al. [45]. Recently, Passas et al. [46] designed a 128 ×
128 crossbar allowing connecting 128 tiles while occupying
only 6% of their total area. This fact encourages us to
build RoShaQ that has two crossbars while sharing cost-
expensive buffer queues. The additional costs of crossbars
are compensated by the simplicity of allocators and reducing
the number of routing computation circuits that make our
router better VC routers in many-fold: throughput, latency, and
packet energy.

IBM Colony router has a shared central buffer which is built
from a time-multiplexed multibank SRAM array with wide

word-width in order that it can be simultaneously written/read
multiple flits (defined as a chunk) by input/output ports [47].
Therefore, the central buffer is high cost and not identical with
input queue design. RoShaQ has all buffer queues (both input
and share queues) to be the same structure that allows reusing
the existing generic simple queues reducing practical design
and test costs.

Latif et al. [10] implemented a router with input ports
sharing all queues that is similar to the architecture shown in
Fig. 6(a). Its implementation on FPGA shows more power and
area-efficient than typical input VC routers. A similar approach
is proposed by Tran et al. [20]; due to the high complexity
of its allocators and also interrouter round-trip request/grant
signaling, however, its performance is actually poorer than a
typical router.

Ramanujam et al. [11] recently proposed a router archi-
tecture with shared-queues named DSB which emulates an
output-buffered router. This router is similar to one shown
in Fig. 6(b) that has higher zero-load latency than a VC
router. This is because a packet must travel through both
two crossbars and be buffered in both input and shared
queues at each router even without network congestion. In
addition to that, the timestamp-based flow control of double
sideband (DSB) router design is highly complicated and hence
consumes much larger area and power than a typical VC
router (that are 35% and 58%, respectively). RoShaQ allows
input packets to bypass shared-queues hence achieves lower
zero-load latency compared with VC routers. RoShaQ also
achieves much higher saturation throughput than VC routers,
with only small area and power overheads while consuming
lower average energy per packet.

Nicopoulos et al. [48] proposed ViChar, a router architecture
which allows packets to share flit slots inside buffer queue
so that can achieve higher throughput. Our paper manages
buffers at coarser grain that is at queue-level rather than at
flit-level, hence allows reusing existing generic queue design
which makes buffer and router design much simpler and
straightforward. ViChar’s idea, however, is orthogonal with our
research and can be applied to RoShaQ forming a router with
fined-grain shared buffers which could improve more network
performance.

The majority of state-of-the-art on-chip router designs uti-
lize input queuing buffers; we, however, can find in the
literature a few output queuing router architectures [24], [49],
[50]. If looking into the whole network picture, buffers at
an output router port should act the same as input buffers
of its downstream router. Therefore, without some special
techniques for speeding up the internal router circuits, output
buffering routers offer no advantage in term of network
performance but complicate the flow control circuit designs.
The output buffering was shown to achieve higher throughput
than input buffering if the router is clocked at P times higher
the link’s clock frequency or if the output buffers have P write
ports each where P is the number of router ports [11], [51].
These speedup techniques are not trivial and are expected to
dissipate much more power. RoShaQ can dynamically adapt
to use the bypass paths or the shared queues depending
on network load hence, achieves both low latency as input
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buffering routers and high throughput as output buffering ones
without the needs of internal router speedup.

VI. CONCLUSION

We presented RoShaQ, a novel router architecture that
allowed sharing multiple buffer queues for improving network
throughput. Input packets also can bypass the shared queues
to achieve low latency in the case that the network load was
low. Compared with a typical VC router, while having the
same buffer space, over synthetic traffic patterns it had 17%
lower zero-load latency and 18% higher saturation throughput
on average with only 4% higher power and 16% larger area.
It had also 5% higher throughput than a full-crossbar VC
router with 3% lower power and 3% less area. While targeting
the same average packet latency of 100 cycles where all the
routers start saturating, RoShaQ had 9% and 7% lower energy
dissipated per packet than typical VC and full-crossbar VC
routers, respectively.

We also presented a method for evaluating and compar-
ing performance and energy-efficiency of routers over real
multitask embedded applications. Over these applications with
random mapping, RoShaQ had 26% and 12% lower latency
than typical VC and full-crossbar VC routers, respectively,
while targeting the same intertask communication bandwidth
requirements. In term of energy, RoShaQ consumes 23%
and 14% lower energy per packet than typical VC and full-
crossbar VC routers, respectively. Using NMAP mapping algo-
rithm, RoShaQ achieved higher improvement in application
performance and energy consumption than other routers. On
average, RoShaQ had 32% and 28% less application latency
and consumed 30% and 33% less energy per packet than VC
and full-crossbar VC routers, respectively.
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