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Processor Tile Shapes and Interconnect Topologies
for Dense On-Chip Networks

Zhibin Xiao and Bevan M. Baas, Senior Member, IEEE

Abstract— We propose two eight-neighbor, two five-nearest-
neighbor, and three six-nearest-neighbor interconnection topolo-
gies for many-core processor arrays—three of which use
five-sided or hexagonal processor tiles—which typically reduce
application communication distance and result in an overall
application processor that requires fewer cores and lower power
consumption. A 16-bit processor with the appropriate number of
input and output ports is implemented in all topologies and tile
shapes. The hexagonal and five-sided processor tiles and arrays
of tiles are laid out with industry standard automatic place and
route design flow and Manhattan-style wires without full-custom
layout. A 1080p H.264/AVC residual video encoder and a 54 Mb/s
802.11a/g OFDM wireless local area network baseband receiver
are mapped onto all topologies. The six-neighbor hexagonal tile
incurs a 2.9% area increase per tile compared with the four-
neighbor 2-D mesh, but its much more effective interprocessor
interconnect yields an average total application area reduction
of 22% and an average application power savings of 17%.

Index Terms— CMOS digital integrated circuits, digital signal
processing (DSP), hexagonal processor, interconnection topology,
many-core processor, multimedia, network on chip (NoC).

I. INTRODUCTION

T ILED architectures that integrate two or more indepen-
dent processor cores are called multicore processors.

Manufacturers typically integrate multicore processors into a
single integrated circuit die [known as chip multiprocessors
(CMP)]. CMPs that integrate tens, hundreds, or thousands of
cores per die are called many-core chips. For global wires
in a many-core chip, their delay and power scale up with
the technology compared with gates as their length is nearly
constant if the chip size stays the same [1]. Thus, many-core
chips that use scalable interconnects and avoid global long
wires will attain higher performance.

Network-on-chip (NoC) approaches are used to connect
large number of processors on a single chip because they
perform better than less scalable methods such as global shared
buses that use global long wires. There exist many design
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alternatives for NoC architectures, which differ mainly in
switching policy, topology, and routing algorithms.

Network topologies define how nodes are placed and
connected, affecting the latency, throughput, area, and power
of a network. Because of its simplicity and the fact that
processor tiles are traditionally square or rectangular, the
nearest-neighbor 2-D mesh topology is a natural solution for
both dynamic and static on-chip communication architectures.
Efficient mapping applications, however, can be a challenge
for cases that require communication between processors
that are not adjacent to the 2-D mesh. This condition could
require processors to forward data for static interconnection
architectures, and intermediate routers for dynamic router-
based NoCs. The power consumption and communication
latency also increase, as the number of routing processors or
routers between two communicating cores increases. There
exist other common topologies for NoCs such as 2-D torus,
Spidergon, fat tree and higher dimensional meshes and tori,
which provide higher routing capability and communication
bandwidth with costs of higher wire density and longer
global wires. Furthermore, topologies with irregular layouts
present significant challenges for many-core implementations
especially with the number of cores per die expected to soon
reach thousands and more.

For many applications mapped onto homogeneous chip
multiprocessors, communication between processors is often
largely localized [2], [3], which may result in local mapping
congestion; an increase of local connectivity can ease such
congestion. This motivates us to propose new topologies
with increased local connectivity while keeping much of
the simplicity of a mesh-based topology. This paper targets
low-complexity and scalable topologies that increase applica-
tion performance, reduce communication energy, avoid global
wires, and ease physical implementation. We propose regular
and scalable topologies combined with tile shapes for dense
interconnection of many-core arrays, which result in an overall
application processor with fewer cores and a lower total
communication length. The main contributions of this paper
can be summarized as follows.

1) Seven NoC topologies are proposed and compared with
the common 2-D mesh including two eight-neighbor
topologies, two five-neighbor topologies, and three
six-neighbor topologies. Three of them use hexagonal-
shaped or five-sided house-shaped processor tiles. The
proposed topologies are analytically compared in terms
of geometric property and worst-case communication
distance for different communication patterns.
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TABLE I

CHARACTERISTICS OF VARIOUS REGULAR TOPOLOGIES FOR AN HOMOGENOUS MANY-CORE ARRAY WITH n × n PROCESSORS

WHERE n IS THE NUMBER OF PROCESSORS ON ONE EDGE AND n ≥ 2

Topology Degree Maximum Links Link Diameter Bisection Clustering
Hops Number Degree

2-D Mesh 4 0 2n(n − 1) 2(n − 1) n 0
2-D Torus 4 1 2n2 n 2n 0
8-8 Rect 8 1 4n2 − 6n + 2 n − 2 3n − 2 0.86
8-4 Rect 8 1 2n2 − n − 2 (n mod 2) + n 2n 0.21
5-5 House and Rect 5 0 Note+ (2n − 3)* n 0.30
6-6 Hex and Rect 6 0 3n2 − 4n + 1 n + � n−2

2 � 2n − 1 0.40
+ Omitted because of space limitation. The total number of links for 5-5 House and Rect is: n(n −1)+n(� n−1

2 �)+(2n −1)(� n−1
2 �).

* This is for n ≥ 4. If n ≤ 3, the diameter of the topology is: n + � n−1
2 �.

2) A complete functional H.264/AVC residual encoder and
an 802.11a/g OFDM baseband receiver are mapped onto
all topologies for realistic comparisons.

3) All seven topologies including the hexagonal and house-
shaped processor tiles are physically implemented in
65-nm CMOS using standard cells and Manhattan-style
wires without full-custom layout. The final layouts are
all design rule check (DRC) and LVS clean.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III describes and
evaluates the proposed interprocessor communication topolo-
gies. Section IV presents mapping of two applications onto a
2-D mesh and all proposed topologies. Section V describes
the physical design flow and the approach to implement the
nonrectangular processor tiles. Section VI presents the chip
implementation results and Section VII concludes this paper.

II. RELATED WORK

Many topologies were used for on-chip interprocessor com-
munication, such as buses, meshes, tori, binary trees, octagons,
hierarchical buses, and custom topologies for specific appli-
cations [4]. The low complexity 2-D mesh was used by most
fabricated many-core systems including RAW [5], AsAP [6],
[7], Intel 80-core [8], TILE64 [9], AsAP2 [10], [11], and Intel
48-core single-chip cloud computer [12].

Prior research was reported using hexagonal interconnec-
tions for on-chip wire routing and off-chip multiprocessor
communication. Chen et al. [13] proposed a Y architecture
for on-chip interconnections and showed that it can increase
communication throughput by 20.6% over the 2-D mesh
with Manhattan-style wires. Zhou et al. [14] proposed a
hierarchical three-way interconnection, Y tree architecture,
for hexagonal processors. These two papers only theoretically
proposed hexagonal interconnection architecture and showcase
the throughput benefit only if non-Manhattan style wires
were used. Shin [15] proposed a hexagonal mesh for the
interconnection of multiple processors in a system, which was
demonstrated to have higher communication performance and
robustness than other topologies. Furthermore, Decayeux and
Seme proposed a 3-D hexagonal network as an extension
of 2-D hexagonal networks [16]. As mentioned before, such
off-chip hexagonal networks were used to connect compu-
tation nodes, which is different from our proposed on-chip
hexagonal-shaped processor tiling.

Becker et al. [17] developed a hexagonal field-
programmable analog array in a 0.13-μm CMOS technology.
The basic building block was a hexagonal analog circuit
block which communicated with six neighbors. Extension
to a many-core processor was similar in topology, but very
different in terms of impact on tile area and total application
interconnect. Malony studied the 2-D regular processor arrays,
which are geometrically defined based on nearest-neighbor
connections and space-filling properties [18]. He theoretically
proved that the hexagonal array is the most efficient topology
in emulating other topologies by analyzing the geometric
characteristics.

III. INTERPROCESSOR COMMUNICATION TOPOLOGIES

AND PROCESSOR SHAPES

NoC topologies can be analyzed by a few criteria [19] as
follows.

1) Degree: The number of direct neighbors for one node.
A high degree allows more nodes to communicate
directly with low latency.

2) Diameter: The largest number of hops between any two
nodes. A small diameter shows low maximum latency
of a network.

3) Bisection: The minimum number of links to be removed
to separate a network into two equal ones. A high bisec-
tion shows a high bandwidth yielding high throughput.

4) Number of Links: The total number of bidirectional links
in a network.

5) Clustering Degree: Also called clustering coefficient, is
a measure of degree to which nodes in a network tend to
cluster together. The local clustering degree for a node
i can be defined as: 2li/(ni (ni − 1)), where ni is the
number of direct neighbors and li is the number of links
between its neighboring nodes. A high clustering degree
shows that local nodes close to each other are strongly
connected.

6) Max Link Hops: The maximum hops that a link can cross
after the topology is physically mapped to a 2-D chip.
This is a criteria proposed in this paper to measure the
length of global wires of a topology.

The above criteria can be used to compare various topolo-
gies and provides an initial indication on performance. The
first two rows of Table I lists the characteristics of two popular
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Fig. 1. Example tiles of constant area with random uniformly distributed
wire endpoints.

topologies 2-D mesh and 2-D torus. 2-D mesh has a maximum
degree of four and a maximum link hop equals to zero as all
of the links are nearest neighbors. For a n ×n array, 2-D mesh
has a number of links equals to 2n(n − 1), a diameter equals
to 2(n − 1), bisection n, and a clustering degree equals to 0.
Compared with 2-D mesh, 2-D torus has the same degree,
more links, smaller diameter, higher bisection bandwidth, and
the same clustering degree. All of these criteria show 2-D torus
could achieve higher throughput and lower latency at the cost
of more long nonnearest neighbor links.

This paper explores low-complexity topologies with higher
degree, larger number of links, smaller diameter, higher bisec-
tion compared with 2-D mesh. We also limit the maximum link
hops being less than or equal to one to avoid global long wires.
These requirements result in proposed topologies that have
a strong local connectivity with a nonzero clustering degree.
In the following sections, several topologies combined with
nonrectangular processor shapes are proposed and analyzed.

A. Processor Tile Shapes

To the best of our knowledge, all previously fabricated VLSI
processors are of a rectangular shape, often nearly square. We
can intuitively reason for a circular shape might allow shorter
wires for a given netlist, resulting in smaller area and wire
capacitance.

Fig. 1 shows a simple wiring experiment by randomly
placing one million wires in a square, a circle, and a hexagon
with equal size. The circular tile yields a 2.2% reduction
in total wire length compared with a square tile. On the
negative side, it is clear that circles do not pack together
without wasted space between tiles. On the positive side,
circles pack with six neighbors while rectangles obviously
have only four. In contrast to the circle, the hexagonal shape
does pack efficiently without gaps between tiles and it retains
the six-nearest-neighbor property. The same wiring experiment
shows a hexagonal tile achieved a 1.8% reduction in total wire
length compared with the square tile. A reduction in total wire
length yields a pure benefit in area, energy, and delay for
processor tile design. This simple experiment motivates us to
explore different processor tile shapes for many-core processor
design. The inclusion of common rectangular blocks such as
memory arrays in a processor tile increases routing congestion
but is shown in Section VI to be tolerable. In addition, we
show that Manhattan-style wire routing is fully compatible
with nonrectangular tile shapes.

B. Proposed Topologies

The eight different topologies in combination with processor
tile shapes are shown in Fig. 2. Switch fabrics are assumed to
reside inside each processor tile. The well-known 2-D mesh in
Fig. 2(a) is used as the baseline topology for comparison. All
topologies are named by the following: 1) the total number
of direct interconnection links; 2) the number of nearest-
neighbor interconnection links, where nearest neighbors are
defined as directly connected processors that touch at the edge
or the vertices; and 3) the processor’s shape. For example, the
baseline 2-D mesh is named 4-4 Rect where tiles are rect-
shaped and connected by four links, all of which are nearest-
neighbor interconnect links.

The next logical extension of the 2-D mesh is to include
the four diagonal processors in an eight-neighbor arrangement
named 8-8 Rect as shown in Fig. 2(b), where each rect tile
can directly communicate with eight neighbors. This approach
increases routing congestion in the tile corners because of the
four (unidirectional) links that pass through each corner [the
dashed lines in Fig. 2(b)].

The third topology is an eight-neighbor mesh (8-4 Rect) as
shown in Fig. 2(c), where the baseline 2-D mesh is augmented
with direct connections with processors two tiles away. In this
case, the pass-through routes are not just in the corners, but
pass through the entire tile.

Fig. 2(d) shows a five-nearest-neighbor topology
(5-5 House) where each tile is a house-shaped pentagon. There
are various house shapes and the center-to-center Euclidean
distances between a tile’s center and its five neighbors are
not equal. The center of a house-shaped tile, however, can be
chosen hence the Euclidean distances from the center to all
five vertices are equal, which yields only one type of house-
shaped tile where the rectangular shape at the bottom is a
square. If the square shape has an edge length of w, the center-
to-center distance for three of the five connections is w and

the other two connections have a length of w ∗
√

(2 + √
2)/2.

Fig. 2(e) shows an alternative five-neighbor topology
(5-5 Rect Alt. Offset) where every other rows of rect tiles are
offset. The 5-5 Rect Alt. Offset has the same interconnection
topology as the 5-5 House. All processors are square shaped
with an edge length of w. The center-to-center Euclidean
distance between two processor tiles can be either w (if tiles
are aligned) or

√
5/2∗w (if the tiles are in an offset position).

This topology has the advantage of a regular processor shape
while achieving the same routing capability as the house-
shaped tile topology.

Our sixth proposed interconnect topology is the six-nearest-
neighbor array using hexagonal-shaped processor tiles, as
shown in Fig. 2(f). The processor center-to-center Euclidean
distance is

√
3∗w if the length of the hexagon edge is w. The

hexagonal grid is commonly used in mobile wireless networks
because of its desirable feature of approximating circular
antenna radiation patterns and its optimal characteristic of
six nearest neighbors. The symmetry and space-filling property
make the hexagonal processor tile topology an attractive
design option for many-core processor tiles.
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Fig. 2. (a) Baseline 2-D mesh (4-4 Rect). Seven proposed topology/shape combinations: (b) 8-8 Rect, (c) 8-4 Rect, (d) 5-5 House, (e) 5-5 Rect Alt. Offset,
(f) 6-6 Hex, (g) 6-6 Rect Offset, and (h) 6-6 House Offset. (Designs are named using: the total number of interconnection links, the number of nearest-neighbor
interconnection links, and the processor’s shape.)

Fig. 3. Spectrum of six-neighbor topologies with offset row house-shaped
tiles, which differ in the area of the triangle roof of the house shape. The
length of the blue and red links is different.

Fig. 2(g) shows our seventh topology named 6-6 Rect Offset
where every row of the tiles is offset hence each tile has six
nearest neighbors. For tiles with height h and width w, the
center-to-center distance in the horizontal direction is clearly
w. For adjacent tiles in the row above and below, the center-
to-center Euclidean distance is

√
w2/4 + h2. Thus, if we set

w = √
w2/4 + h2, or h = √

3/2 ∗ w, then all six neighbors
will reside at equal center-to-center Euclidean distances.

Fig. 2(h) shows the eighth topology (6-6 House Offset)
where every neighboring rows of house-shaped tiles are offset
hence each tile has six neighbors. As shown in Fig. 3, there
are a spectrum of topologies that fall into this category where
the triangle roof of the house-shaped tile can have varying
area. There is, however, no geometrically optimal topology
with six equal Euclidean distance neighbors. If the area of the
roof triangle is zero, it becomes the 6-6 Rect Offset topology,
which has the advantage of equal center-to-center Euclidean
distances for all six neighboring tiles, as shown in Fig. 2(g).
Therefore, we will consider only the 6-6 Rect Offset for this
type of topology in the following sections.

The center-to-center distance can be used to represent
the communication link length between two processor tiles.
Table II shows the number of different types of communication
links and the corresponding link length for all topologies. For
comparison purpose, the link lengths are calculated based on
both Euclidean and Manhattan rules. As shown in Table II, if

Euclidean rule is used, the 4-4 Rect, 6-6 Hex and 6-6 Rect
Offset have only one type of communication link because
of equal center-to-center Euclidean distance. The 8-8 Rect,
8-4 Rect, 5-5 House, and 5-5 Rect Offset topologies have
two types of links because of the unequal center-to-center
Euclidean distance between processor tiles. If Manhattan rule
is used, all topologies have two types of links except the
4-4 Rect 2-D mesh. The 6-6 Hex and 6-6 Rect Offset have
two short links and four long links instead.

Because of limitations of the current wafer sawing technolo-
gies, chips from round wafers are traditionally square or rec-
tangular. The opportunities and limitations of nonrectangular
processors on a chip are analogous to nonrectangular chips on
a wafer. For a rectangular chip composed of nonrectangular
processors, there are areas on the periphery of the chip in
which processors cannot be placed for the topologies shown
in Fig. 2(d)–(h). Fig. 4 shows the percentage of unavailable
area for the four topologies with varying processor array sizes.
If the processor array size is larger than 30 by 30, this area
overhead becomes less than 2.7% of the total chip area for the
hexagonal-shaped tile array and 2.0% for the house-shaped tile
array. The overhead area for type (e) and (g) is less than 1.7%
of the total chip area. In practice, these areas could be filled
with useful chip components such as decoupling capacitors,
or portions of hardware accelerators, global shared memory
modules, global I/O circuits or power conversion circuits. For
the house-shaped and hexagonal-shaped tiles, physically it
is possible to integrate both rectangular and nonrectangular
modules into the unavailable areas if the DRC is not violated.

C. Performance Evaluation

Table I also lists the characteristics of all proposed topolo-
gies for an homogenous many-core array with n × n proces-
sors. Compared with 2-D mesh, all proposed topologies
have larger node degree, smaller diameter, larger or equal
bisection bandwidth, and larger clustering degree. Among the
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TABLE II

EUCLIDEAN AND MANHATTAN LINK LENGTHS FOR ALL TOPOLOGIES WITH ONE UNIT OF LENGTH EQUAL TO THE SQUARE ROOT

OF THE AREA, WHICH IS ONE FOR ALL TOPOLOGIES AND SHAPES

Topology Nearest-Neighbor Link Longer Link
Number Euclidean Distance Manhattan Distance Number Euclidean Distance Manhattan Distance

4-4 Rect 4 1.00 1.00 0 — —
8-8 Rect 4 1.00 1.00 4 1.41 2.00
8-4 Rect 4 1.00 1.00 4 2.00 2.00
5-5 House 3 0.95 0.95 2 1.24 1.51
5-5 Rect Alt. Offset 3 1.00 1.00 2 1.12 1.50
6-6 Hex 6(2)* 1.07 1.07 0(4)* — 1.47
6-6 Rect Offset 6(2)* 1.07 1.07 0(4)* — 1.46
* The 6-6 Hex and 6-6 Rect Offset have six nearest-neighbor links using Euclidean wires. The two topologies, however, have two nearest-

neighbor links and four longer links using Manhattan-style wires.
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Fig. 4. Fraction of area unavailable for processor tiles in a nonmesh array
(n × n) for type d–g in Fig. 2: 5-5 House, 5-5 Rect Alt. Offset, 6-6 Hex, and
6-6 Rect Offset, respectively.

proposed topologies, the 8-8 Rect topology has the largest
bisection, smallest diameter, and largest clustering degree,
which shows lower maximum latency and high maximum
throughput. Although the 8-4 Rect topology has a high degree
of eight, the smallest clustering degree shows 8-4 topology
does not fit for applications with many local communications.
This insight will be demonstrated by the application mapping
results presented in the following section. The advantage of
the five-neighbor and six-neighbor topologies is that global
long wires are not required.

We can also analyze the performances of the proposed
seven topologies using the worst-case communication distance
of four basic communication patterns that include one-to-
one communication (in which two processors at opposite
corners of the processor array communicate with each other),
one-to-all broadcast (in which one corner processor broadcasts
data to all the other processors), all-to-one communication (in
which all processors communicate with the processor in the
middle of the array), and all-to-all communication (in which
every processor communicates with all other processors).

The number of neighboring interprocessor communication
links and the number of input ports determine the local
communication capability of a topology. The input port of
a processor is the communication interface including buffers
and related circuits. The number of input ports can be less
than the number of neighboring interconnection links of one
processor.

Fig. 5. Example of four communication patterns on a 3 × 3 array with
4-4 Rect topology and four-port processors. (a) One-to-one. (b) One-to-all.
(c) All-to-one. (d) All-to-all.

Fig. 6. Example of four communication patterns on a 3 × 3 array with
4-4 Rect topology and two-port processors. (a) One-to-one. (b) One-to-all.
(c) All-to-one. (d) All-to-all.

As shown in Fig. 2, depending on the number of inter-
connection links, the topologies require a different number
of input ports to make maximal use of nearest-neighbor
interconnections. The baseline 4-4 Rect mesh requires four
input ports and the two eight-neighbor Rect topologies require
eight input ports. The house-shaped tile and hexagonal-shaped
tile topologies require five ports and six ports, respectively.
The increase of the number of input ports incurs significant
hardware overhead in terms of buffers and related commu-
nication circuitry. The number of input ports into the local
processor, however, can be less than the number of neighboring
interconnections, in which processors are capable of talking to
all connected neighboring processors but not at the same time.

Fig. 5 shows an example of four communication patterns on
a 3×3 array with a 4-4 Rect topology and two-port processors.
In this case, each node can be configured to connect bidi-
rectionally with up to four nearest neighbors. The worst-case
distance for one-to-one communication is four hops, as shown
in Fig. 5(a). Fig. 5(b) shows the routes to allow one corner
node to communicate with all the other nodes. The worst-case
distance is also four hops. Fig. 5(c) shows the routes to allow
all processors to communicate with the center node and the
worst-case distance is two hops. For all-to-all communication,
the worst-case distance is four hops as shown in Fig. 5(d).

Fig. 6 shows a similar 4-4 Rect topology with four-port
processors. In this case, each node can be configured to
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Fig. 7. Comparisons of the worst-case communication distance across a processor array (n × n) for different topologies where the number of input ports of
each processor is equal to the number of interconnection links for four basic communication patterns. (a) One-to-one, one-to-all, and all-to-all. (b) All-to-one.

connect with two nearest neighbors as inputs and four nearest
neighbors as outputs. The routes in one-to-all, all-to-one, and
all-to-all communications are different from previous example.
The worst-case distances of one-to-one and one-to-all commu-
nications are not affected by the number of ports, which are
still four hops. Fig. 6(b) and (c) shows the routes for all-to-one
and all-to-all communication patterns are the same. The worst-
case distances of all-to-one and all-to-all communications are
three and four hops, respectively. Compared with the four-
port case, the total communication distance for all-to-one and
all-to-all increases because of the use of unidirectional wires
and the two-way communication between two nodes may be
asymmetrical.

The following subsections discuss both the case with the
same number of input ports as the neighboring interconnec-
tions and the case with a limitation of two input ports for all
proposed topologies.

1) Varying Number of Input Ports: For each proposed topol-
ogy, the worst-case communication distances of one-to-one,
one-to-all, and all-to-all communications are the same as the
diameter of the topology, as shown in Table I. As for different
topologies, Fig. 7(a) shows that the 4-4 Rect, 5-5 House, and
5-5 Rect Alt. Offset have similar worst-case communication
distances which are approximately linearly proportional to the
size of the array. The worst-case communication distances
of the 6-6 Hex and 6-6 Rect Offset topologies are shorter
than those of the 4-4 Rect, 5-5 House, and 5-5 Rect Alt.
Offset topologies. The two eight-neighbor Rect meshes have
the shortest worst-case communication distances because of
more interconnection links.

Fig. 7 shows the all-to-one worst-case communication dis-
tances for all seven topologies. The performance trends are
similar to the one-to-one, one-to-all, and all-to-all commu-
nication cases. The 6-6 Hex and 6-6 Rect Offset topolo-
gies show very close performance to the two eight-neighbor
Rect meshes, which have two more sets of communication
links.
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2) Two Input Ports: Through limiting the number of input
ports of the local processor to two, all topologies have the same
one-to-one and one-to-all performances as the architecture
with varying number of ports [Fig. 7(a)]. For the all-to-one and
all-to-all communication patterns, the topologies with more
links have the same worst-case communication distance as the
topologies with fewer links if one processor has only two input
ports, as shown in Fig. 8. This shows that a reduction of input
ports decreases the performances of the topologies with more
links in the all-to-one and all-to-all communications.

For simple single-issue processors that normally consume
not more than two operands per clock cycle, adding more than
two input ports may not have the benefits as shown in the
worst-case analyses with varying number of input ports. Of
course, there may be benefits if the processor uses complex
instruction styles that process more than two operands per
cycle. For many cases, it is attractive to use two input ports
for all proposed topologies, in which the hardware overhead is
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Fig. 9. �5 lumped RC circuit model used to simulate the wire delay for
different shaped processor tiles considering crosstalk effects between the main
wire transmitting signal from A to B and two adjacent wires N1 and N2. Rw ,
Cg , and Cc are metal wire resistances, ground capacitance,s and coupling
capacitances from adjacent intralayer wires, respectively.

minimized without affecting the communication performance
too much. This limitation is justified by mapping two complex
applications onto the proposed topologies in Section IV.

D. Interconnect Wire Delay

All discussed topologies permit an easy tiling of processors
for dense on-chip networks without very long global wires.
The two topologies in Fig. 2(b) and (c) have a maximum global
interconnect link length no more than the dimension of one
processor tile. There are no global wires for 2-D mesh, house-
shaped, and hexagonal-shaped tile topologies. The actual delay
of local interconnect wires, which is proportional to the size
of processor tiles, depends on the physical position of the
switch fabrics inside the local processor tile. Table III shows
the estimates of the maximum interconnect link lengths and
maximum link length differences for the square-shaped, house-
shaped, and hexagonal-shaped processor tiles based on three
nominal processor tile sizes 0.04, 4, and 36 mm2, which
approximate the scaled area of one processor tile in 32-nm
CMOS for AsAP2 [10], [11], TI C64x DSP [20], and the Intel
Sandy Bridge processor [21], respectively. All wire lengths
are calculated based on the Manhattan-style wiring. Fig. 9
shows the �5 RC model used to simulate wire delay while
considering effects of crosstalk noise. As a common case, the
wires are assumed to be in an intermediate layer, which incurs
both ground and coupling capacitances depending on the metal
wire dimensions (space, width, thickness, and length) and
interlayer dielectric. The simulation is based on HSPICE using
the device model from 32-nm CMOS predictable technology
model (PTM) [22]. The wire dimensions used for simula-
tion are derived from International Technology Roadmap for
Semiconductors [23] reports. The metal resistance, ground,
and coupling capacitance values (Rw, Cg , and Cc in Fig. 9)
are calculated by PTM online interconnect tool. The center
victim wire delay is measured from input A to output B
including the buffer composed of two FO4 inverters. With
the single buffered wire delay data (wire length from 0.1 to
2 mm2 with 0.1-mm2 interval), long wires can be optimally
segmented, which provides a more realistic delay estimation.
As shown in Table III, the delay data are based on the worst-
case scenario where the signal on the center victim wire moves
in the opposite direction of its aggressor neighbors N1 and N2.

Table III shows the interconnect wire delay and delay
skew for square-shaped, house-shaped, and hexagonal-shaped

processor tiles with the three sizes. For the 0.04-mm2

small processor tile running at a 2-GHz clock frequency,
the maximum interconnect wire delays for all processor
shapes range from 5.7% to 6.9% of one clock cycle. For the
4-mm2 medium-sized processor tile running at a 2-GHz clock
frequency, the maximum interconnect wire delays for all
three shapes range from 67% to 78% of one clock cycle.
For the 36 mm2 large processor tile running at 4 GHz, the
maximum interconnect wire delay takes 4.0–4.7 clock cycles
for the three shapes. Compared with square-shaped tile for
all sizes, the maximum wire delay of the house-shaped tile
increases by 15.9% to 21.3%, and the maximum wire delay
of hexagonal-shaped tile increases by 2.8% to 8.7%. For a
fully-synchronous system, special design effort is required
to balance the interconnect wire delay skew to increase the
maximum achievable frequency. As shown in Table III, the
actual max link wire delay skew is smaller than the maximum
link wire delay. For the 0.04-mm2 small processor tile and
the 4-mm2 medium-sized processor tile running at a 2-GHz
clock frequency, the maximum interconnect wire delay skews
for all processor shapes take around 5% and 55% of one
clock cycle, respectively. For the 36-mm2 processor tile
running at 4 GHz, the maximum interconnect wire delay
skew is around 3.7 clock cycles on average. Compared with
square-shaped tiles for all sizes, the maximum wire delay
skew of the house-shaped tile increases by 8.7% to 29.7%
and the maximum wire delay skew of hexagonal-shaped
tile increases by 20.1% to 49.1%. The results suggest that
the placement of switch fabrics for nonrectangular tiles has
higher impact on link wire delay skew than the square tile.

IV. APPLICATION MAPPING

A. Target Interconnect Architecture

A NoC is defined by its topology, switching policy, and
routing algorithms. The proposed topologies can be used for
dense on-chip network with either dynamic routers or static
circuit switches. Fig. 10 shows the interprocessor communi-
cation in a typical 2-D mesh processor array using dynamic
routers. As the diagram shows, the processors are connected
by five-port routers each with five buffers and one 5 by 5
crossbar. The dynamic routers also include hardware logic
to implement different routing algorithms. For the proposed
non-2-D mesh topologies, special routers with more ports and
routing algorithms are required. The routers with more than
four neighbors, however, could be expensive in terms of area
and power. The routing algorithms also need to be carefully
designed to avoid deadlock and tolerate fault.

The static circuit-switch interconnection has smaller area,
lower power dissipation, and lower complexity than dynamic
router interconnection. In this paper, we assume processor
tiles are connected with circuit switches which are suitable
for applications with steady communication patterns. Fig. 11
shows the 4-4 Rect mesh array using circuit switches each
with four nearest-neighbor interconnection links and two ports
connecting to the processor core. In this case, each processor
is capable of taking two inputs from the four directions
and sending data to all four directions. The long distance
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TABLE III

CHARACTERISTICS OF INTERCONNECT WIRES FOR PROCESSOR TILES WITH DIFFERENT SHAPES AND SIZES IN 32-nm CMOS

Processor tile area = 0.04 mm2 Processor tile area = 4.0 mm2 Processor tile area = 36 mm2

Square House Hex Square House Hex Square House Hex
Maximum link length (mm) 0.30 0.35 0.32 3.00 3.53 3.16 9.00 10.59 9.48
Maximum link length difference (mm) 0.20 0.26 0.29 2.00 2.58 2.93 6.00 7.74 8.79
Maximum link wire delay (ps) 28.6 34.7 31.1 338.0 391.7 347.6 1014.0 1186.0 1060.0
Maximum link wire delay skew (ps) 22.9 24.9 27.5 217.8 282.6 324.8 676.0 866.6 983.2

Fig. 10. 2-D mesh processor array using five-port routers where one port
connects to the local processor core.

Fig. 11. Diagram of two processor tiles in the 4-4 Rect mesh processor array
with four interconnection links and two input ports per tile.

communication is performed by software in the intermediate
processors. The circuitry diagram of other topologies is sim-
ilar, which differs in the number of links among neighboring
processor tiles.

B. Two Benchmark Applications

Parallel programming on the discussed many-core systems
with dense on-chip networks includes two main steps as
follows: 1) partitioning the algorithms at a fine-grained level
and 2) mapping the tasks to the nodes of the processor array
and connecting the nodes with available links defined by the
topology [24]. The two steps might be repeated iteratively for
throughput optimization where we can identify the bottleneck
task of the design and partition it even more until the through-
put meets the requirement. To be specific, in the partitioning
step, an estimate of task workload and required resources
such as data and instruction memories are used to generate
a fine-grained task graph where each task can be assigned to
one processor node. Following the fine-grained partition, the
mapping is conducted either manually or automatically by an
automatic mapping tool. Application mapping is essentially an

Fig. 12. Task graph of a 22-node H.264/AVC video residual encoder.

optimization problem, which can be formed as integer linear
programming problem [25] and solved by heuristic algorithms.
In this paper, we use a manual mapping method and the
primary optimization target is to minimize area and maximize
local communication.

To compare all discussed topologies, two complete appli-
cations including an H.264/AVC residual encoder and an
802.11a/g OFDM baseband receiver are first manually parti-
tioned to meet the throughput requirement and ensure that each
task can be handled by one processor. To be fair to compare all
topologies, we chose not to partition tasks specifically for one
topology and mapping the two applications onto all topologies
is based on the same task graph.

Fig. 12 shows a 22-node task graph of an H.264/AVC
residual baseline encoder composed of integer transform,
quantization, and context-adaptive and variable length coding
functions [24]. The encoder also requires a shared memory
module as shown in the task graph.

Fig. 13 shows an example mapping of the H.264/AVC
residual encoder capable of 1080p HDTV encoding at 30 f/s
(frames per second) on the baseline 4-4 Rect mesh that
uses 32 processors plus one shared memory. The 4-4 Rect
mesh is inefficient in handling a complex application such as
H.264/AVC encoding. A total of 10 processors are used for
merging and forwarding data, which accounts for 31% of the
total number of processors.

Fig. 14 shows a possible 25-processor mapping on the
proposed 6-6 Hex topology. Compared with the design using
a 4-4 Rect mesh, seven processors are saved, which accounts
for a 22% reduction in the total number of processors.

Fig. 15 shows a 22-node task graph of a complete 802.11a/g
WLAN baseband receiver which is computation intensive
requiring two dedicated hardware accelerators: Viterbi decoder
and FFT [26]. Fig. 16 shows a mapping of the 802.11a/g
baseband receiver (54 Mb/s) on the baseline 4-4 Rect mesh
that uses 32 processors plus the Viterbi decoder and FFT
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Fig. 13. H.264/AVC video residual encoder mapped on a processor array
with 4-4 Rect mesh topology. The processors in gray are used for merging
and forwarding data.

Fig. 14. H.264/AVC residual video encoder mapped on a processor array
with 6-6 Hex topology.

Fig. 15. Task graph of a 22-node 802.11a/g WLAN baseband receiver.

accelerators with 10 processors used for merging and forward-
ing data. Fig. 17 shows a mapping on the hexagonal-shaped
tile architecture, which requires only 24 processors plus the
Viterbi decoder and FFT accelerators—25% fewer processors
than those used in the 4-4 Rect mesh mapping.

C. Application Mapping Results

We map the two applications to all proposed topologies.
With the mapping task graphs, we can estimate the number of
used processors and total communication link length, which
provide initial indication on the final application area and
performance after chip physical implementation.

1) Total Number of Used Processors: All six proposed
topologies (type (b)–(g) in Fig. 2) are much more efficient
than the 4-4 Rect mesh (type (a) in Fig. 2), resulting in
processor count reductions of 16% to 22% for the H.264

Fig. 16. 802.11a/g baseband receiver mapped on the processor array with
baseline 4-4 Rect mesh topology.

Fig. 17. 802.11a/g baseband receiver mapped on the processor array with
6-6 Hex topology.

Fig. 18. Number of processors used for mapping two applications to the
seven topologies (type (a)–(g) in Fig. 2).

encoder and 19% to 25% for the 802.11a/g baseband receiver,
as shown in Fig. 18. The results are the same for the
5-5 House and 5-5 Rect Alt. Offset architecture because of
essentially the same topology property. Similarly, the 6-6 Hex
has the same result as the 6-6 Rect Offset architecture. The
number of used processors of the 8-8 Rect and 8-4 Rect
meshes is smaller than the 5-5 House and 5-5 Rect Alt. Offset
topologies because of more communication links between
processors. The two eight-neighbor Rect meshes, however,
require a slightly larger number of processors than the two
six-neighbor topologies, which yield the largest processor
number reduction (24%) compared with the 4-4 Rect mesh.
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Fig. 19. Total communication length based on non-Manhattan-style wires
(Euclidean link length) for the two applications mapped on the seven
topologies (type (a)–(g) in Fig. 2). The link length is estimated based on
the assumption the area of each processor tile is equal to one square unit of
the length.

This is because the communication patterns of the two applica-
tions are mostly localized. Thus, topologies with more nearest-
neighbor links yield more benefits than topologies with fewer
nearest-neighbor links.

2) Total Communication Link Length: The total communi-
cation link length for the two applications can be calculated
based on either Euclidean or Manhattan link length as shown
in Table II and the application mapping diagrams.

Fig. 19 shows the total communication length based on non-
Manhattan-style wires. The 8-8 Rect and 8-4 Rect have an
average of 3% and 9% longer communication lengths than
the 4-4 Rect mesh because they use more long communication
links. The 6-6 Hex and 6-6 Rect Offset are the most efficient
topologies, yielding the largest reduction (19%) in average
total communication link length compared with the baseline
4-4 Rect mesh.

Fig. 20 shows the total communication link length based
on Manhattan-style wires. All proposed topologies result in
a slight increase of the total link length ranging from 1%
to 5% compared with the baseline 4-4 Rect mesh. This
small link length increase because of Manhattan wires has
little influence in application performance, area, and power
consumption, which will be demonstrated by the following
physical implementation results.

V. PHYSICAL DESIGN METHODOLOGY AND

NONRECTANGULAR PROCESSOR TILE DESIGN

A. Physical Design Methodology

For performance evaluation, a small processor with config-
urable circuit-switch interconnection is used for all physical
designs. The processor contains a 16-bit datapath with a
40-bit accumulator and 560-byte instruction and 256-byte data
memories. Each processor also contains a configurable clock
oscillator (OSC) and two 128-byte FIFOs for data buffer-
ing and synchronization between two processors [10], [11].

Fig. 20. Estimated total communication length based on Manhattan-style
wires for the two applications mapped on the seven topologies (type (a)–(g)
in Fig. 2). The link length is estimated based on the assumption the area of
each processor tile is equal to one square unit of the length.

Each interprocessor link is composed of 19 signals including
a clock, 16-bit data, and two flow-control signals [27]. This
processor is tailored for all topologies under test with a differ-
ent number of neighboring interconnections ranging from four
to eight. The internal switch fabrics are changed accordingly.
The hardware overhead is minimal for four-neighbor, six-
neighbor, and eight-neighbor processors with only 0.5%, 0.7%,
and 2.0% hardware overhead based on synthesis results. The
two eight-neighbor topologies add more complexity because
processors communicate with two far-away processors via
dedicated links, as shown in Fig. 2. To make CMP integration
simpler, four additional sets of pins are inserted into the
processor netlist after synthesis and are directly connected with
bypass wires. This adds routing congestion in the corner for
the topology shown in Fig. 2(b) and across the processor tile
for the topology in Fig. 2(c).

All processors are implemented with a fully automated
design flow spanning from RTL description to layout level ver-
ification with STMicroelectronics 65-nm CMOS technology.
The processors are synthesized from Verilog with Synopsys
Design Compiler and laid out with an automatic timing-driven
physical design flow with Cadence SoC Encounter. Timing
is optimized after each step of the physical design flow:
floorplan, power planning, cell placement, clock tree insertion,
and detailed routing. A configurable OSC is manually designed
from standard cells and laid out separately.

B. Nonrectangular Processor Tiles Design and CMP
Integration

The house-shaped and hexagonal-shaped tiles bring chal-
lenges for physical implementation. The first challenge to
design the hexagonal processor is how to create a hexagonal
shape at the floor plan stage. Rectangular placement and
routing blockage in SoC encounter are used to create approxi-
mate triangle corner blockages with each rectangular blockage
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Fig. 21. DRC clean and LVS clean layouts of a hexagonal processor and a
6 × 6 multiprocessor array.

differing by one unit in width and height. All rectangular
blockages are piled together to create an approximate triangle
in the four corners of the rectangular floor plan.

A proper placement of pin positions can help to achieve
efficient global routing and easy CMP integration. At the floor
plan stage, four sets of pins are placed along the diagonal
edge of the corner and two set of pins are placed in the
horizontal top and bottom edges. As all macroblocks have
rectangular shapes (OSC, IMEM, DMEM, and two FIFOs),
this presents a challenge to place the macroblocks. In this
design, the macroblocks are placed along the edge and the
OSC and IMEM are placed in the left and right corners,
respectively, as shown in Fig. 21.

Metals 6 and 7 are used to distribute power over the chip
and the automatically created power stripes can stop at the
created triangle edge in the corner. The power pins are created
on the top and bottom horizontal edges. When integrating the
hexagonal processor together, the power nets along the triangle
edge can be connected automatically or manually by simple
abutment.

Once a hexagonal processor tile is laid out, a script is
used to generate the RTL files of the multiprocessor. The
CMP array can be synthesized with empty processor tiles
inside. Another script places the hexagonal tiles with the
blockage area overlap with nearest-neighbor processors along
the triangle edge of each hexagonal tile. SoC encounter can
connect all pins automatically although there are overlaps
between library exchange format files. The final GDSII files
are read into Cadence ICFB for DRC.

Fig. 21 shows the final layout of a hexagonal-shaped proces-
sor tile and a 6 by 6 hexagonal-tiled multiprocessor array.

VI. CHIP IMPLEMENTATION RESULTS

For all discussed topologies, there is no long-distance
intercommunication link across more than two processors and
processors are pipelined in a way that the critical path is not in
the interconnection links. Therefore, the maximum achievable
frequency of an array is the same as an individual core, which
is one of the key advantages of our proposed dense on-chip
networks.

Fig. 22. Final DRC and LVS clean processor tile layouts corresponding to
topologies. (a) 4-4 Rect. (b) 8-8 Rect. (c) 8-4 Rect. (d) 5-5 House. (e) 5-5
Rect Alt. Offset. (f) 6-6 Rect Offset. The hexagonal tile (6-6 Hex) shown in
Fig. 21 is not included. All tiles have cell utilizations from 81% to 83%.

A. Processor Tile Implementation

Seven tile types are implemented from RTL to GDSII layout
to get reliable estimates of how the topologies affect the system
performance in nanoscale chip design. All floor plans use the
same power distribution design and the I/O pins and macros
are placed along edges reasonably depending on the topology.
Rectangular hard macros might increase the area of house-
shaped and hexagon-shaped tiles because there will be more
corners where rectangular macros do not fit. We cannot draw
a conclusion as this is affected by many design factors such
as processor tile size, number of macros, and the CAD tool
(floor plan and routing).

In standard cell design, a higher cell utilization ratio can
both save area and increase system performance if the design
is routable. To get a minimum chip area for all tiles, we
start with a relatively large tile area, which results in a small
cell utilization ratio. Then, the tiles are repeatedly laid out
while maintaining the aspect ratio and reducing the area by
5% in each iteration with minor pin and macroblock position
adjustments in the floor planning phase. Once a minimum area
within 5% is reached, the area change is reduced to 2.5%.
The layout tool is pushed until it is not able to generate an
error-free GDSII layout for all tiles. Fig. 22 shows the final
layouts of the other six processor tiles besides the hexagonal
tile shown in Fig. 21. Our methodology results in high cell
utilizations for all tiles ranging from 81% to 83%.

Fig. 23(a) shows the absolute area of the seven processors
and Fig. 23(b) shows the area increments compared with the
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Fig. 23. Comparison of seven optimized processor tiles showing. (a) Absolute area. (b) Incremental area relative to the 4-4 Rect tile. (c) Absolute maximum
clock frequency. (d) Incremental clock frequency relative to the 4-4 Rect tile. (e) Absolute energy per operation. (f) Incremental energy per operation relative
to the 4-4 Rect tile. (g) Absolute clock skew. (h) Incremental clock skew relative to the 4-4 Rect tile. The processor types 1 to 7 correspond to the topologies
shown in Fig. 2(a) to (g) which are 4-4 Rect, 8-8 Rect, 8-4 Rect, 5-5 House, 5-5 Rect Alt. Offset, 6-6 Hex, and 6-6 Rect Offset.

baseline 4-4 Rect tile which has the smallest area and the
highest cell utilization of 83%. The hardware overhead of
all processor tiles is very small. For the other six designs,
the relative area increment is proportional to the number
of nearest-neighbor connections. Compared with the baseline
4-4 Rect tile, an area increase of 1.3%, 2.9%, and 5.9%
are required for the five-neighbor, six-neighbor, and eight-
neighbor tile designs, respectively. All six designs have a cell
utilization of 81%.

Fig. 23(c) shows the maximum clock frequency of all seven
designs and Fig. 23 (d) shows the frequency increment relative
to the baseline 4-4 Rect tile which can operate at a maximum
of 1065 MHz at 1.3 V. Because of an increase of area, the
two eight-neighbor mesh tiles can operate at 1.9% and 2.9%
higher frequencies. The 5-5 Rect Alt. Offset and 6-6 Hex tiles
have noticeably higher frequencies than other designs, which
achieve a frequency increase of 6.1% and 5.8%, respectively.
The 5-5 House tile has the same processor logic design and
area as the 5-5 Rect Alt. Offset tile, while it has a frequency
increment of only 1.5%. This is probably because the required
aspect ratio for the house-shaped tile is not a good fit for this
particular physical implementation. This can also explain why
the 6-6 Rect Offset tile has the lowest frequency, a reduction
of 3.0% in maximum frequency compared with the baseline
4-4 Rect tile.

Fig. 23(e) shows the energy per operation and Fig. 23(f)
shows the incremental energy per operation compared with
the 4-4 Rect tile. The energy is estimated based on a 20%
activity factor for all internal nodes. All six proposed tiles
have a higher energy per operation ranging from 3.7% to 8.4%
because of the extra circuits for interconnections. Like the
area increment, the average energy increments are proportional
to the number of neighboring interconnections, as shown in
Fig. 23(f).

Fig. 23(g) shows the worst-case clock skew for all seven
processor tiles and Fig. 23(h) shows the clock skew increments

compared with the 4-4 Rect tile. The 8-8 Rect tile shows a
29% higher clock skew probably because routing congestion in
the corners affects the clock tree synthesis. The more circlelike
shape helps the layout tool to generate a clock tree with smaller
clock skew. As expected, the house-shaped and hexagonal-
shaped tiles have the lowest clock skew with a reduction of
54% compared with the baseline 4-4 Rect tile.

B. Application Area and Power

Application area depends solely on the number of used
processors and the processor tile sizes if processors are
compactly tiled. Fig. 24 shows the normalized application
area of two benchmark applications for all seven topologies.
Compared with 4-4 Rect, the six proposed topologies reduce
application area by 14%–22%. Corresponding to the largest
reduction of the number of used processors, 6-6 Hex and
6-6 Rect Offset achieves the largest application area savings,
a 22% reduction compared with the 4-4 Rect.

For applications mapped to the many-core processor array,
the average power can be estimated by

PTotal =
∑

i

PCore,i +
∑

i

PComm,i + Pother (1)

where PCore,i and PComm,i are the power consumption of
processor core and communication circuits of the i th proces-
sor. Pother is the average power of other chip components such
as memory modules or accelerators.

The power consumption of processor cores can be esti-
mated based on their activity factors and measured power
consumption when a processor core is 100% actively executing
instructions. The two applications are simulated based on
the 4-4 Rect topology to collect the computational processor
activity factors and their output link activity factors. Because
of a minimal workload change on computational processors
across different topologies, the computational processor activ-
ity factors of all topologies are almost the same. Simulation
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(a) (b)

Fig. 24. Mapping results of the H.264 residual encoder capable of HD 1080p encoding at 30 f/s and 802.11a/g baseband receiver in 54-Mb/s mode.
(a) Normalized application area. (b) Normalized power consumption.

results show that the average computational processor activity
factors are 58% for H.264/AVC residual encoder and 49% for
802.11a/g baseband receiver, respectively. The activity factors
of routing processors are estimated based on the number of
input links and the corresponding link activity factors. The
routing processor activity factors are 9.0% and 18.2% for
H.264/AVC residual encoder and 802.11a/g baseband receiver,
respectively.

The communication power of processor i can be estimated
as follows:

PComm,i =
∑

j

(δi j · PCommActive,L j + PCommIdle,L j ) (2)

where δi j is the communication active percentage of
link j; PCommActive,L j and PCommIdle,L j are the average power
consumed by a link with a length L while the link is 100%
active and idle. The communication link power is estimated
based on simulation which is in a range 5%–10% of the
processor power consumption. The link idle power (mainly
leakage power) is nearly zero because of the simplicity of the
communication circuits.

To meet the throughput requirement for the two mapped
applications, processors need to run at 959 MHz at a supply
voltage of 1.15 V for H.264 residual encoder and 594 MHz at a
supply voltage of 0.92 V for the 802.11a/g baseband receiver.
All processors run at the same clock frequency and supply
voltages.

With the above equations as well as the processor power
consumption numbers, application mapping diagrams, the
required clock frequencies, and supply voltages for processors,
Fig. 24(b) shows the normalized average power consumption
of the H.264 residual encoder (encoding 1080p video at 30 f/s)
and the 802.11a/g baseband receiver (54 Mb/s) for all seven
topologies.

Compared with 4-4 Rect, the six proposed topologies reduce
application power by 9%–17%. The 6-6 Hex achieves the
largest average application power savings, a 17% reduction
compared with 4-4 Rect. The 5-5 Rect Alt. Offset is the second

most power-efficient topology, yielding 15% average power
consumption compared with 4-4 Rect. Although the 6-6 Rect
Offset has essentially the same topology property as 6-6 Hex, it
reduces only 11% application power compared with 4-4 Rect.

VII. CONCLUSION

This paper presented seven low area overhead and low
design complexity topologies other than the commonly used
2-D mesh for dense on-chip networks. The proposed topolo-
gies included two eight-neighbor meshes, two five-nearest-
neighbor, and three six-nearest-neighbor topologies—three of
which used a novel house-shaped and hexagonal-shaped tiles.
The application mapping and chip implementation results
showed the effectiveness of the interprocessor interconnect
of all proposed topologies. Compared with 2-D mesh, the
hexagonal-shaped six-nearest-neighbor topology reduced 22%
application area and 17% average power consumption with a
2.9% area increase per processor tile. The rectangular-shaped
six-nearest-neighbor topology provided the same interconnect
architecture as the hexagonal-shaped tile. Despite being less
power-efficient, its simpler physical design made it an attrac-
tive design alternative for many-core dense on-chip networks.
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