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Abstract—As processors move from multi-core to many-core
architectures, opportunities arise for energy-efficient enterprise
computations, such as sorting, on large arrays of processors. This
paper proposes three different energy-efficient sorting methods for
the first phase of an external sort simulated on a varying sized
fine-grained many-core processor arrays used as a co-processor to
an Intel CPU, which completes the second phase. The most energy
efficient sort requires over 100× less energy than the comparable
phase one GPU radix sort, and over 145× less energy than the
comparable CPU quick sort to complete phase 1. Despite these
large energy usage discrepancies, the highest throughput many-
core sort was still over 17× faster than the comparable CPU sort
and 9× faster than the GPU sort. The proposed sorting algorithms
are scalable to any sized 2D mesh processor array while giving a
large energy savings and increasing performance.

I. INTRODUCTION

Demand for reduced power consumption while not reducing
processing ability is high as energy efficiency in large database
data centers is an increasingly important concern [1].

With ever shrinking transistors, extra area is being dedicated
to multiple processing cores, instead of adding more transistors
to a single core [2]. Increasing the number of cores on a
single chip results in the bandwidth for shared memory sys-
tems becoming too large to be implemented with traditional
architectures [3].

Sorting is one of the most used processing kernels in database
systems [4], creating an interest in energy conscious sorting
methods [5]. Datacenters with large data sets generally perform
external sorts, sorting data that cannot fit in volatile memory,
so the data needs to be sorted in two different phases [6].
With these larger arrays scaling to hundreds of cores, current
sorting algorithms designed for traditional architectures cannot
be used due to differences with architectural features such as
intra-processor communication, shared memories, and off chip
I/O.

This paper presents energy efficient, scalable sorting algo-
rithms for an external sort, with the first phase completed by a
fine-grained many-core array of low-powered, simple Multiple
Instruction Multiple Data (MIMD) processors. The sorts consist
of small modular program kernels operating on each core,
making them scalable to different array sizes. A general purpose
CPU performs the second-phase merge with the many-core
array acting as a co-processor, performing the first phase. The
merge sort does not benefit from parallelization onto a large
many-core array on a single chip since the computation is I/O
bound.

II. SORTING ON A MANY-CORE PLATFORM

As computers changed to multi-core processors, sorting re-
search adapted, parallelizing sorting algorithms to take advan-
tage of multiple processing cores. The progression to many-
core processors necessitates a new shift to sorting with large
processor arrays.

External sorting, which is commonly used in datacenters,
requires the use of a secondary storage system and is done
in two phases. During the first phase, runs of sorted lists are
created from unsorted data, which can fit inside main memory.
In the second phase, these sorted runs are merged together to
create one sorted list.

The proposed sorts follow the Sort Benchmark [7] require-
ment of 100-byte records, where the first 10 bytes are the keys
and the other 90 bytes are the record’s payload.

A. Scaling to Many-Core

As arrays get larger, high bandwidth long-distance commu-
nication and access to shared memory becomes more difficult,
and in some cases are removed in favor of more processing area
and processing units, as done in the many-core array by Truong
et al. [2].

This paper presents sorting with a large array of processors
that have communication only with nearest neighbors and
limited long-distance communication. Only processors on the
edge of the array have access to chip I/O and the chip contains
no global shared memory. The proposed sorts are designed to
use this array as a co-processor working in tandem with a
general purpose CPU, allowing it to use its complex high power
circuits on more appropriate computations.

With only local communication and arbitrarily large arrays,
the design of the proposed many-core phase 1 sorts was limited
to streaming data through an array. Therefore the co-processor
could be used to sort data as it streams from memory to the
general purpose CPU or another memory, not involving the
general purpose CPU during the first phase.

The sorts were evaluated on simulations of large arrays,
but in order to show quantitative results, it was necessary to
confine some limits to an existing architecture. Therefore, the
AsAP2 architecture, developed by Truong et al. [2] was used
for certain limitations and the physically measured traits from
the fabricated 65-nm chip.

III. SORTING KERNELS

The sorting variations, described in Section IV, utilize basic
program kernels in each of the processors in the array. Each
kernel was designed for modularity, so the kernels can be
easily used in any processor on any part of the array, allowing
for easy scaling. No specific information or knowledge about
a processor’s location or run size is required for the sorting
or merge kernels, making different and changing sorts easily
programmable. Each processor on the target platform has a
128x35-bit instruction memory, limiting each kernel to just 128
assembly instructions.



A. SAISort

The Serial Array of Insertion Sorts, or SAISort, is the
fundamental sorting block used in all variations of the presented
sorts. The name is taken from the observation that this sort on
the micro scale is a insertion sort, and when multiple of these
kernels are serially linked together, it creates a bubble sort in
the macro scale.

When a fresh run is sent through the SAISort kernel, it will
start by filling up its internal memory with a sorted list, as
records arrive. Once the local memory is full, each new record
will be sorted into the local list and the lowest valued record
will be sent out. A code word preceding each record is reserved
for triggering a reset at the end of a sorting run, allowing runs to
begin without foreknowledge of the run size. When the kernel
detects a reset signal, it will pass the reset signal to its output
and begin output streaming.

B. Merge

The merge kernel will compare the keys received on each of
its two inputs and will pass the record with a lower key value
to its output. When a reset signal a received from one input,
records from the other input will be passed directly to the output
until a second reset signal is received. The kernel will pass this
reset signal and then resume merging.

C. Split

The split kernel will be given a constant value at compile
time for the number of split cores past the current core. The
kernel will pass that many records to the next split processor,
then take one record for its current row. It continues in this
fashion until it receives the reset signal, at which point it will
forward the reset signal to both the next split processor and the
current row, then start from the beginning of the program.

D. Distribution

The distribution kernel presorts records by the MSBs of their
key and sends them to rows of the array for finer sorting. When
a reset is triggered, records are streamed one row at a time in
increasing radix order. The radix value used by each core is set
at compile time.

Three rows of cores are combined into a single lane that
processes two radixes and is managed by a single distribution
core. The upper and lower rows are each dedicated to a radix,
while the middle row processors are dynamically assigned to
the upper or lower row as those rows fill. Control signals for
the middle row configuration are generated by the distribution
core for a lane. The sorting cores use the SAISort kernel.

A series of distribution cores handle the routing of records
to the appropriate lane and row, as well as detecting when a
row is full and triggering a reset. Sorting of a set of records
ends when a lane receives a record and determines it should be
placed into a row that is already full. The core will send a reset
request to the upstream and downstream distribution cores, as
well as both of its lanes sorting rows. This core will then reset
its state and reprocess the record that triggered the reset. Other
distribution cores will propagate the reset signal and reset. A
reset signal may also be sent into the core array to force a reset.
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Fig. 1. A sample Snake Sort mapping showing the data path and how processors
are used.

E. Dynamic Routing

Assignment of the center SAISort processors in a lane to
the upper or lower rows is performed in 3x2 blocks, with
two cores in each row. Upon reset, a block will default to
assigning the central cores to the lower row; upon reception of
a reconfiguration signal from the distribution core, the central
cores will be reassigned to the upper row. This reassignment
is performed by reconfiguration of the circuit network control
signals in each core of the block, allowing records to be diverted
from the upper or lower row into the central cores for additional
capacity. To prevent reconfiguration of the block when it is still
active, the central cores will send a signal to the upper and lower
rows to indicate when they have completed a flush and are ready
for reset. The upper and lower rows will delay reconfiguration
until this signal is received.

IV. PROPOSED SORTING VARIATIONS

Several different sorting schemes were explored. The follow-
ing sorting variations fit within our target architecture limita-
tions, utilize simple, modular kernels, and scale easily with
processor array sizing

A. Snake Sort

The snake sort is the simplest of the proposed sorting varia-
tions. This sort uses the SAISort kernel on each processor in the
array, linking them together using a single input and output per
processor. Each processor will take an input record, determine
where it fits in that processor’s sorted list, and will then output
the lowest record. To fit within the processor memory limitation
of 256 bytes on our target architecture, each processor core can
hold up to two 100 byte records. Each processor added to the
array increases the number of records sorted per run by two.
One extra record can be sent into the array, but any additional
records added will be sorted incorrectly if they have a value
lower than that of a record previously pushed out of the array
After a full run has been sent into the chip, a reset signal is
sent through the snake triggering a flush in each processor.

A generalized mapping for the Snake Sort is shown in Fig. 1
which displays how more processors are used.

B. Row Sort

In row sort, multiple lists are sorted in parallel and then
merged together, shortening the data path for any given record.
When data enters the processor array, split processors in the
first column are used to evenly distribute the records to each
of the rows in the array. Each row utilizes the SAISort to sort
their given records similar to individual snake sorts, generating
multiple sorted lists. When the reset signal is sent into the
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Fig. 2. Row Sort mapping showing the data path and how it is scaled.

chip, each row will send its sorted list to the final column of
processors, where the merge kernel will join the lists to output
a single sorted list. A mapping of the row sort is given in Fig. 2
where the sort can be scaled by adding more rows or columns.

Due to overhead for the split and merge kernels, this method
sorts fewer records per run than snake sort. The bottom left
and upper right processors are not required for distribution
or merging respectively, as shown in Fig. 2. Two records are
stored per sorting core and an additional record is added to
each row, similar to snake sort. It was found that the highest
activity processors with this method was the merge column of
processors.

C. Adaptive Sort

In adaptive sort, the processor array is partitioned into a
number of sorting lanes. Each lane begins with one 3x1 block
containing one distribution processor and two basic SAISort
processors. The lane is then expanded with some number of
3x2 adaptive sorting blocks, each containing the SAISort kernel
with additional reconfiguration code. Each lane is responsible
for sorting two radixes. The mapping is similar to the row sort,
but the middle row of each set of three rows are dynamically
allocated to the row filling up faster.

The distribution cores of each lane are connected together
for passing records and control signals. The final sorting cores
for each radix are similarly connected together for emptying
records from the array. The lane connected to chip input runs
additional distribution code for controlling the rate records are
admitted into the array.

The advantage of radix sort over row sort is that it avoids a
merging bottleneck at the end of each run. The disadvantages
are a more complicated distribution algorithm and a non-
deterministic number of records per run, as each run ends when
a radix is full.

V. SIMULATION AND RESULTS

A. Simulation

This work explores sorting on a many-core platform as the
size of the array is scaled to contain different numbers of
processors. A simulator was used to model an arbitrarily sized
many-core array. The gensort program [8] was utilized to create
random datasets for all simulations and comparison simulations.

The scalable many-core architecture is modeled using a cycle
based, two state simulator written in C++. Each processor
core is simulated as a separate task, allowing multithreaded
operation. Core simulations are synchronized based on the
timing of data transfers through a modeled circuit network.
Energy usage is estimated based on physical chip measurements

for each type of operation, memory accesses, network access,
oscillator activity, and leakage. These figures are scaled for
voltage based on measured scaling characteristics.

The novel approach to sorting on many-core processors pre-
viously presented [9] was implemented on the AsAP2 platform.
These sorts were designed to be modular and work on a large
array of processors. Expanding on previous work, results for
these sorts as well as the adaptive sort have been gathered for
much larger and varying many-core array sizes.

The number of processors was scaled from 100 processors to
10,000 processors. Some selected points for the size of the array
and the number of chips used are compared in Section V-B.

Comparison sorts were created which would benchmark our
many-core results. Common unoptimized sorts were imple-
mented on two different platforms, a laptop CPU, and a laptop
GPU. For each comparison sort, thousands of executions were
ran to get an average execution time.

1) Intel CPU Quick Sort: The quick sort [10] was chosen
because it is a commonly used efficient sort. It was implemented
in C++ on a Intel Core 2 Duo T7500, a 65-nm chip with a TDP
of 35 W and a clock frequency of 2.2 GHz.

2) Nvidia GPU Radix Sort: The radix sort was chosen to
be implemented on the GPU platform because there was an
accessible version publicly available with the Nvidia CUDA
SDK written by Satish et al. [11]. The sort was implemented on
a Nvidia GeForce 9600m GT, a 65-nm chip with 32 processing
cores, a clock speed of 500 MHz, and a power consumption of
23 W. It was necessary to extensively change the code to work
with the 80-bit keys and 100-byte total records.

3) Intel CPU Merge Sort: In order to simulate an entire
external sort, it was necessary to write a sort for phase 2.
The merge sort was chosen due to it’s simplicity [6]. This was
implemented in C++ on the same Intel Core 2 Duo processor
described in Section V-A1. Two GB of sorted runs were loaded
onto main memory and timed separately from the sort where
thousands of records were merged to get a throughput number.
The throughput number was used to model the total time to
complete phase 2 for the different run sizes.

B. Results
The different sorting methods were used to compute a 10-GB

external sort. The phase 2 merge as well as other administrative
tasks are performed on a Intel CPU, and phase 1 computations
are performed on the given computational platform. All of the
tests were run on or simulated with measured values from chips
fabricated in 65-nm technology, so no scaling was necessary.

Fig. 3a shows the energy required by the processing unit to
perform the different sorts. The energy cost of running the co-
processor many-core chip is almost negligible in the graph when
compared to the required power to operate the Intel processor
for administrative tasks and phase 2 merge. This translates to
extremely energy efficient sorts on the many-core system, with
the phase 1 row sort on a single 256-processor array taking
over 145× less energy than the Intel CPU quick sort, and
over 100× less energy than the Nvidia GPU radix sort. This is
overshadowed by the phase 2 energy, making the total energy
cost for the most efficient many-core sort require 4× less energy
than the comparable CPU and GPU sorts.

As can be seen in Fig. 3b, the many-core sorts are able to
sort their 10 GB of runs in less time than any of the comparison
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Fig. 3. (a) Total energy required by processors on a complete 10-GB sort. (b) Time required to sort a complete 10-GB dataset. (c) Time-area required by
processors of a complete 10-GB sort.

sorts. The row sort performed on 4 chips with 256 cores takes
over 17× less time to perform phase 1 compared to the quick
sort on a CPU, and over 9× less time to perform a comparable
radix sort on the GPU. The largest difference in total time is
found between the row sort with 10,000 processors showing
over 4× smaller time that the comparable CPU sort, and over
3× smaller than the GPU sort. It can be seen that the sorting
time is largely governed by the second phase merge with the
proposed many-core sorts.

To highlight a benefit of using a small low powered many-
core chip as a co-processor in a database system the total time-
area metric was used, where the total time is multiplied by the
total chip area of the processing unit. Shown in Fig. 3c, one
can see the tradeoff of scaling the number of processors. This
analysis highlights that all of the many-core sorts are faster
and more area efficient than the CPU or GPU, except for the
10,000-processor many-core chip.

VI. CONCLUSION

We have presented three different sorting variations. This was
accomplished on a varied amount of processors in a many-core
array acting as a co-processor to a Intel CPU performing the
phase two merge part of the external sort. The proposed sorts
use kernels to program individual processors in the array in
a manner that makes the sorts modular, easy to program, and
easily scalable.

Many-core array sorts were modeled with the number of cores
ranging from 100 to 10,000. We found the most energy efficient
phase 1 sort required over 100× less energy than the comparable
Nvidia GPU and over 145× less energy than the comparable
Intel CPU sort. With these large energy differences, the highest
throughput many-core phase 1 sort was still over 9× faster than
comparable CPU and GPU sorts and more than 2× less time-
area. The proposed sorts can be implemented on differing sized

arrays in a large database system and recognize large energy
savings without giving up performance.
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