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Abstract—This paper proposes Hybrid Floating-Point Modules
(HFPMs) as a method to improve software floating-point (FP) throughput
without incurring the area overhead of hardware floating-point units
(FPUs). The proposed HFPMs were synthesized in 65 nm CMOS. They
increase throughput over a fixed-point software FP implementation
by 3.6× for addition/subtraction, 2.3× for multiplication, and require
less area than hardware modules. Nine functionally equivalent FPU
implementations using combinations of software, hardware, and hybrid
modules are synthesized and provide 1.07-3.34× higher throughput than
a software FPU implementation, while requiring 1.08-12.5× less area
than a hardware FPU for multiply-add operations.

I. INTRODUCTION

Floating-point (FP) arithmetic is the most commonly used method
for real number representation in modern computers [1]. However,
some architectures are limited to fixed-point arithmetic due to the
large area and power requirements of FP [2], [3]. Therefore, it
remains desirable to increase the FP throughput provided by a
software implementation without incurring the area overhead of a
full hardware floating-point unit (FPU).

Many techniques for achieving lower overhead and increasing
FP throughput have been introduced. Fused and cascade multiply-
add FPUs improve accuracy and provide computational speedup,
however, they introduce large area and power overheads that are
undesirable for simple fixed-point processors [4]. Block FP (BFP)
is useful for increasing computational accuracy, however it is most
effective for handling blocks of data with similar magnitudes over
an entire block [5]. Virtual FPUs were presented which utilize
microoperations and custom instructions, however, the architecture
presented is not similar to our platform and area data was not
published for comparison [6]. Some architectures reduce the exponent
and mantissa widths [7], and others develop a reduced FP format [8].
Although certain applications such as speech recognition and image
processing don’t require the full mantissa width, these techniques
require accuracy analysis for their particular applications [9]. How-
ever, certain elements of the IEEE-754 standard can be removed
for multimedia applications, as in the CELL processor, including
rounding, exceptions, and denormal number handling to increase
performance [10]. Hockert et al. utilized custom FP instructions with
fractured floating-point units to increase FP throughput with lower
area overhead than a full hardware FPU [11]. However, this work
did not consider modular FPUs nor the throughput when performing
the multiply-add operation. Additionally, this work focused on adding
FP support on a Nios II embedded processor on a FPGA rather than
on a simple processor with a 16-bit fixed-point datapath.

To simultaneously take advantage of the low area overhead of
fixed-point software implementations and the high throughput of
FP hardware acceleration, Hybrid Floating-Point Modules (HFPMs)
are presented. These modules perform FP arithmetic on a simple
fixed-point processor using a combination of fixed-point instructions
and custom FP instructions. Area overhead is reduced by reusing
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Fig. 1. Hybrid modules offer alternatives to pure software and pure hardware
designs to balance the area-throughput tradeoff.

the existing fixed point hardware, such as the multiplier and adder.
Throughput is increased by replacing long sections of serial code with
custom FP instructions to perform the same operation in fewer cycles.
As portrayed in Fig. 1, hybrid modules provide higher throughput
than full software FP modules and require less area than conventional,
or full hardware FP modules.

The remainder of this paper is organized as follows: Section II
presents the FP format and arithmetic. Section III covers the targeted
many-core architecture. Section IV discusses the full software FP
implementations which perform FP arithmetic using only fixed-point
instructions. Section V presents the full hardware FP modules which
contain full hardware support to perform FP arithmetic in a single
instruction. Section VI discusses the proposed hybrid modules and
presents three example modules, two for addition/subtraction, and one
for multiplication. Sections VII and VIII compare the FP modules and
FPU implementations. Section IX concludes the paper.

II. FLOATING-POINT FORMAT AND ARITHMETIC

All FP modules presented utilize the IEEE-754 binary32 format
(single precision) and inputs are restricted to the normalized value
interval ±[2−126, (2−2−23)×2127] [12]. Exception handling, NaNs,
±Inf, and denormal values are not supported, and rounding is
performed using the IEEE standard’s default rounding mode, round
to nearest even, in order to reduce overhead and because many
multimedia applications do not rely on them [10].

Addition/subtraction is performed by comparing the exponents and
mantissas to determine the smaller magnitude input operand. The
second operand’s sign is inverted when performing FP subtraction.
The result sign is determined by the sign of the larger operand. The
smaller operand’s mantissa is right shifted by the exponent difference
to align mantissas. Effective subtraction requires complementing and
adding one to the smaller operand’s mantissa. The mantissas are then
added, the sum is normalized, and the result is rounded.

For multiplication, the sign of the result is the XOR of the
operand signs. The result exponent is calculated by adding the
operand exponents and subtracting the extra bias of 127. The result
is formed by multiplying the operand mantissas, right shifting for
normalization, and then rounding.

All proposed architectures are synthesized with a 65 nm CMOS
standard cell library using Synopsys DC Compiler configured to
1.3 V and 25°C with a 1.2 GHz clock frequency. For validation and



performance analysis, FPgen, a FP test-suite is used to include special
cases unlikely to be covered by pure random test generation such
as including all possible values for a shift between input operands
for addition/subtraction operations [13]. Additionally, testing is sup-
plemented by using pseudorandomly generated FP values on the
normalized value interval ±[2−126, (2− 2−23)× 2127].

III. TARGETED MANY-CORE ARCHITECTURE

The AsAP2 architecture is an example of a fine-grained many-
core system [14], capable of computing complex DSP application
workloads such as audio and video processing [15]. It features 164
simple programmable processors each with a six-stage pipeline, 16-
bit fixed-point arithmetic logic unit (ALU) and multiplier, and 40-
bit accumulator. Calculations are performed using two’s complement
arithmetic. Each processor occupies 0.17 mm2 in 65 nm CMOS
technology, can operate at a maximum clock frequency of 1.2 GHz at
1.3 V, and includes no specialized instructions [3]. Additionally, each
programmable processor contains a 128×35-bit instruction memory,
128 × 16-bit data memory, and two 64 × 16-bit dual-clock FIFOs
for inter-processor communication. Although this platform includes
a BFP unit, it operates on 16-bit words and, therefore, provides less
precision than a 32-bit FP design. Several methods for performing
floating point operations on this platform are considered next.

IV. FULL SOFTWARE FP MODULES

To enable the target platform to perform FP arithmetic, a FP
software library is created in AsAP assembly. This library consists
of an addition/subtraction and multiplication software module. These
modules emulate FP hardware by executing fixed-point operations on
the platform’s integer ALU. They are referred to as “full software”
because they only use fixed-point instructions and do not include
any custom FP instructions. Due to the width of the input bus, FP
values are sent on chip as two 16-bit words. When using the software
modules each FP value is first split into four 16-bit words, consisting
of the sign, exponent, the 12 most significant mantissa bits (with an
explicit hidden bit), and the 12 least significant mantissa bits. Splitting
each FP value across four words allows fixed-point operations without
affecting adjacent bits.

The full software modules have large instruction counts for their
programs due to the number of comparisons, the splitting of the FP
value across four words, and the lack of unsigned ALU instructions.
As a result, the FP addition/subtraction software module requires two
cores for sufficient instruction memory. The bottlenecks for software
FP are due to operand comparison, mantissa alignment and addition,
normalization, and rounding. It is desirable to increase the throughput
of these modules while keeping the area overhead small.

A. Multiplication Module (Full SW Mult)

The software FP multiplication module requires 80 instructions and
achieves a throughput of 15.6 MFLOPS and throughput per area of
92.69 MFLOPS/mm2.

B. Addition/Subtraction Module (Full SW Add/Sub)

The software FP add/sub module requires 216 instructions, there-
fore necessitating two cores for sufficient instruction memory. Al-
though it achieves a throughput of 19.7 MFLOPS, the large area
overhead reduces the throughput per area to 58.47 MFLOPS/mm2.

V. FULL HARDWARE FP MODULES

To determine the throughput and area achievable for this plat-
form, two full hardware FP modules are implemented, an addi-
tion/subtraction and multiplication module. Both operate without any
FP emulation. They are referred to as “full hardware” because all FP
arithmetic is done with FP hardware using a single FP instruction and
no fixed-point instructions are used for computation. However, the
target platform has a 16-bit datapath and the FP operands must first
be loaded in FP registers using fixed-point instructions. Each register
is loaded using the standard move assembly instruction. A single
FP instruction performs an entire FP operation, then the results are
read from the registers, 16-bits at a time. To compare the throughput
and area of FP modules integrated with a 32-bit datapath, separate
versions of these modules are created. These 32-bit I/O modules
permit both the source operands and the destination to be specified
in a single instruction.

A. Multiplication Module (Full HW Mult)

This full hardware module performs FP multiplies, using the
FPMult instruction with a single cycle execution latency. This module
requires 7 instructions, achieves a throughput of 200 MFLOPS, and
requires 18322.7 µm2, which increases the core area by 10.9%.

Full HW Mult (32-bit I/O) is a separate version of this module
that can be integrated with a 32-bit datapath. This module uses the
FPMult32 instruction, which has a single cycle execution latency.
If both FP operands must be received from a neighboring core,
than three instructions are required to perform a multiplication. If
instead all operands are readable from a core’s data memory, than this
module requires only a single instruction to perform multiplication. A
throughput of 1200 MFLOPS is achievable and requires 17565.6 µm2

silicon area. Although the area is less than the 16-bit datapath module,
this value does not consider the additional area for a 32-bit datapath.

B. Addition/Subtraction Module (Full HW Add/Sub)

The full hardware add/sub module uses the FPAdd and FPSub
instructions, each with a two-cycle execution latency. This module
requires 7 instructions, achieves a throughput of 171 MFLOPS, and
requires 14111.8 µm2, which increases the core area by 8.4%.

Full HW Add/Sub (32-bit I/O) is a separate version of this module
that can be integrated into a 32-bit datapath. This module uses the
FPAdd32 and FPSub32 instructions for addition and subtraction,
respectively. Each instruction has a single cycle execution latency.
Three instructions are required to perform an addition or subtraction
if both operands are read from a neighboring core, otherwise only a
single instruction is necessary. This module has a throughput of 1200
MFLOPS and requires 10468.6 µm2 silicon area. This area value
value does not consider the additional area for a 32-bit datapath.

While adding full hardware FP support dramatically increases the
throughput versus a full software implementation, the area overhead
increases as well. An approach at reducing the hardware overhead
while still increasing throughput versus a FP software library is
presented next.

VI. PROPOSED HYBRID FLOATING-POINT MODULES (HFPMS)

The HFPMs are fixed-point software and custom FP instructions
operating together on FP workloads to reduce the bottlenecks of
software emulation while requiring less area than full hardware
FP modules. HFPMs are alternatives along the software/hardware
continuum. Different modules can be combined into a FPU to achieve
a wide range of area and throughput targets. Similar to the full
hardware FP modules, the HFPMs utilize a set of FP registers.



Custom FP instructions then perform operations on the data stored
in these registers and output the results 16-bits at a time.

Table I indicates which instructions are utilized in each module.
The HFPMs use these instructions to perform FP operations on
data stored in the FP registers. Each instruction has a single cycle
execution latency.

A. HFPM Mult Ver. 1

This module performs the mantissa multiplication in fixed-point
software instructions. The normalization, rounding and exponent
calculation are performed with the FPMult NormRnd custom instruc-
tion. Fig. 2 shows the hardware for implementing this instruction into
the execution stage of the AsAP2 pipeline [3]. The FPMult NormRnd
instruction is described in detail below.

1) FPMult NormRnd: The mantissa multiplication is performed
in software and then the product is loaded into FP Reg 1. The sign
bits and exponents of both operands are loaded into FP Reg 2. This
instruction calculates the new sign bit, exponent, and normalized and
rounded product. The result is selectable via a 16-bit mux.

B. HFPM Add/Sub Ver. 1

This module is used for performing FP addition/subtraction oper-
ations. It uses fixed-point software instructions for determining the
larger and smaller exponents. The rest of the calculation is carried
out by the four custom FP instructions described below.

1) FPAdd SatAlign: Following operand sorting in software, both
operands are loaded into the FP registers. This instruction uses
the software-calculated mantissa shift amount as an operand. This
instruction inserts the hidden bit, saturates the alignment amount,
then aligns and adds the mantissas. For effective subtraction, this
instruction inverts and adds one to the smaller magnitude operand’s
mantissa. The unnormalized result is written into a FP register and
the 16 MSBs are output.

2) Lzd: After the mantissas are added, this instruction counts
leading zeroes to determine the shift amount for normalization. Lzd
operates on 16-bit chunks of the sum to permit hardware reuse and
reduce the area overhead. This instruction can also be reused for
non-FP general purpose workloads.

TABLE I
FLOATING-POINT INSTRUCTION USE BY VARIOUS MODULES
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Fig. 2. Hardware to implement the FPMult NormRnd instruction for HFPM
Mult Ver. 1 module. FP Reg 1 is loaded with the product of the mantissa
multiplication. FP Reg 2 is loaded with the sign bits and exponents of both
operands. The final result of the FP multiplication is read out 16-bits at a time
via the mux shown at the bottom.

3) BShiftL: Using the shift amount determined by Lzd and the sum
already stored in the FP registers by FPAdd SatAlign, this instruction
shifts left for normalization, adjusts the exponent, and stores the 27
result LSBs in a FP register. An additional benefit of this instruction
is that it can be reused for non-FP general purpose workloads.

4) FPAdd Round: After normalization, this instruction rounds and
adjusts the exponent and mantissa. The result is stored in a FP register
and the 16 MSBs are returned.

C. HFPM Add/Sub Ver. 2

This module is an alternative to the HFPM Add/Sub Ver. 1 mod-
ule, and supplements it with two additional instructions, described
below. The FPAdd SatAlign instruction, however, is replaced by
FPAdd Align. Instead of handling operand sorting and the exponent
difference calculation in fixed-point software, FPAdd Compare and
FPAdd Align perform these operations.

1) FPAdd Compare: Both operands are first loaded into the
FP registers. FPAdd Compare then compares the exponents and
mantissas for FP addition and subtraction and overwrites the FP
registers with the sorted operands. The saturated shift amount is
output since exponent differences greater than 25 require identical
mantissa alignments.

2) FPAdd Align: This instruction is identical to FPAdd SatAlign,
except that it does not saturate the mantissa alignment shift amount.
Using the sorted operands from the FP registers, the mantissas are
aligned and added. The rest of the addition/subtraction operation is
performed in the same fashion as the HFPM Add/Sub Ver. 1 module
using Lzd, BShiftL, and FPAdd Round.

VII. COMPARISON OF FP MODULES

Table II displays the throughput and instruction count for each FP
module. Fig. 3 plots the area and throughput of the FP modules,



with cycles per FLOP on the vertical axis and additional core area
on the horizontal axis. HFPM Mult Ver. 1 requires 1.5% additional
core area and provides 2.3× higher throughput than the full software
multiplication module, Full SW Mult. Compared to the full software
addition/subtraction module, HFPM Add/Sub Ver. 1 and HFPM
Add/Sub Ver. 2 provide 1.8× and 3.6× higher throughput, and require
5.1% and 6.5% additional core area, respectively.

Although the full hardware FP modules provide dramatic through-
put improvements; 8.7× higher throughput for addition/subtraction
and 12.8× for multiplication, these modules are too large, especially
if increasing core size sacrifices the total number of cores that fit on a
die. The next section considers this overhead and the tradeoffs when
the FP modules are combined into FPU implementations, consisting
of one multiplication and one addition/subtraction module.

VIII. COMPARISON WHEN PERFORMING UNFUSED

MULTIPLY-ADD OPERATION

Thirteen FPU implementations consisting of one
addition/subtraction and one multiplication module are compared in
Table III. Each implementation offers an alternative to a full software
or full hardware FPU by trading off area and throughput. The unfused
multiply-add operation is used to evaluate the performance of each
FP module combination. Whereas a fused multiply-add performs the
operation a+ b× c in one step with a single rounding; the unfused
multiply-add first calculates the product b × c, rounds the result,
adds the rounded product to a, then performs a second rounding.
Although the fused multiply-add can reduce latency and offer higher
accuracy, the additional area overhead is large for this platform.

Implementation 1, a full software FPU does not require any
increase in core area, however the throughput is relatively low at
15.6 MFLOPS. Implementation 12, a full hardware FPU, requires
19.6% additional core area and provides 92.3 MFLOPS through-
put. Table II demonstrates that the hybrid modules provide higher
addition/subtraction throughput than the software module. However,
in implementations 4 and 7; the instruction overhead to interface
with the Full SW Mult module outweighs the benefits from using the
HFPM Add/Sub Ver. 1 or Ver. 2 module. Although implementation 7
offers the lowest throughput of all the FPUs considered, the program
size is reduced by 57.4% and throughput/area increases by 1.7×
versus the full software implementation.

Fig. 4 plots the cycles per FLOP for the unfused multiply-add
operation versus core area. Fig. 4(a) shows the results for all FP
implementations, and (b) presents those with the highest throughput
per area. Nine of the FPU designs provide higher throughput per area
than the full software FPU, the smallest of which requires 92% less

TABLE II
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Fig. 3. Additional area versus cycles per FLOP for all FP modules. The
nine symbols in the legend denote the average clock cycles per FLOP, and
the endpoints of the interval bars for each symbol denote the corresponding
minimum and maximum. Contour lines show throughput per additional area
tradeoffs. Results are obtained from synthesis in 65 nm CMOS.

area than a full hardware FPU implementation. Implementation 8,
consists of only hybrid modules and increases throughput per area
by 4.1× versus the software implementation and is 9.95% smaller
than the full hardware FPU.

IX. CONCLUSION

In this paper, three HFPMs are presented for a fine-grained
processor. These modules increase throughput versus a software
implementation by adding custom FP instructions. Area overhead
is kept low by reusing the existing fixed-point functional units
such as the multiplier and adder. Thirteen functionally equivalent
FPU implementations using combinations of fixed-point software, FP
hardware, and hybrid modules are synthesized in 65 nm CMOS. Nine
of these implementations increase throughput per area by 1.05-8.5×
when compared to a software implementation, and use 1.08-12.5×
less area than a full hardware alternative.
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