
Hybrid Floating-Point Modules with Low Area Overhead on a

Fine-Grained Processing Core
Jon Pimentel and Bevan Baas University of California, Davis: VLSI Computation Laboratory

VCL

1. Research Motivation 2. Targeted Many-Core Architecture

3. Floating-Point Format Modifications 4. Hybrid Floating-Point Modules (HFPMs)

5. Full Software FP Modules 6. Full Hardware FP Modules

7. Comparison of Floating-Point Modules 8. Comparison of Floating-Point Modules Combined into FPUs

9. Summary

10. Acknowledgments: The authors gratefully acknowledge support from C2S2 Grant 2047.002.014, NSF Grant 1018972 and 0903549 and CAREER Award 0546907, SRC GRC Grant 1598, 1971, and 2321 and CSR Grant 1659,
Intel, UC Micro, SEM, Fudan University, Frances Muenzer, Stanley Hsu, Nima Mostafavi, Aaron Stillmaker, Bin Liu, and Brent Bohnenstiehl. The authors would like to thank STMicroelectronics for donating the chip fabrication.

• The goal:
• Increase throughput of floating-point arithmetic without the area overhead of full hardware

floating-point units (FPUs)

• Floating-Point (FP) is the most commonly used method for real number representation [1]
• Certain architectures are limited to fixed-point arithmetic due to the large area and power

requirements for floating-point hardware [2,3]

Full Software
Low Area
Low Throughput

Full Hardware
High Area
High Throughput

Hybrid
Area-Throughput Tradeoff

[1] J.-M. Muller et al., Handbook of Floating-Point Arithmetic, 2009. [2] S. Gilani et al., ASAP, 2011.
[3] D. Truong, et al., JSSC, 2009. [4] http://www.cpu-world.com/CPUs/80387/

MOVE R2 R4
ADD R1 R2 R3
SHR R1 R1 R6
SUB R7 R7 R6

Fixed-point
Software Instructions

Floating-Point
Processor [4]

• AsAP2 [1]: Fine-grained many-core system
• Example of a platform whose datapath is limited

to fixed-point arithmetic
• General purpose and capable of computing

complex DSP workloads: e.g 802.11a, SAR, H.264
• No specialized instructions
• 164 programmable processors

[1] D. Truong, et al., JSSC, 2009.

5
.9

3
9

 m
m

410 μm

4
1
0
 μ
m

FFT
Vit

Mot.

Est. MemMem

5.516 mm

Mem

EXE 2EXE 1IF ID MemRd WB

IMem
Instr

Decode

AdrGen

FIFO 0

Rd

FIFO 1

Rd

 ALU

PC

DMem

Wrt

DC

Mem

Wrt

Multiplier

FIFO 0

Wrt

FIFO 1

Wrt

Acc

Block

Float

Point

FIFO

Wrt
Forwarding

(to Src. Sel. Muxes)

DC

Mem

Rd

DMem

Rd

From

Comm

16
16

16

16

16

To Comm

Latch

AsAP2 Die Photo
Datapath of Individual

Processing Core

• Subset of the IEEE-754 standard’s requirements are implemented

– Addition/subtraction, and multiplication are implemented

– Exception handling, NaNs, ±Inf, and denormal values are not supported

– Only round to nearest even supported

• Division and square root can be performed using addition/subtraction and multiplication

• Many multimedia applications do not rely on extra modes/special number support [2,3,4]

• One way to decrease the overhead of floating-point hardware is to modify the floating-point format

• IEEE-754 is the technical standard for floating-point [1]

– Defines data format, rounding modes, operations, exception handling

[1] IEEE Standard for Floating-Point Arithmetic, 2008, IEEE Std 754-2008. [2] H.-J. Oh et al., JSSC, 2006.
[3] F. Fang et al., EURASIP JASP, 2002. [4] S.-W. Lee et al., ISCAS, 2002.

IEEE-754 32-bit Floating-Point Bit Layout

0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 = 12.46092

31 30 23 22 0

Exponent (8 bits) Mantissa (23 bits)Sign (1 bit)

• HFPMs are one of the methods used for performing
floating-point arithmetic

• HFPMs are an alternative to Full Hardware or Full
Software Floating-Point Modules

• Hybrid of Software/Hardware
• Fixed-point software
• Custom FP instructions

• Fixed-point Software
• Keeps area low
• Existing ALU is used to perform simple steps

• Custom FP Hardware
• Increases throughput
• Added to perform part of a floating-point operation

28FP Reg 1

RegRegEnable 1 Enable 2

16

FP Reg 2

== 0 ? == 0 ?

Zeroflag

-127

Add
(8 bits)

Add
(8 bits)

2:1 Mux
(8 bits)

Exponent

0

2:1 Mux

0

(17) (16)

(15:8) (7:0) (15:8) (7:0)

Signbit

2:1 Mux
(26 bits)

(25:0) (26:2) (27)(1:0) (3) (4)

(1:0)

(2)

Add
(23 bits)

(25:3)

2:1 Mux
(24 bits)

0
Add

(8 bits)

1

2:1 Mux
(8 bits)

(23)

(22:0)

Mantissa

8

8

8

2:1 Mux
(16 bits)

(15:0)

(22:16)

Output

Data
Select

16

24

1212

RegRegEnable 3 Enable 4

18

Source
Select 1

Hardware
for HFPM

Mult Ver. 1

2 16

26

carryout

0
22

16

2:1 Mux
(12 bits)

12

Src1

Src2(11:0)Src1(11:0)

22

16

2:1 Mux
(2 bits)

2

Src1

Src2(1:0)Src1(1:0)

Source
Select 2

12

Hardware Portion of
Hybrid Multiplication Module

• Another method to increase throughput without the
overhead of floating-point hardware is to utilize hybrid
floating-point modules

• Full software modules are one of the methods used
for performing floating-point arithmetic

• FP hardware emulated using 16-bit fixed-point ALU
operations

• No custom FP instructions
• Software library created in assembly

• Addition/Subtraction Modules in Software
• IMEM usage: 2 cores

• Multiplication Module in Software
• IMEM usage: 1 core

• Large program sizes
• No additional area to implement
• Low throughput Section of Full SW Mult Program

// Compute new sign bit
XOR DMEM[0] DMEM [18] DMEM [14]

// Compute the new exponent
SUB NULL DMEM [16] DMEM [5]
ADD DMEM [1] DMEM [1] regbp1

// Perform multiplication
MACC NULL DMEM [3] DMEM [18] nop1

// Grab bits that we shift off
AND NULL ACC DMEM [6]

• Full hardware modules are one of the methods used for
performing floating-point arithmetic

• Arithmetic performed using floating-point hardware only

• 16-bit operands loaded into 32-bit FP registers

• Separate addition/subtraction and multiplication
modules created in hardware (allows modularity)

• Fused and cascade multiply-add FPUs have large
overhead for this platform

• High area to implement

• High throughput

EXE 2EXE 1IF ID MemRd WB

IMem
Instr

Decode

AdrGen

FIFO 0

Rd

FIFO 1

Rd

 ALU

PC

DMem

Wrt

DC

Mem

Wrt

Multiplier

FIFO 0

Wrt

FIFO 1

Wrt

Acc

Block

Float

Point

FIFO

Wrt
Forwarding

(to Src. Sel. Muxes)

DC

Mem

Rd

DMem

Rd

Full HW

Mult

Full HW

Add/Sub

FP

Regs

From

Comm

16
16

16

128

32

3264

64

16

32

16

16

result_sel

To Comm

Latch

fpsrc_sel

16

16

16

16

Full Hardware FP Modules

Full Hardware FP Modules Integrated
into Datapath of a Single Processor

• Throughput and area for each type of floating-point
module are plotted on the right

• The figure compares the additional area required for
each floating-point module versus the cycles per
floating-point operation (FLOP)

Additional Area versus
Cycles per FLOP for all FP Modules*

Software

Hardware
Hybrid

*Results based on synthesis in 65 CMOS with a supply voltage of 1.3 V at 1.2 GHz.

Hybrid Modules Compared Against Full Software:
HFPM Mult Ver. 1
• Area increase: 1.5%, Multiplication speedup: 2.3x

• HFPM Add/Sub Ver. 1
• Area increase: 5.1%, Add/Sub speedup: 1.8x

• HFPM Add/Sub Ver. 2
• Area increase: 6.5%, Add/Sub speedup: 3.6x

• Full hardware modules: have the highest
throughput, but require the most area

• Full software modules: don’t require any additional
area, but have the lowest throughput

• Hybrid modules: offer midpoints between full
software and full hardware

• How to read plot:
• Markers: average clock cycles per

FLOP
• Endpoints of interval bars: min/max

cycle counts
• Contour lines: throughput per

additional area tradeoffs

Total Area versus Cycles per FLOP for Performing Unfused Multiply-Add using FPUs*

*Results based on synthesis in 65 CMOS with a supply voltage of 1.3 V at 1.2 GHz.

• How to read plot:
• Markers: average clock cycles per FLOP
• Endpoints of interval bars: min/max

cycle counts
• Contour lines: throughput per

additional area tradeoffs

• 3 hybrid floating-point modules were presented for a fine-grained processor
• 12 FPU implementations were synthesized in 65 nm CMOS
• Throughput was increased over a software implementation by utilizing custom FP instructions
• Area overhead was kept low by reusing the processor’s fixed-point ALU

Additional Area

C
y
c
le

s
/F

L
O

P

Software Only

Hardware

FP Unit

• The FP modules are combined and their
throughput and total area for performing unfused
multiply-add is plotted above

• Each floating-point unit consists of:
• 1 addition/subtraction module
• 1 multiplication module

• Implementations with a HFPM or Full HW Add/Sub module have the largest throughput per area.
• Imp. 1, Full Software FPU: No additional area, 15.6 MFLOPS throughput
• Imp. 12, Full Hardware FPU: ~20% additional area, 92.3 MFLOPS throughput
• 9 implementations provide higher throughput/area than Full Software FPU

Imp. 7: lowest throughput (due to IMEM usage), 1.7x increase in throughput per area
• Imp. 8: only hybrid modules, 4.1x increase in throughput, 9.95% smaller than Full Hardware FPU

AsAP 2 Single Processor

Area 0.17 mm2

Technology 65 nm low-leakage CMOS

Max Freq. 1.2 GHz @ 1.3 V

Instruction Memory 128 x 35-bit

Data Memory 128 x 16-bit

Implementations with
highest throughput/area

• Nine increase throughput/area by 1.05-8.5x versus a Full Software FPU
• Nine use 1.08-12.5x less area than a Full Hardware FPU
• The throughput of floating-point arithmetic was increased without incurring the area overhead of

full hardware floating-point units

