
Energy-Efficient String Search Architectures on a
Fine-Grained Many-Core Platform

Emmanuel O. Adeagbo and Bevan M. Baas
Department of Electrical and Computer Engineering

University of California, Davis
{eoadeagbo, bbaas}@ucdavis.edu

Abstract—This paper presents three energy-efficient methods
for searching and filtering streamed data on a fine-grained many-
core processor array: parallel, serial, and all-in-one. All three
architectures aim to provide programmable flexibility with low
energy consumption. Experimental results show that for one
keyword search, the parallel and serial architectures consume
2× less energy per workload than the all-in-one architecture.
For two or more keyword searches, the all-in-one architecture
achieves up to 2.6× higher throughput per area over the parallel
architecture, and 25.6× over the serial architecture. Scaled results
show that the serial and parallel designs provide 211× increased
throughput per area, and yield 155× energy reduction when
compared to a traditional processor (Intel Core i7 3667U). The
proposed architectures are modular and easily scalable.

I. INTRODUCTION

Exact match string searching matches one or more occur-
rences of a keyword within a set of input data, and is widely
used in many datacenter applications such as large string
databases [1], network intrusion detection systems [2], [3],
and search engines [4]. As demand for datacenter performance
continues to increase, energy consumption has gone up by
nearly 4× within the last decade [5]. Previous work in string
search has used Field Programmable Gate Arrays (FPGA) [6],
[7], traditional CPUs [1], and Graphics Processing Units
(GPU) [8], with throughput often the primary focus. FPGAs
and GPUs can provide high performance but typically have
high energy demands compared to traditional CPUs and fine-
grained many-core arrays [9]. Traditional CPUs and GPUs
offer ease of programming, while fine-grained many-core
processor arrays can compute complex workloads with high
performance and high energy efficiency while being smaller
than the aforementioned platforms [10]. String search may be
also be augmented to other applications such as sorting on the
same processor array [11], where the first phase would use
string search to filter out undesired data then sort the remaining
data.

II. STRING SEARCH ARCHITECTURES

The primary component of the proposed string search is
the filter, whose main operation is to match a keyword to
input data. The core code is simple and easily replicated,
only requiring 52 assembly instructions. The pseudocode of
the basic filter algorithm is shown in Algorithm 1. The filter
starts by reading inputData into a buffer. Since a successful
search requires a match of all the characters in a keyword,

Algorithm 1 Filter
while true do

buffer ← inputData[0 : keywordLength− 1]
i← 0
localMatch← 0
while inputData 6= EOF and localMatch == 0 do

if buffer[i] == keyword[i] then
if i == keywordLength then

localMatch← 1
else

i++
end if

else
buffer << 1 char
buffer [0]← inputData[0]
i← 0

end if
end while
if firstF ilter then

output← localMatch
else

Wait for inMatch
output← (inMatch and localMatch)

end if
end while

the minimum buffer size is equal to the keyword length.
The strings are scanned using the buffer rather than using
more computationally expensive schemes such as string B-
tree data structures or hash tables [12], [8]. Once filled, the
buffer entries are compared to individual characters of the
keyword. This process is repeated for as long as the following
conditions are true: 1) the number of matches is less than the
keyword length, 2) there is more input data to process. Since
partial matches are possibilities during mismatches, most of
the buffer entries must be preserved while replacing the earliest
entry with a new one. The output control block sends out a
“1 (True)” when the entire keyword matches, or “0 (False)”
when the input data terminates prior to a keyword match. A
natural requirement of the proposed string search is that the
entire set of strings (e.g. a document) must be preserved when
finding multiple keywords. The need to preserve the document
presents some challenges for small-memory processors if the
data is too large to fit in a processor’s local memory.



Merged 
Boolean 
MatchMatchMatch

MatchMatch

Memory 1
Data

Memory 
N-1 Data

inputData
Filter 1 Filter N-1 Filter N

Fig. 1. Serial architecture data flow highlighting the major control signals of
each filter and the on-chip memory. The architecture is pipelined with each
filter a processor running Algorithm 1.

A. Serial Implementation

The serial implementation is a pipelined architecture with
additional memory external to the processor(s). In Fig. 1, each
filter is a processor running Algorithm 1. inputData streams
into both Filter 1 and Memory 1 in parallel. If Filter 1 outputs
a “True” Match, it is sending a “1” signal to both Memory 1
and Filter 2. Data streams from Memory 1 to Filter 2 and
Memory 2 in parallel after which Filter 2 starts processing
the next . Filter-memory pairs in the latter parts of the chain
conditionally run based on match results of previous filter-
memory pairs. Filter N produces a “True” Merged Boolean
Match if all subsequent searches were a success. Due to the
sequential nature of the serial architecture, if less common or
rare keywords are programmed into earlier filters in the chain,
subsequent filters are less likely to run as frequently due to
the restrictions on the early filters.

B. Parallel Implementation

In Fig. 2, each filter is a processor running Algorithm 1
where InputData is streamed to all of them in parallel for
processing. Each Match output is boolean merged to Matches
of subsequent filters and Filter N produces a “True” Merged
Boolean Match if all subsequent searches are a success. Filters
shutdown either if they find a match and wait for other
processors, or if InputData is empty. The modularity of the
parallel architecture enables it to easily scale to larger search
queries.

C. All In One Implementation

The all-in-one (AIO) architecture combines multiple key-
word search operations into the minimum required filter
typically one processor. The processor runs Algorithm 1 on
multiple keyword searches by using it’s data memory to
manage the keywords and internal Matches. When Match
is “True”, a flag corresponding to the matched keyword is
asserted thereby disabling future searches of the keyword.
When all keyword flags are asserted or when inputData is
empty AIO produces Merged Boolean Match. Multiple AIO
architectures working together allow for dense search queries.

III. DATA GENERATION AND TEST CONDITIONS

The string search architecture performances are evaluated
using a list of keywords containing ~350,000 words that are

Filter 1

Filter 2

Filter N

Merged 
Boolean 
Match

Match

Match

inputData

Fig. 2. Parallel architecture data flow highlighting the major control signals
of each filter. Each filter is a processor running Algorithm 1 directly on
inputData.

Filter 1
Filter 2

Filter N

inputData

Merged 
Boolean 
Match

Fig. 3. AIO architecture data flow with combined multiple keyword search
operations. The structure is a processor running Algorithm 1 on multiple
keywords.

randomly generated from the English dictionary. inputData
is generated in 8 KB sizes. For a set of keywords, a page
excluding these keywords is first generated. A real dictionary
is used instead of generating a page of random characters
because real words result in more realistic performance data
that closely matches real world workloads.

inputData for the architectures are generated using three
parameters. The first parameter is the number of keywords, and
it sets the amount of filters per keyword. The second parameter
is the keyword length which sets the size of a keyword at
one byte per character. The last parameter is the location of
a keyword in a data page. When a keyword is chosen, it is
assigned a random location on a page, favoring the middle of
the page. 1000 iterations are carried out to produce consistent
averaged results.

IV. ANALYSIS

A. Experimental Results

The serial, parallel and AIO architectures are simulated on a
simulator that uses measured values from the AsAP2 chip [9]
operating at a supply voltage of 1.3 V, with programmable
processors running at 1.2 GHz. Energy per workload for each
architecture is defined as the total energy consumed when
processing inputData divided by the total number of bytes
in inputData. Fig. 4 shows that for one keyword, the serial
and parallel implementations consume 2× less energy per
workload than the AIO implementation. For five keywords, the
AIO implementation consumes 1.5× less energy per workload



2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Keyword Length (bytes)

E
n
er
g
y/
W
o
rk
lo
ad
(n
J/
b
ty
e)

AIO w/ 1 Keyword
Parallel w/ 1 Keyword
Serial w/ 1 Keyword
AIO w/ 3 Keywords
Parallel w/ 3 Keywords
Serial w/ 3 Keywords
AIO w/ 5 Keywords
Parallel w/ 5 Keywords
Serial w/ 5 Keywords

5 Keywords

3 Keywords

1 Keyword

Fig. 4. Energy per workload versus keyword length for different keywords.

10
−2

10
−1

10
0

0

5

10

15

20

25

Area/Throughput (mm 2/MWords/sec)

E
ne

rg
y/

W
or

kl
oa

d 
(n

J/
bt

ye
)

Fig. 5. Energy per workload versus area per throughput for different
keywords. See Fig. 4 for legend.

over the serial and parallel implementations with majority
its energy consumption from branching overhead. The serial,
parallel, and AIO implementations consume 22.55 nJ/byte,
21.16 nJ/byte, and 15.06 nJ/byte, respectively, making the AIO
implementation the most energy efficient. The energy overhead
in the serial architecture comes from the energy required for
communication between its filters and the inclusion of the
memories.

For a given architecture, area per throughput is defined as
the area occupied by the programmable processors plus mem-
ory used divided by how quickly they processes inputData
in units of mm2/(MWords/sec), where a word is 16 bits wide.
Fig. 5 plots the trade offs between energy per workload vs area
per throughput for each implementation. For one keyword, the
serial and parallel architectures consume approximately 2×
less energy per workload and 1.5× less area per throughput
than the AIO architecture. For three keywords, AIO occupies
approximately 2× and 7× less area per throughput than the

2 3 4 5 6 7 8 9 10
10

0

10
1

Keyword Length (bytes)

T
h

ro
u

g
h

p
u

t 
(M

W
o

rd
s/

se
c)

Fig. 6. Throughput comparison at each keyword length for different keywords.
See Fig. 4 for legend.

2 3 4 5 6 7 8 9 10

10
0

10
1

10
2

Keyword Length (bytes)

T
h

ro
u

g
h

p
u

t/
A

re
a 

(M
W

o
rd

s/
se

c/
m

m
2 )

Fig. 7. Throughput per area vs keyword length for different keywords. See
Fig. 4 for legend.

parallel and serial architectures respectively. In contrast, the
serial and parallel architectures consumes approximately 2.6×
less energy per workload than the AIO architecture, with
similar trends at five keywords.

Fig. 6 shows that for one keyword, the parallel and serial
architectures achieve 1.6× higher throughput than the AIO ar-
chitecture. For five keywords, the parallel architecture is 5.8×
higher in throughput than the AIO architecture, and 5× over
serial. Longer keyword lengths require more processing, which
lead to an average throughput drop from 33 to 6 MWords/sec.

In Fig. 7, for one keyword, the parallel and serial archi-
tectures achieve up to 1.6× higher throughput per area than
the AIO architecture. For two or more keywords, the AIO
architecture achieves up to 2.6× throughput per area over the
parallel architecture, and 25.6× over the serial architecture.
Although the serial architecture is pipelined, there is still
memory read latency after a match result thereby reducing



Table I
ENERGY PER WORKLOAD AND THROUGHPUT PER AREA FOR KEYWORD LENGTH OF 6. SCALED COLUMN VALUES ARE SCALED TO 22 NM [13].

Architecture
Unscaled

Energy/Workload
(nJ/byte)

Scaled
Energy/Workload

(nJ/byte)

Unscaled
Throughput

(MWords/sec)

Scaled
Throughput

(MWords/sec)

Unscaled
Throughput/Area

((MWords/sec)/mm2)

Scaled
Throughput/Area

((MWords/sec)/mm2)

1
K

ey
w

or
d Intel Core-i7

3667U 77 77 408 408 13.8 13.8

Serial 2.8 0.50 14.1 55 83.0 2910
Parallel 2.8 0.50 14.1 55 83.0 2910

AIO 4.4 0.80 9.31 36 54.7 1920

5
K

ey
w

or
ds

Intel Core-i7
3667U 41 41 256 256 9.02 9.02

Serial 16 2.8 2.82 11 0.920 35.1
Parallel 15 2.6 14.0 54 10.3 362

AIO 14 2.4 3.00 12 17.7 621

the over data throughput of the serial architecture.
In the case of one keyword, the parallel and serial architec-

tures have the exact same energy, throughput, and area because
the serial architecture only requires memory for more than one
keyword. The AIO architecture for the one keyword case still
has a complexity overhead and therefore consumes slightly
more energy with a slightly lower throughput.

B. Comparisons
As a reference point for how well the architectures per-

form, similar data inputs are processed in C++ on an Intel
Core i7 3667U processor (22 nm fabrication technology) for
comparison. The fabrication technology for the serial, parallel,
and AIO architectures are 65 nm. The results in Table I are for
6 char keyword lengths (6 bytes) showing both unscaled and
scaled results. In the scaled columns, the values are scaled
from 65 nm to the 22 nm node to match the many core
platform on which the workload was performed to the Intel
Core i7 [13]. Table I shows for one keyword that the serial
and parallel architectures provide 155× in energy savings, and
with a 211× increased throughput per area over the Intel Core
i7 3667U. For five keywords, the AIO architecture provides
17× in energy savings, and with 69× in increased throughput
per area over the Intel Core i7 3667U.

V. CONCLUSIONS

Three energy-efficient architectures are presented utilizing
a fine-grained many-core processor array for searching and
filtering streamed data. The serial architecture is suited for
small keyword searches while the parallel architecture is well
suited for larger keyword searches. The all-in-one architecture
combines filtering operations and ensures the smallest area
footprint. The designs achieve 211× increased throughput per
area, and yield 155× energy reduction when compared to a
traditional processor (Intel Core i7 3667U).

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from SRC GRC
Grant 2321.001, NSF CCF Grant No. 1321163, 1018972,

0903549, 0430090, C2S2 Grant 2047.002.014, Jon Pimentel,
Aaron Stillmaker, and Brent Bohnenstiehl.

REFERENCES

[1] J. Yang, W. Wang, and P. Yu, “BASS: approximate search on large string
databases,” in Scientific and Statistical Database Manage., 2004. Proc.
16th Int. Conf. on, June 2004, pp. 181–190.

[2] L. Tan and T. Sherwood, “A high throughput string matching architecture
for intrusion detection and prevention,” in Comput. Architecture, 2005.
ISCA ’05. Proc. 32nd Int. Symp. on, June 2005, pp. 112–122.

[3] N.-F. Huang et al., “A deterministic cost-effective string matching
algorithm for network intrusion detection system,” in Commun., 2007.
ICC ’07. IEEE Int. Conf. on, June 2007, pp. 1292–1297.

[4] S. Rus, R. Ashok, and D. Li, “Automated locality optimization based
on the reuse distance of string operations,” in Code Generation and
Optimization (CGO), 2011 9th Annu. IEEE/ACM Int. Symp. on, April
2011, pp. 181–190.

[5] M. Pedram, “Energy-efficient datacenters,” Comput-Aided Des. Integr.
Circuits Syst., IEEE Trans., vol. 31, no. 10, pp. 1465–1484, Oct 2012.

[6] I. Sourdis and D. Pnevmatikatos, “Pre-decoded cams for efficient and
high-speed NIDS pattern matching,” in Field-Programmable Custom
Comput. Mach., 2004. FCCM 2004. 12th Annu. IEEE Symp. on, April
2004, pp. 258–267.

[7] J. Divyasree, H. Rajashekar, and K. Varghese, “Dynamically reconfig-
urable regular expression matching architecture,” in Application-Specific
Syst., Architectures and Processors, 2008. ASAP 2008. Int. Conf. on, July
2008, pp. 120–125.

[8] W. Ong et al., “A parallel bloom filter string searching algorithm on a
many-core processor,” in Open Syst. (ICOS), 2013 IEEE Conf. on, Dec
2013, pp. 1–6.

[9] D. Truong et al., “A 167-processor computational platform in 65 nm
CMOS,” Solid-State Circuits, IEEE J. of, vol. 44, no. 4, pp. 1130–1144,
April 2009.

[10] ——, “A 167-processor 65 nm computational platform with per-
processor dynamic supply voltage and dynamic clock frequency scaling,”
in VLSI Circuits, 2008 IEEE Symp. on, June 2008, pp. 22–23.

[11] A. Stillmaker, L. Stillmaker, and B. Baas, “Fine-grained energy-efficient
sorting on a many-core processor array,” in Parallel and Distrib. Syst.
(ICPADS), 2012 IEEE 18th Int. Conf. on, Dec 2012, pp. 652–659.

[12] P. Ferragina and R. Grossi, “The string b-tree: A new data structure for
string search in external memory and its applications,” J. ACM, vol. 46,
no. 2, pp. 236–280, Mar. 1999.

[13] A. Stillmaker, Z. Xiao, and B. Baas, “Toward more accurate scaling
estimates of CMOS circuits from 180 nm to 22 nm,” VLSI Computation
Lab, ECE Department, University of California, Davis, Tech. Rep. ECE-
VCL-2011-4, Dec. 2011.


	I Introduction
	II String Search Architectures
	II-A Serial Implementation
	II-B Parallel Implementation
	II-C All In One Implementation

	III Data Generation and Test conditions 
	IV Analysis
	IV-A Experimental Results
	IV-B Comparisons

	V Conclusions
	References

