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Abstract—To address the well-known “power wall” issue, many-core
processors with dynamic voltage and frequency scaling (DVFS) are widely
investigated. To further improve the energy efficiency, DVFS with core
scaling (DVFCS) has been proposed. In this paper, we address the
problem of minimizing the power dissipation of many-core systems under
performance constraints by choosing appropriate number of active cores
and per-core voltage/frequency levels. A genetic algorithm based solution
is proposed to solve the problem. Experiments with real applications
show that (1) dynamically scaling the number of active cores can save up
to 72% power compared with per-core DVFS; (2) the amount of extra
power saving brought by core scaling is highly dependent on performance
constraints.

Index Terms—Many-core processors, dynamic voltage, frequency and
core scaling (DVFCS), genetic algorithm (GA), globally asynchronous
locally synchronous (GALS).

I. INTRODUCTION

For the past half century, Moore’s Law has been the fundamental
driver of high-performance computing. The continued CMOS tech-
nology scaling doubles the transistor density of VLSI systems and
also had provided a predictable linear performance improvement of
single-core processors for every 18 to 24 months. However, as the
threshold voltage stops scaling along with the lithographic dimensions
of transistors, the era of scaling frequency and performance without
increasing power density is over. Since 2005, the semiconductor
industry shifted to multi-core and many-core processors to efficiently
utilize the tremendous number of transistors. Many-core proces-
sors with network-on-chip interconnects have been demonstrated
as promising architectures for high performance energy-efficient
computing [1], [2]. As the technology shrinks, a single chip with
1000+ cores is expected to appear in the foreseeable future [3].

One of the critical challenges for many-core system design is
energy efficiency. Processors with high energy efficiency not only
save millions of dollars in energy bill for supercomputers and data
centers, but also extend the battery life for mobile devices. Various
low power techniques have been proposed and adopted to improve
energy efficiency. Clock gating and power gating are two widely used
techniques to reduce dynamic/leakage power, by shutting off unused
components and cores from clock tree and power supply. Another
approach to reduce power dissipation under performance constraints
is to apply dynamic voltage and frequency scaling (DVFS). Many-
core systems with per-core DVFS have been proved to be capa-
ble of reducing energy dissipation significantly by adapting both
voltage and frequency according to the required performance and
workload [4], [5].

To further improve the performance and energy efficiency for
many-core processors, combination of DVFS and core scaling
(DVFCS) has been proposed. Jian et al. addressed the problem of
finding a chip-wide operating voltage and frequency setting as well
as the number of active cores that minimizes the power consumption
of a general-purpose chip multiprocessor under a performance con-
straint [6]. Lee et al. studied to improve the performance of power

Fig. 1. Block Diagram of the targeted many-core system.

constrained GPUs by coordinating the number of active cores and
chip-wide voltages/frequencies of both cores and caches [7]. All these
work assumed that the DVFS is on the chip level, but not on the per-
core level.

Compared to the previous work, this paper addresses the problem
of minimizing the power dissipation of many-core systems under
performance constraints by exploiting per-core DVFS with core
scaling. The rest of the paper is organized as follows. Section II
briefly describes the targeted many-core system. Section III formu-
lates the problem of our study and the proposed algorithm. Section IV
discusses the experimental results with real application benchmarks.
Finally, Section V concludes the paper.

II. TARGETED MANY-CORE ARCHITECTURE

The targeted Asynchronous Array of Simple Processors (AsAP)
architecture is an example of fine-grained many-core systems, sup-
porting globally-asynchronous locally-synchronous (GALS) on-chip
network and per-core DVFS [8].

Fig. 1 shows the block diagram of AsAP. The many-core system
is composed of 164 small identical processors. All processors are
clocked by local fully independent oscillators and are connected by a
reconfigurable 2D-mesh network that supports both nearby and long
distance communications. Each processor operates at a maximum
clock frequency of 1.2 GHz at 1.3V. The AsAP many-core chip was
fabricated in 65 nm CMOS technology [1].

In this paper, we assume that there are multiple discrete global
voltage levels for the whole chip. The per-core DVFS is capable
of controlling the oscillator of each core to run at the minimum
frequency without violating performance constraints, and selecting
the optimal voltage based on the frequency. We also assume that the
number of cores on the platform can be scaled as necessary.
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Fig. 2. Three implementations A, B, and C are mapped into the targeted
many-core system based on the performance requirement. The global voltage
levels are also altered to minimize the power dissipation of the chip.

III. PROBLEM STATEMENT AND PROPOSED ALGORITHM

A. Problem Statement

An application is required to run at a throughput of T PREQ on
a many-core system which has COREAVL cores available, and N
gloabl voltage levels (V1, V2, ..., VN ) in ascending order. There
are a set of implementations (A1, A2, ..., AM) for the application.
Each implementation requires COREAi cores. The throughput of each
implementation is determined by the operating frequency FAi of its
performance critical cores. The mapping result may include multiple
instances for each implementation, and different instance could run at
different FAi . The throughput of the mapping result T PMAP is given
by

T PMAP =

N1∑
n=1

T PA1n +

N2∑
n=1

T PA2n...+

NM∑
n=1

T PAMn (1)

where Ni is the number of copies of implementation Ai in the
mapping result, while the throughput T PAin of the Ai’s nth instance
is obtained as

T PAin = T PCAi ×FAin (2)

where T PCAi is the number of bits that can be processed by Ai per
cycle. Similarly, the total power of the mapping result PMAP is given
by

PMAP =

N1∑
n=1

PA1n +

N2∑
n=1

PA2n...+

NM∑
n=1

PAMn (3)

where PAin is the power of the nth instance of Ai. For each Ai’s
instance, the power PAi is obtained as

PAi =

COREAi∑
j=1

PCORE j(FCORE j,VCORE j) (4)

where PCORE j is the power consumption of each individual core
in Ai, as a function of the frequency FCORE j and voltage VCORE j.
The performance critical cores are required to run at FCORE j = FAi

to guarantee the throughput shown in Eq. 2. Other cores could
decrease their frequency depends on their own workload. VCORE j is
the minimum voltage level Vi from the global discrete voltages (V1,
V2, ..., VN ), where Freq(Vi)>= FCORE j. The PCORE j is approximated
as follows:

PCORE j(FCORE j,VCORE j) = PDYN +PLEAK

=CEFF ·FCORE j ·V2
CORE j + ILEAK(VCORE j) ·VCORE j (5)

where CEFF is the effective switching capacitance for each core, and
ILEAK(VCORE j) is the leakage current that depends on VCORE j.
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Fig. 3. Flow of the proposed algorithm.

The problem can be formulated as:

minimize PMAP

subject to T PREQ ≤ T PMAP

COREAVL ≥
∑

COREAi ·Ni

by exploring (1) the number of copies of each implementation (N1,
N2, ..., NM), (2) the throughput of each implementation instance
T PAin , and (3) the global voltage levels (V1, V2, ..., VN ). Fig. 2 shows
that three implementations are mapped on a many-core system based
on the performance constraint. Additionally, the global voltage levels
are altered to (V′1, V′2, ..., V′N ) to minimize the power dissipation.

B. Proposed Algorithm

Due to the large search and optimization space, genetic algorithm
(GA) is applied to solve the problem. GA is based on a mechanism
of natural selection and evolutionary genetics. Each solution of the
problem is represented as a chromosome. A fitness value is associated
with each solution. The fitness value shows how close the solution
is to the optimum. The process starts with an initial population of
solutions created in some way, e.g. randomly. In each iteration, new
offspring solutions are generated through selection, crossover and
mutation. Then, some new solutions are added to, and some old
solutions are removed from the population based on fitness. The
evolution process stops when either the optimization goal or the
maximum number of iterations is reached [9].

The block diagram of the proposed algorithm is shown in Fig. 3.
At the beginning, a set of chromosomes are generated randomly to
compose a population. Each chromosome is a sequence of genes.
Each gene represents an implementation instance Ain with a particular
FAin as shown in Fig. 4. The number of genes for each implemen-
tation Ai in one chromosome is the maximum number of Ai can
fit into the current platform, i.e., COREVAL/COREi. Based on the
FAin, the maximum voltage level VN and throughput of each gene
can be calculated. Other voltage levels (V1, ..., VN−1) for each gene
are calculated to minimize power in a loop manner.

The power and throughput of each gene are sent to a greedy
knapsack solver to decide which implementation instance (gene)
should be included (turned “ON”), and which not (turned “OFF”).
After the voltage levels are iteratively explored and sent to the greedy
knapsack to obtain a solution, the final best solution is returned. The
algorithm keeps the voltage levels of the returned solution and runs
a simulated annealing knapsack to explore a better solution.

In each iteration of GA, two chromosomes are selected as parents
for crossover. During selection, a roulette wheel strategy is applied,
which means the higher the fitness value is, the better is the chance
of the chromosome to be selected. The fitness value of a solution
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Fig. 4. Block diagram of the chromosome in GA.

TABLE I
NUMBER OF CORES AND THROUGHPUT OF DIFFERENT AES ENGINES [11]

AES Cores 1/Throughput
Implementation Usage (cycles/byte)
Small 8 167.375
One-task one-processor 9 223.875
Parallel-MixColumns 15 136.250
Parallel-SubBytes-MixColumns 18 84.375
Loop-unrolled Three Times 23 68.625
Loop-unrolled Nine Times 50 16.625
No-merge-parallelism 59 9.500
Full-parallelism 137 4.375

is inversely proportional to the power dissipation. During crossover,
a random point γ is chosen to break each parent into two parts.
Then the offspring is generated by copying the part before γ from
ParentI and the part after γ from ParentII. After crossover, a mutation
happens based on the probability assigned in the simulation. A
random operation frequency is assigned to a randomly selected
implementation instance. Finally, the offspring is sent to the fitness
calculation process to generate a valid solution. If the power of the
offspring is less than one of the chromosomes in the population
set. The chromosome with weakest fitness (the solution with largest
power) in the set is killed and the offspring stays in the set for the
next iteration.

IV. EVALUATION

A. Power Model

Fig. 5(a) shows the maximum operation frequency and dynamic
power dissipation of one AsAP core versus supply voltage. The data
are measured from real-silicon chip, and used for the simulations in
the next section.

Since AsAP was fabricated with super low-power CMOS process,
the leakage power from the chip measurement is negligible. To simu-
late processors with different leakage power ratio LR = PLEAK/PDYN
at VDD = 1.3 V , the leakage power scaling factors for other voltage
levels are generated from a dummy circuit with ST 65 nm CMOS
technology. The dummy circuit is composed of a large number of
NAND, NOR and INV gates. Each gate has different number of
inputs (1 to 4) and the input states are randomly selected [10]. The
normalized leakage power scaling factors are measured from the
HSPICE simulation and shown in Fig. 5(b).

B. Benchmark – Eight AES Engines

An implementation library with eight AES engines is selected as
the benchmark. Table I lists the number of cores and throughput for
different AES implementations. The smallest implementation only
occupies eight cores, while the largest one requires 137 cores. The
throughput of the eight AES engines at 1.3 V and 1.2 GHz are ranged
from 58 Mbps to 2.2 Gbps.
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C. Experiment Results

There are five different voltage/frequency/core scaling configu-
rations are studied: (1) No DVFS; (2) per-core DVFS with one
global Vdd (OV); (3) per-core DVFS with two global Vdds (TV);
(4) per-core DVFCS with one global Vdd (OVC); and (5) per-core
DVFCS with two global Vdds (TVC). The NoDVFS is selected as
baseline to evaluate the efficiency of other configurations. One No-
merge-parallelism engine is selected if core scaling is not applicable,
since it is the most energy-efficient implementation compared with
others [11]. The maximum throughput (ThMAX) of one No-merge-
parallelism engine is approximate to 1 Gbps.

Fig. 6 shows the power dissipation for each configuration, all
normalized to NoDVFS. With the same number of global voltage
levels, DVFCS outperforms DVFS for all different throughput re-
quirements. DVFCS saves as much as 68% and 72% power compared
with DVFS for systems with one and two global voltage levels,
respectively. Moreover, OVC consumes less power than TV when
the throughput requirement is less than 50 Mbps or greater than
700 Mbps, which implies that core scaling is more effective for
reducing power dissipation than extra voltage levels when the system
has either a loose or a tight performance constraint. As shown in
Fig. 6, the optimal number of cores chosen by core scaling tends to
increase when the throughput constraint is higher. Additionally, TVC
tends to utilize less cores than OVC, which means that extra voltage
levels could reduce the number of cores used in the optimal solution.

The extra power saving brought by core scaling shows a non-
linear relationship with the throughput requirements. To understand
the fundamental reasons of the non-linear relationship, we divide the
simulation results into three categories, which are systems with (1)
a loose (≤ 20%ThMAX), (2) an intermediate (20% ∼ 80%ThMAX),
and (3) a tight (≥ 80%ThMAX) performance constraint. As shown
in Table II, for all three categories of performance constraints, most
of the power saving of OV and TV comes from dynamic power.
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TABLE II
AVERAGE POWER SAVINGS FOR DIFFERENT DVFCS CONFIGURATIONS AND PERFORMANCE CONSTRAINTS.

Loose Perf. Target Inter. Perf. Target Tight Perf. Target
Configurations Dyn. Leak. Total Dyn. Leak. Total Dyn. Leak. Total

Saving Saving Saving Saving Saving Saving Saving Saving Saving
DVFS with One Vdd 9.2% 0.0% 9.2% 17.1% 0.0% 17.1% 17.8% 0.0% 17.8%
DVFS with Two Vdds 11.6% 2.1% 13.6% 28.9% 7.6% 36.5% 31.7% 10.2% 41.9%
DVFCS with One Vdd 4.8% 25.4% 30.2% 35.7% -3.9% 31.8% 53.5% 6.4% 59.9%
DVFCS with Two Vdds 5.9% 35.4% 41.5% 39.1% 4.5% 43.6% 56.7% 10.2% 66.9%

With a loose performance constraint, ∼ 75% power dissipation is
due to leakage, which limits the power saving of OV and TV that
rely on dynamic power reduction. Compared to OV and TV, OVC
and TVC saves extra 21% and 28% power by reducing leakage
power significantly. The leakage power reduction is due to core
scaling chooses implementations use small number of cores for loose
performance constraints. As the performance constraints get into the
intermediate range, the dynamic power starts to dominate in total
power dissipation. As a result, the extra saving brought by core
scaling is reduced to 14% and 7% for OVC and TVC, respectively.
When the performance target is close to ThMAX , core scaling starts
to apply multiple instances for each implementation. Therefore, each
instance requires a lower voltage/frequency level compared to OV
and TV, which causes 42% and 25% less power dissipation.

V. CONCLUSION

In this paper, we address the problem of minimizing the power
dissipation of many-core systems under performance constraints by
exploiting per-core DVFS with core scaling. A GA-based algorithm is
proposed to solve the problem. The experimental results demonstrate
that choosing the number of operating cores and voltage/frequency
levels appropriately can reduce power consumption by up to 72%
compared with per-DVFS. We also demonstrate that the extra power
saving brought by core scaling has a non-linear relationship with the
performance constraints. The additional power saving brought by core
scaling tends to increase when the performance constraint inclines to
be either very loose or very tight.
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