
A Software LDPC Decoder Implemented on a
Many-Core Array of Programmable Processors

Brent Bohnenstiehl and Bevan Baas
Department of Electrical and Computer Engineering

University of California, Davis
{bvbohnen, bbaas}@ucdavis.edu

Abstract—This paper presents the design and implementation
of a software Low Density Parity Check (LDPC) decoder on the
AsAP2 platform, which contains a 2D mesh of 164 programmable
processors designed for general DSP applications. A software
decoding algorithm is described which requires low memory
overhead, and scalable methods are provided for parallelizing
the computational workload across many cores. LDPC codes of
length 4095 and 16129 are implemented, respectively using 152
or 156 processors, achieving 21.3 or 13.4 Mbps of throughput,
and using 131 or 188 nJ per decoded bit over four decoding
iterations.

I. INTRODUCTION

Low Density Parity Check (LDPC) codes, introduced in
1962 by Gallager [1], have become increasingly popular in
recent years, showing up in multiple communication protocols
such as 802.3an (Ethernet), 802.16e (WiMAX), and 802.11n
(Wi-Fi). Development of LDPC hardware decoders involve
high design costs and time, and such decoders tend to have
limited capability to adapt to alternate LDPC codes, leading to
software decoder implementations as an attractive alternative.

Interest continues to grow in many-core designs as a
means of effectively utilizing the increasing number available
transistors on a chip. One thrust of this effort has been
focused on high numbers of small, software programmable
processors [2], [3], leading to potentially thousands of such
processors operating independently on a single die. These
designs offer potentially high performance at low power for
DSP applications, and are a promising platform for software-
based LDPC decoding.

This work focuses on one such platform, the second gener-
ation Asynchronous Array of Processors (AsAP2) introduced
by Truong et al. [2]. A software decoding algorithm is de-
scribed in section II. Section III describes two implementations
of the algorithm on AsAP2 for sample LDPC codes of
different lengths. Section IV presents the final designs and
shares measurements of interest.

II. SOFTWARE ALGORITHM

An LDPC code may be expressed using an MxN binary
matrix H , where each row M defines the variables in a parity-
check set, and the number of columns N matches the length of
the block being decoded. This design implements the Min-Sum
algorithm described by Chen et al. [4] for iterative decoding.
The following terms are used in this work:

���������

	
����

���

���
�������

��������

����������

��������������

�������

������

������

���������

���������

�� ��

	�
������
��������

��������

��
���

���
�����

���
�������

��
��

Fig. 1: High level software implementation of a Min-Sum LDPC
decoder.

Ij Log-likelihood ratio of channel information for the j-th
variable node, input to the decoder.

Cij Message from check node i to variable node j.
Si Compacted Set containing messages Cij for a given i.
Vij Message from variable node j to check node i.
Djk Partial sum of k check node messages and channel

information in variable node j.
Qj Total sum of check node messages and channel informa-

tion in variable node j.
L(i) Group of variable nodes connected to check node i.

Each decoding iteration is split into two major phases:
Compact Set, which effectively collects and compresses the
variable node messages Vij into set Si, and Update Variable,
which sums check node message Cij and Djk to generate
Djk+1, obtaining Qj when all summations are complete.
Major data structures are maintained in shared memory. Fig. 1
shows the primary components and data connections for this
software decoder.

A. Parity Check Matrix

The parity check matrix is implemented by the memory
access pattern. For each row of the matrix, a memory address
generator will produce the group of addresses corresponding
to the variables L(i) in the parity set. Addresses may be



TABLE I: Parameters of implemented LDPC codes.
Code Rows Columns Row Weight Column Weight

(4095,3367) 378 4095 64 5
(16129,15372) 762 16129 127 6

generated either from an look-up table or, if the matrix has
sufficient regularity, using a mathematical expression that is
computed in software. This work implements designs for the
two LDPC codes described in Table I.

B. Compact Set

In the Min-Sum algorithm, the check node messages Cij

for a given check node i may only have one of two possible
magnitudes, corresponding to the two minimum magnitudes of
messages Vij from variable nodes L(i) [4]. During Compact
Set, for each i, Vij are gathered and processed to determine
these two minimum magnitudes, along with the index j of the
first minimum, a compressed set of sign bits Nj isolated from
Vij , and the total XOR of these sign bits T . The resulting
compacted sets Si are stored in memory.

C. Unpack Set

Compacted sets Si are unpacked to generate check node
messages. For any given message Cij , the magnitude is
equal to the first minimum in Si unless j matches the first
minimum’s index, in which case the magnitude is equal to the
second minimum. The sign of Cij is equal to T⊕Nj , the total
sign bit corrected by the bit for variable j.

D. Update Variable

The original channel information Ij is combined with check
node messages Cij to generate Djk, the partial sums for
each variable node. After the final summation, the Djk term
is stored as Qj . In this work, each set Si is processed in
order, with the partial sums Djk read from memory, updated
to form Djk+1, and stored back into memory until their next
corresponding set is processed. An alternative approach would
be to process variable nodes j in order and read corresponding
sets Si as needed, but this results in greatly increased memory
traffic for the selected LDPC codes.

E. Correct Variable

Each Qj produced by Update Variable requires correction
in order to obtain the variable node messages Vij to be passed
to Compact Set on the following decoding iteration. In Correct
Variable, the previous set Si is unpacked to obtain the message
Cij , as in Unpack Set above, and the operation Vij = Qj−Cij

is performed to obtain the corrected messages.

F. Valid Codeword Detection

Decoding is complete when the group of variables Qj

in each parity group L(i) satisfy parity, indicating a valid
codeword has been found and may be output. This analysis
may be performed in parallel with the Compact Set phase,
sharing the input data stream of Correct Variable in order
to overlap memory access. Detection of a valid codeword is

TABLE II: Memory utilization of data structures, with the number
of 16-bit memory words required to store the structure, and the
read/write activity during a single Compact Set (CS) or Update
Variable (UV) iteration.

Reads Writes Reads Writes
Data, Code Length Words CS CS UV UV
Input Ij , 4095 4095 0 0 4095 0
Input Ij , 16129 8128 0 0 16129 0
Variables Djk, 4095 4095 24192 0 24192 24192
Variables Djk, 16129 8128 96774 0 80645 96774
Sets Si, 4095 2646 2646 2646 2646 0
Sets Si, 16129 7620 7620 7620 7620 0

communicated to all relevant nodes to trigger data output with
a general reset in preparation for the next input Ij .

III. SOFTWARE IMPLEMENTATION

A. AsAP2 Platform

The AsAP2 computational platform [2] consists of an array
of 164 programmable, 16-bit, RISC processors; three 16kB
memories with two read/write ports each; and specialized
accelerators for motion estimation, FFT, and Viterbi decoding.
AsAP2 occupies 32.7 mm2 and was developed in 65 nm
CMOS. A single processor may hold up to a 128 instruction
program, contains a 128 word data memory, and communi-
cates with other processors using a statically configured circuit
network. A processor is limited to 2 input links and as many as
8 output links. Each processor contains its own clock oscillator
which may run up to 1.2 GHz, and each processor may be
powered by one of two voltage rails. Memory modules are
limited to one random access per two cycles per port, and are
accessed using 16-bit words with 8192 unique addresses.

B. Memory Mapping, Data Routing

Three data structure are stored in the on-chip memory
modules: the original input channel information Ij , the vari-
able node data Djk or Qj , and the compacted sets Si.
Table II describes the memory usage of each data structure,
along with the read and write activity during the two major
decoding phases. Data is routed using dedicated processors
which perform the appropriate data stream joining and splitting
functions.

The memory and data routing system for code length 4095 is
shown in Fig. 2. Here, Ij and Djk are stored in an interleaved
fashion and split across two memory modules, allowing two
read and two write ports to be active during Update Variable,
and four read ports to be active during Compact Set. Fig. 3
shows this system for code length 16129. Here, Ij and Djk are
stored in separate memories, and are packed two per memory
address due to memory constraints. Minor connections used
for control signaling and valid codeword detection are present
but omitted from the figures for clarity.

C. Compact Set Lane

The Correct Variable and Compact Set operations are
mapped to a scalable computation lane, shown in Fig. 4.
This lane may be replicated and stacked vertically to provide



����������	
����������������	
�������

���

�����

������


���

������

������


���

�����

������


���

������

������


���

�����

������


���

������

������


����������

�����

�����

����

�����

�����

����

��
���

������

����

��
���

�����

����

������

����

��
���

����

�������

�����	
��

�����

������

����

��� �

!��"�#��"
!��"�#��"

!��"�#��" !��"�#��"

��
���

�����

����

$ �� �

Fig. 2: Memory and data routing system for code length 4095.

���

�����	


�����

���

����	


�����

���	

�����	


�����

���	

����	


�����

���

����	


�����

��������	���	

������
��������	������

��		������

�������	

��������

����	

����	

����

�������	

��������

����	

����	

����

����	

���

�������	

��������

�����

���

 ����	

���������

���!	"��!

����	

����	

����

#��$

���!	"��!

�$�$

����	

#��$	

����

Fig. 3: Memory and data routing system for code length 16129.

parallel computing resources. Variable and set data is split
across computation lanes upward, and the generated new Sets
are joined and returned downward. In a final layout, some split
and join cores may be omitted and replaced with direct data
links if necessary. For the 4095 code, each lane is capable of
processing two sets simultaneously.

For the 16129 code, additional overhead is required due
to memory packing. Variable data read out of memory is
packed with two variables per word, and must be unpacked

�����

�����	�
�

���
���

�����	�


���
���

�����	�


�������

�
�

�������

�
�

���������

�
��

�����
�

�
��

�����

�����	�
�

����
���

�������

�����	�


���
���

�����	�


�������

�
�

���������

�
��

�����
�

�
��

�
�
���

�����

���

���

Fig. 4: Core mapping for a Compact Set computation lane, for code
lengths (a) 4095 and (b) 16129. Lanes are replicated vertically to
increase parallel computation.

by selecting the correct upper or lower Byte based on the
variable’s Byte address, which is included in the data stream.
The unpacking core also provides additional buffering, which
is needed to capture the data bursts which otherwise are too
large for the standard input buffer inside each processor and
will cause pauses in the variable data stream. Finally, since
valid codeword detection must use the unpacked variable data,
an additional core is included within the lane for performing
this detection after unpacking. For the 4095 code, valid de-
tection cores may access the variable stream directly, and are
placed elsewhere.

���������

	
��
���

���
��

	
��
��

���
��

	
��
��

�����

���

�������

�����

	
��
���

���������

	
��
���

�������

���
���

	
��
���

���
��

	
��
��

�������

�
���

	
��
���

�����

���

�������

	
��
���

��������

	
��
���

���

���

Fig. 5: Core mapping for an Update Variable computation lane, for
code lengths (a) 4095 and (b) 16129. Lanes are replicated vertically
to increase parallel computation.

��������

�����	
���

�

��������

�����	
���



��������

�����	
���

�

��������

�����	
���

�

��������

�����	
���

�

�����

���������

�����

���������

�����

���������

�����

���������

�����

��������

�����	
���

�

��������

�����	
���



��������

�����	
���

�

��������

�����	
���

�

�����

���

���

�����

���������

Fig. 6: Core mapping for an address generation block, for code
lengths (a) 4095 and (b) 16129. These blocks are used to implement
the parity check matrix H .

D. Update Variable Lane

Similar to Correct Variable lane, the Update Variable lane is
scalable and implements the Unpack Set and Update Variable
operations, shown in Fig. 5. These two operations are per-
formed inside of a single core, named Update Variable. For
the 4095 code, each lane is capable of processing two sets
simultaneously.

For the 16129 code, memory packing again imposes over-
head. In this case, however, the unused variable in a packed
pair must be preserved and rejoined with the updated variable
before being written back to memory, to avoid data loss. If



��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

	�

	�

	�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��


	


	


	


	

	�

	�

��

��

��

��

��

	�

	�

��

	�

��

	�

��

��

��

��

	�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

	�

	�

	�

	�

	�

	�

	�

	�

	�

��

	�

��

��

��

��

��

��

��

��

��

��� ��� ���

��

��

��

��

��

��

��

��

��

��

��

	�

	�

	�

��


�


�


�


�


�


�


�

��

��

��

	�

��

��

��

��

��

��

��

��

��

��

��

��


�


�


�


�


�


�


�

	�

	�

��

��

��

	�

	�

	�

	�

	�

	�

	�

��

��

��

	�

	�

��

	�

��

��

��

��

��

	�

��

��

��

��

��

��

	�

��

��

��

��

��

��

��

��

��

��

��

��

��

��


�


�


�


�


�


�


�


�


�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

	�

��

��

��

��

��

	�

	�

��

	�

	�

��

	�

	�

��

	�

��� ��� ���

�� �� �� 
	 	� �� �� �� �� �� 	� �� �� 
� �� 
� �� �� 
� �� �� �� 	�

��� ���

�� ��������	��
���

�� ����������

� ��������	�����

�� �������	��
��

�� ��������

� �������	���

�� ����	������	����	

�� �������	��
���

�� ���������

�� ���������	��

�� ������������

�� ��		������	��
��

�� �����������

�� �����	��������

�� �����	������

� ��	��������	���	

�� ���������	��
��

Fig. 7: Overall application mapping to AsAP2, for code lengths (a) 4095 and (b) 16129. Update Variable lanes are replicated in the upper
left (shaded blue), Compact Set lanes are replicated in the upper right (shaded green), address generators (shaded orange) and data routing
cores (shaded cyan) are clustered around the memory modules on the bottom.

this is not done here, the repacking must be done in a more
expensive fashion at the memory interface core.

E. Address Generation

Variable addresses are generated in software using a math-
ematical function which expresses the implemented parity
check matrices. This function is capable of fitting within a
single core’s instruction memory, but has been partitioned
across multiple cores for increased throughput, as shown in
Fig. 6. Adaptation of this design to other LDPC codes may
be done by changing the function in the address generator
cores. The reset signal shown is sent when a valid codeword
is detected.

IV. RESULTS

The computation blocks described in Section III were
mapped to the 164 processor array in AsAP2. Compact Set and
Update Variable compute lanes were each replicated until they
were capable of processing data as quickly as it is read from
memory during each phase of the application, and address
generators were expanded to satisfy the address consumption
rate of the memories. Due to a limitation of the AsAP2 archi-
tecture, cores sending data across more than two processors
are limited to less than their normal maximum frequency. This
is accounted for in the mappings, with additional Pass cores
inserted along long, high-rate data links; Pass cores simply
pass their input to their output. The final mappings are shown
in Fig. 7, where Update Variable lanes are in the upper left,
Compact Set lanes are in the upper right, and other cores are
intermixed and generally clustered around the memories at the
bottom of the array.

The instruction memory utilization of the cores is shown in
Fig. 8, where cores are grouped into categories. The Correct
Variable and Variable Memory Control cores show the largest

0 20 40 60 80 100 120

Pass
Router

Add Gen
Set Mem
Var Mem

UV Join
UV Combine

Update Variable
UV Select

UV Split
Detect Valid

CS Join
Compact Set

Correct Variable
CV Buffer

CV Split

 

 

4095
16129

Fig. 8: Instructions used, given as the highest for any core within a
category, for code lengths 4095 and 16129. Cores are limited to 128
instructions.

instruction counts due to loop unrolling. A core may hold a
maximum of 128 instructions, but this limit was not found to
be restrictive in this application.

Energy usage of the final mapping is optimized through
an iterative profiling technique. Starting with all cores set to
their maximum frequency, the frequency of each individual
core is lowered until the overall application throughput is
significantly reduced, with this point being recorded as the
estimated minimum required frequency of the core. After
all minimum frequencies are found, the second voltage rail
in AsAP2 is set to the estimated minimum energy point,
where lower frequency cores operate at a lower voltage for
energy savings. Fig. 9 shows the average energy reduction
for cores in each category. In some situations, energy usage
may increase if a low frequency core communicates with a
higher frequency core, leading to additional empty cycles in
the receiving core as it waits for data to arrive. Overall, this
method reduces energy usage by 9.3% and 12.1% with a



0 10 20 30 40 50 60

Pass
Router

Add Gen
Set Mem
Var Mem

UV Join
UV Combine

Update Variable
UV Select

UV Split
Detect Valid

CS Join
Compact Set

Correct Variable
CV Buffer

CV Split

 

 

4095
16129

Fig. 9: Percentage by which energy usage is reduced by optimization,
given as the average for cores within a category, for code lengths
4095 and 16129. Reductions are achieved through optimization of
the frequencies and voltage rail selection of each individual core.

reduction in throughput of 0.56% and 0.44% for code lengths
4095 and 16129 respectively.

0 5 10 15 20 25 30

Pass
Router

Add Gen
Set Mem
Var Mem

UV Join
UV Combine

Update Variable
UV Select

UV Split
Detect Valid

CS Join
Compact Set

Correct Variable
CV Buffer

CV Split

 

 

4095
16129

Fig. 10: Percent of the total application energy used by cores in each
category, for code lengths 4095 and 16129.

Fig. 10 shows the overall energy usage of cores in each
category, after optimization. The largest contributors are the
address generators, which experience high activity during
both phases of the application and are replicated multiple
times to satisfy the address consumption rate of the memory
controllers. The second largest contributors are Pass cores,
which are typically placed on high rate data links and see
high activity as a result.

The performance of this design is compared to two other
software LDPC decoder implementations, as shown in Ta-
ble III. First is a multi-threaded decoder written in C++ using
the algorithm described in this work, and running on an Intel
i7-3770k processor. Second is a GPU decoder presented by
Li et al. [5] and running on an Nvidia GTX 580. Designs
are scaled to 22 nm using the scaling equations presented
by Stillmaker et al. [6], as well as being presented unscaled.
Power for the i7 and GTX is assumed to be half of their rated
Thermal Design Power. The primary metrics of interest are
throughput per area and bits decoded per unit of energy, in
both of which AsAP2 performs well.

TABLE III: Performance of this work compared to a C++ implemen-
tation and a GPU implementation. Primary metrics are throughput per
area and bits decoded per unit of energy. Results are scaled to 22nm
for comparison. Throughput is for 4 full decoding iterations and a
partial 5th iteration, or 5 full iterations in the GPU implementation.
AsAP2 performance is given with and without voltage optimization.

Block Tech. Thr. Thr./Area Bits/Energy
Platform Size (nm) (Mbps) (Mbps/mm2) (b/µJ)
i7-3770k 4095 22 23.9 0.150 0.62
i7-3770k 16129 22 25.0 0.156 0.65
GTX 580 [5] 2304 40 710.0 1.365 5.82
GTX 580 [5] 2304 22 970.7 5.431 23.40
AsAP2 4095 65 21.4 0.655 7.06
AsAP2 16129 65 13.5 0.413 4.72
AsAP2, Opt. 4095 65 21.3 0.651 7.66
AsAP2, Opt. 16129 65 13.4 0.412 5.31
AsAP2 4095 22 85.3 11.735 45.71
AsAP2 16129 22 53.8 7.411 30.52
AsAP2, Opt. 4095 22 84.8 11.670 50.40
AsAP2, Opt. 16129 22 53.6 7.379 34.74

V. CONCLUSION

This work has presented the design and implementation
of two software LDPC decoders on the AsAP2 many-core
platform, supporting code lengths of 4095 and 16129. The
implementations achieve a high throughput per area while
maintaining a low energy per decoded bit. Up to 21.3 Mbps
throughput is achieved for 4095 length blocks, decoding 7.66
bits per µJ. For 16129 length blocks, throughput and energy
efficiency are 13.4 Mbps and 5.31 bits/µJ respectively. These
designs may be adapted to other LDPC codes by selective
modification of the address generation units, with the 4095
design supporting codes up to length 8192, and the 16129
design supporting codes up to length 16384.

VI. ACKNOWLEDGEMENTS

The authors gratefully acknowledge support from C2S2
Grant 2047.002.014, NSF Grant 1018972 and 0903549 and
CAREER Award 0546907, SRC GRC Grant 1598, 1971, and
2321 and CSR Grant 1659.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” Information Theory, IRE
Transactions on, vol. 8, no. 1, pp. 21–28, January 1962.

[2] D. Truong et al., “A 167-processor computational platform in 65 nm
cmos,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 4, pp. 1130–
1144, April 2009.

[3] J. Bisasky, D. Chandler, and T. Mohsenin, “A many-core platform
implemented for multi-channel seizure detection,” in Circuits and Systems
(ISCAS), 2012 IEEE International Symposium on, May 2012, pp. 564–
567.

[4] J. Chen et al., “Reduced-complexity decoding of ldpc codes,” Commu-
nications, IEEE Transactions on, vol. 53, no. 8, pp. 1288–1299, Aug
2005.

[5] R. Li et al., “A multi-standard efficient column-layered ldpc decoder
for software defined radio on gpus,” in Signal Processing Advances in
Wireless Communications (SPAWC), 2013 IEEE 14th Workshop on, June
2013, pp. 724–728.

[6] A. Stillmaker, Z. Xiao, and B. Baas, “Toward more accurate scaling esti-
mates of cmos circuits from 180 nm to 22 nm,” VLSI Computation Lab,
ECE Department, University of California, Davis, Tech. Rep. ECE-VCL-
2011-4, Dec. 2011, http://www.ece.ucdavis.edu/cerl/techreports/2011-4/.


