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Abstract—The widths of data words in digital processors have a direct
impact on area in application-specific ICs (ASICs) and FPGAs. Circuit
area impacts energy dissipation per workload and chip cost. Floating-
point exponent and mantissa widths are independently varied for the
seven major computational blocks of an airborne synthetic aperture radar
(SAR) engine. The circuit area in 65 nm CMOS and the PSNR and SSIM
metrics are found for 572 design points. With word-width reductions of
46.9–79.7%, images with a 0.99 SSIM are created with imperceptible
image quality degradation and a 1.9–11.4× area reduction.

I. INTRODUCTION

Synthetic aperture radar (SAR) imaging uses pulses of microwave
energy transmitted from a series of locations towards a target and
reflected back towards an antenna to provide a means for day, night,
and all weather imaging while producing resolution that otherwise
requires a large antenna aperture [1]. SAR imaging is applied in
many fields including environmental monitoring, navigation, and
reconnaissance.

The focus of this work is to reduce the widths of data words in
a SAR backprojection image formation data path to much smaller
widths than the floating-point (FP) double-precision (DP) and single-
precision (SP) commonly used in programmable processors as well
as in custom hardware. Reducing data word widths directly reduces
circuit area which is easy to unequivocally measure and thus it is the
metric we use in this work. Energy dissipation and computational
latency are also directly reduced by word-width reduction but unfor-
tunately also depend on factors such as radar data and architectural
details and so are more difficult to compare.

The SAR backprojection algorithm is a widely used, compute
intensive method for forming images, and is known for its inherent
parallel nature [2], [3]. With the shift towards many-core processing-
arrays and interest in energy-efficiency, there has been specific
algorithmic study to parallelize SAR backprojection algorithms for
a graphics processing unit (GPU) [4], an Intel Xeon Phi many-
core accelerator [5], and a TI digital signal processor (DSP) [6].
Additionally, FPGAs have been considered as image processors for
real-time SAR processing [7]. Previously, SAR compression algo-
rithms have been necessary to allow for remote computation through
a bandwidth limited link [8], [9]. However, performing computation
on an embedded system can remove the need for a raw-data link if
performed in an energy-efficient fashion.

The circuit area of an application-specific IC (ASIC) is a useful
metric to predict the energy dissipation per calculation (among similar
designs) and fabrication cost per chip. In addition, comparing ASIC
areas among similar designs can also provide a basis for predicting
the resource requirements, energy/calculation, and performance of
implementations on FPGAs.

FP arithmetic is typically chosen for performing backprojection
computations due to the dynamic range and precision of the raw
data. Previous work has been done on optimal design trade-offs of

Differential 
Range

Phase 
Calculation

Update 
Image

Sensor Position

Pixel Position

Range to Scene Center

Min Freq

Final
Image Data

Find Pixels 
in Range 
Swath

Range 
Profile

Range to 
Bin

Phase Data

Freq 
Step 
Size

Linear
Interpolation

Fig. 1. Block diagram of the seven major computation blocks of the SAR
backprojection engine.

general FP hardware [10], [11]. However, little exploration has been
done into reducing FP mantissa and exponent width to observe the
effect this has on SAR image quality and chip area.

We determine the FP hardware requirements of a backprojection
algorithm for an airborne spotlight-mode SAR system and the effect
that reducing the FP word width has on final image quality. Identi-
fying the necessary precision for each of these blocks can improve
future ASIC design and algorithm development. The image formation
algorithm is broken into seven functional blocks. The FP word width
for each of these blocks is reduced, SAR images are formed and
then assessed against images created using DP-FP arithmetic. The
potential width reduction and area savings that maintain acceptable
image quality are identified. X-band data collected via spotlight-mode
SAR, in which the radar beam is continually steered to illuminate the
same target scene [1], is used to form images.

The remainder of this paper is organized as follows: Section II
presents the functional blocks for the backprojection algorithm.
Section III discusses the data sets considered. Section IV explains
the methods used for reducing FP word width and determining chip
area . Section V evaluates the effect of FP word width reductions on
image quality and area. Section VI concludes the paper.

II. BACKPROJECTION ALGORITHM FUNCTIONAL BLOCKS

A previously developed SAR signal model is used for the backpro-
jection imaging algorithm [12]. This model has been used to generate
a backprojection imaging algorithm in MATLAB [13]. The functional
blocks of the backprojection implementation are shown in Fig. 1.
For the data sets considered, the range to the motion compensation



point was always around 10,000 m, and each coordinate of the
antenna phase center ranged between 0–7000 m, conditions which
are common with many airborne SAR systems [14]. Each functional
block of the backprojection algorithm is described below.

A. Range to Bin

The range to bin data is used for finding pixels that fall within the
range swath and for linear interpolation. The number of bins is set
by the number of points of the inverse fast Fourier transform (IFFT).
The values of these bins are evenly spaced along the scene range.
The maximum alias-free range extent of the image is calculated by
dividing the speed of light by twice the frequency step size. This
module uses a multiplication, addition/subtraction, and division unit;
which is implemented using the non-restoring algorithm [15].

B. Range Profile

The range profile is computed by zero padding the phase history
data and computing the IFFT. The size of the IFFT was chosen
as 4096 points to maintain computational efficiency of the IFFT,
reduce the occurrence of artifacts, and produce a smoother image.
The range profile data is then used during linear interpolation, along
with the differential range and the range to each bin, to determine an
interpolated value for the range profile.

The areas for storing the phase history data, the computed trans-
form, and twiddle factors in memory are considered separately from
the computation area. The computation area is calculated for a single
radix-2 butterfly. As with the other functional blocks, the number
of computation units can be replicated depending on the desired
throughput, however the area relationship between using different
FP word widths remains the same.

The computational area is provided in Table I. The area for data
storage for the DP-FP implementation was 3 060 000 µm2. The
minimum area for the data storage to obtain an SSIM ≥ 0.5 was
680 000 µm2. The minimum area to obtain an SSIM ≥ 0.9–0.99 was
identical, and required 1 020 000 µm2. The memory area is estimated
from a large on-chip shared memory fabricated in 65 nm CMOS [16],
for a many-core processor array [17].

C. Differential Range

The differential range is computed using the three-dimensional
position of each pixel, the sensor at each pulse, and the range to
the scene center. The differential range is the difference between
the distance from the antenna phase center to the scatterer, and the
distance from antenna phase center to the origin. This block uses five
addition/subtraction, three multiplication, and one square root unit;
which is implemented using the non-restoring algorithm [18]. The
differential range data is used to compute the phase corrections and
perform linear interpolation.

D. Phase Calculation

Determining the phase correction for the receiver output relies on
the minimum frequency of the received samples and the differential
range [13]. This calculation requires a complex exponential function
which can be transformed into equivalent trigonometric functions.
First, inputs to the phase calculation block are range reduced into a
smaller interval [19], then the sine and cosine are computed using
polynomial approximations for values within this interval [20]. In
order to pipeline the computation of the polynomial approximations
for sine and cosine, this module uses 29 multiplication units and 14
addition/subtraction units. The phase correction is then applied to the
data following linear interpolation.

E. Find Pixels in Range Swath

Using the minimum and maximum values of the range to every
bin in the range profile and the differential range values, this module
uses a comparison unit to determine which pixels are within the range
swath. Linear interpolation is then performed only on these pixels.

F. Linear Interpolation

Following calculation of the range profile, the range to each
bin in the range profile, and the pixels in the range swath, a
linear interpolation operation is performed since the values of the
differential range do not exactly line up with the discrete range to bin
values [13]. This module uses one division, five addition/subtraction,
and four multiplication modules. This number of functional blocks
allows simultaneous processing of the real and imaginary data. Phase
correction is then applied to the data in the image update block.

G. Image Update

Following the linear interpolation step, the phase correction is
applied to the data through a complex multiplication and then the
image responses are summed for each pulse to create the final
image data. This module utilizes four multiplication modules and
four addition/subtraction modules.

III. SYNTHETIC APERTURE RADAR DATA SETS

Three publicly available data sets released by the Air Force
Research Laboratory (AFRL) are utilized for image formation [21],
[22]. The phase history data for all three data sets is in the X-band
region with a circular flight path and collected via spotlight passes.

A. Volumetric SAR Data Set

This data set is formed from imaging stationary civilian vehicles
and calibration targets [21]. For each azimuth angle, there are 117
pulses on average, each with 424 frequency samples. Images formed
from this data set have a scene extent of 100 m × 100 m and form
a 501 × 501 pixel image.

B. Point Target Data Set

This data set consists of synthetically generated data for three point
targets [13]. The targets were simulated with 128 pulses and 512
frequency samples per pulse. Images formed from this data set have
a scene extent of 10 m × 10 m and a form a 501 × 501 pixel image.

C. Ground Moving Target Indicator Data Set

The SAR-based Ground Moving Target Indicator (GMTI) motion
compensated radar data set includes data from imaging a moving
vehicle in an urban environment [22]. The data includes 8000 pulses
and 384 frequency samples per pulse. Images formed from this data
set have a scene extent of 200 m × 200 m and form a 1001 × 1001
pixel image.

IV. METHODS FOR REDUCING FLOATING-POINT WORD WIDTH

AND DETERMINING AREA FOR BACKPROJECTION

Using a combination of C++ and MATLAB, each functional block
of the backprojection algorithm is written to support computations
at any exponent and mantissa width up to DP-FP. For each FP word
width, the FP standard is appropriately considered to account for
changing exponent bias, and rounding positions. Modifying the ex-
ponent and mantissa width allows control over the available dynamic
range and precision for each FP format. The IEEE-754 default round-
ing mode, round-to-nearest is used for all computations [23]. The
dependency on dynamic range is evaluated by modifying the exponent
width to between 1 and 11 bits. The effects of precision on image



Fig. 2. PSNR (upper plot) and SSIM (lower plot) of resulting images versus
the exponents widths of the seven functional blocks used to compute those
images. The values of SSIM and PSNR are used for determining the minimum
exponent widths for each functional block. Data are determined by the worst-
case PSNR and SSIM across the three data sets. The mantissa width is kept
at 52 bits.

quality are explored by modifying the mantissa width to between 1
and 52 bits after the decimal point. Before modifying mantissa width,
the minimum exponent width needed to accommodate the dynamic
range is determined. Fig. 2 plots PSNR and SSIM versus exponent
width for each functional block.

To determine the area requirements at each exponent and mantissa
width, each functional block is written in Verilog RTL, and synthe-
sized in 65 nm CMOS at 1.3 V and a clock frequency of 1.2 GHz.
Each functional block is pipelined. Since each functional block has a
different pipeline depth, this results in different numbers of pixels that
can be operated on simultaneously. Therefore, area percentages are
made relative to the same functional block. To achieve a throughput
requirement, the computational units can simply be replicated and the
area relationship between using different FP word widths will remain
the same.

V. COMPARISON OF IMAGE QUALITY WITH REDUCED

FLOATING-POINT WORD WIDTHS

To obtain gold-standard images to measure against, each functional
block is first configured to perform computations using DP-FP
arithmetic. The backprojection algorithm is then performed on all
data sets to form each gold-standard image.

For each image quality comparison, the mantissa and exponent
width for one of the seven functional blocks is reduced from DP-FP.
DP arithmetic is then utilized for the remaining six functional blocks.
Each data set is processed to form an image. The images formed
when modifying the FP word width of each functional block are then
evaluated against the gold-standard image. Images are saved as gray
level (8-bit) jpegs using lossless compression before comparison.

Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity
(SSIM) index are used to quantify the quality of images formed using
each FP word width configuration [24]. Each image is measured
against the gold-standard image. PSNR measures the ratio between
the maximum signal power and the noise corrupting the image,
however this metric does not map well with the human visual system.
However, SSIM is based on the notion that human visual perception
is adapted for extracting structural information about an image.

Fig. 3 plots the worst-case PSNR and SSIM for images constructed
using the three data sets while varying the mantissa width. PSNR and

SSIM versus mantissa width are plotted in the upper and lower figure,
respectively. All mantissa widths between 1 and 52 bits are traversed.
The exponent width of each functional block is chosen to satisfy the
dynamic range requirements of all data sets as shown in Fig. 2. The
results when using SP-FP and DP-FP arithmetic are also denoted.

Although PSNR is a commonly used image quality metric, SSIM
proves to be more useful for determining human perceived image
quality. Among the data sets utilized, images appearing identical can
differ in PSNR value by as much as 80 dB. Alternatively, no visibly
detectable differences are found between the gold-standard images
and images formed using a reduced FP word width when the SSIM
is ~0.95 or higher. Therefore, it is considered that images produced
with an SSIM ≥ 0.99 are indiscernible from the gold-standard
images. After achieving a value ≥ 0.99, the SSIM asymptotically
approaches a value of 1 without visibly improving image quality,
therefore the additional FP word width and hardware are unnecessary.

The results shown in Table I demonstrate that the mantissa width
requirements for each functional block range between 6–27 bits to
form an image with an SSIM ≥ 0.99. These reductions in widths
amount to average area savings of 75.5%. The largest area savings
are obtained by reducing mantissa width, rather than exponent width.

The range profile functional block has the largest potential area
savings. It is possible to reduce the FP word width for this block
from DP-FP to a format using a 6-bit exponent and 6-bit mantissa
and obtain a resulting SSIM value of 0.99. This reduction amounts
to an area savings of 91.2%. Conversely, the differential range block
required the largest mantissa width. To achieve an SSIM of 0.99, a
mantissa width of 27 bits is required; reducing area 48.4%.

The image quality produced when reducing the exponent and man-
tissa width of all functional blocks simultaneously is also considered.
Fig. 4 shows four images formed using the volumetric data set. Each
image is examined against Fig. 4d, which is the gold-standard image
created by using DP-FP arithmetic for each functional block. For
Fig. 4a–4c each functional block is configured to use the exponent
and mantissa widths shown in Table I to achieve an SSIM of 0.5, 0.9,
and 0.99, respectively. For Fig. 4a, although each functional block is
configured to achieve an SSIM of 0.5, the image produced when using
these reduced widths together forms a visibly degraded image with
an SSIM of 0.42. However, for Fig. 4b and Fig. 4c each functional
block is configured to achieve an SSIM of 0.9 and 0.99, respectively,
and the image quality is not visibly different from Fig. 4d. Similar
results are observed for the other data sets in which using the settings
for achieving SSIM values ≥ 0.9 maintained image quality.

VI. CONCLUSION

In this paper, the effect that reducing the FP word width has on
image quality and chip area when performing the backprojection
algorithm to form airborne spotlight-mode SAR images from the X-
band is presented. The backprojection image formation algorithm is
split into seven functional blocks and the effect of reducing precision
and dynamic range is quantified through image quality and area
comparisons. These reductions in width and area are considered
as a first step towards future SAR backprojection ASIC design
and algorithm development. The image quality metrics of PSNR
and SSIM are utilized to determine potential area savings while
maintaining high image quality. The effect on final image quality
when the FP word width was reduced for all blocks simultaneously
is also demonstrated and shows no visible image quality degradation
when using settings to obtain an SSIM of 0.9 or higher. Each
functional block uses 48.4–91.2% less area than that required by
DP-FP hardware.



Fig. 3. PSNR (upper plot) and SSIM (lower plot) of resulting images versus the mantissa widths of the seven functional blocks used to compute those images.
Images are measured against images formed using double-precision floating-point (DP-FP) and single-precision floating-point (SP-FP) arithmetic. Data are
determined by the worst-case PSNR and SSIM across the three data sets. The exponent width is chosen to satisfy the dynamic range requirement of all data
sets as shown in Fig. 2. All functional blocks using DP arithmetic are denoted by the gold star symbol. Functional blocks using SP-FP arithmetic have a
mantissa width of 23 bits.

Table I
SSIM AND PSNR OF BACKPROJECTION IMAGES FORMED WITH REDUCED FLOATING-POINT WORD WIDTHS

MEASURED AGAINST SINGLE-PRECISION AND DOUBLE-PRECISION ARITHMETIC

Functional Block

Range to Bin Range Profile Differential
Range

Phase
Calculation

Find Pixels
in Range Swath

Linear
Interpolation Image Update

Area w/ Single
Precision Arithmetic (µm2) 23365 102409 92708 552409 2469 108609 95212

Area w/ Double
Precision Arithmetic (µm2) 66040 250694 214185 1754742 5171 273014 257678

Exponent Width used
for All Optimized Designs* 5 6 6 5 4 4 4

Minimum Mantissa
Width for SSIM ≥ 0.5 9 1 22 12 11 12 13

Minimum Mantissa
Width for SSIM ≥ 0.9 11 4 25 14 14 14 15

Minimum Mantissa
Width for SSIM ≥ 0.99 12 6 27 17 16 17 17

Minimum Area (µm2)
for SSIM ≥ 0.5 8185 4415 82255 221803 1126 47390 43128

(% Area of DP-FP) (12.4%) (1.8%) (38.4%) (12.6%) (21.8%) (17.4%) (16.7%)
Minimum Area (µm2)
for SSIM ≥ 0.9 10270 16422 93361 249950 1299 51998 52058

(% Area of DP-FP) (15.6%) (6.6%) (43.6%) (14.2%) (25.1%) (19.0%) (20.2%)
Minimum Area (µm2)
for SSIM ≥ 0.99 10716 22080 110425 354374 1438 66287 57973

(% Area of DP-FP) (16.2%) (8.8%) (51.6%) (20.2%) (27.8%) (24.3%) (22.5%)
Results based on synthesis in 65 nm CMOS with a supply voltage of 1.3 V at 1.2 GHz and evaluated against the images formed when using DP-FP
arithmetic. SSIM values are shown for reducing mantissa width of only the given block while all other blocks have 52-bits (DP-FP).

* These values are the smallest exponent word widths which satisfy the dynamic range requirement as shown in Fig. 2.
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(a) Individual block SSIM = 0.5
Combined SSIM = 0.42

(b) Individual block SSIM = 0.9
Combined SSIM = 0.93

(c) Individual block SSIM = 0.99
Combined SSIM = 0.98

(d) Gold standard using DP-FP
Combined SSIM = 1

Fig. 4. Images formed using the backprojection algorithm and the volumetric
data set. An integration angle of 4◦ centered at 60◦ azimuth is used. Each
functional block is connected together and configured to achieve a specific
SSIM value. (a) Image formed using widths for each functional block to
provide at least SSIM = 0.5. The SSIM of the image degraded to 0.42. For
(b) and (c), configuring each functional block to provide a SSIM = 0.9 and
SSIM = 0.99 does not visibly degrade the final image quality.
(d) Gold-standard image created using DP-FP arithmetic.
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