
100 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

Hybrid Hardware/Software Floating-Point
Implementations for Optimized Area

and Throughput Tradeoffs
Jon J. Pimentel, Student Member, IEEE, Brent Bohnenstiehl, Student Member, IEEE,

and Bevan M. Baas, Senior Member, IEEE

Abstract— Hybrid floating-point (FP) implementations imp-
rove software FP performance without incurring the area
overhead of full hardware FP units. The proposed implementa-
tions are synthesized in 65-nm CMOS and integrated into small
fixed-point processors with a RISC-like architecture. Unsigned,
shift carry, and leading zero detection (USL) support is added to
a processor to augment an existing instruction set architecture
and increase FP throughput with little area overhead. The
hybrid implementations with USL support increase software FP
throughput per core by 2.18× for addition/subtraction, 1.29× for
multiplication, 3.07–4.05× for division, and 3.11–3.81× for square
root, and use 90.7–94.6% less area than dedicated fused multiply–
add (FMA) hardware. Hybrid implementations with custom
FP-specific hardware increase throughput per core over a fixed-
point software kernel by 3.69–7.28× for addition/subtraction,
1.22–2.03× for multiplication, 14.4× for division, and 31.9×
for square root, and use 77.3–97.0% less area than dedicated
FMA hardware. The circuit area and throughput are found for
38 multiply–add, 8 addition/subtraction, 6 multiplication,
45 division, and 45 square root designs. Thirty-three multiply–
add implementations are presented, which improve throughput
per core versus a fixed-point software implementation by
1.11–15.9× and use 38.2–95.3% less area than dedicated
FMA hardware.

Index Terms— Arithmetic and logic structures, computer
arithmetic, fine-grained system, floating point (FP).

I. INTRODUCTION

FLOATING-POINT (FP) representation is the most com-
monly used method for approximating real numbers in

modern computers [1]. However, the large area and power
requirement of FP hardware limit many architectures to fixed-
point arithmetic, for example, software-defined radio archi-
tectures [2], Blackfin microprocessors [3], picoChip [4], the
Xscale core [5], and massively parallel processor chips such
as AsAP [6], [7]. Small chip area is especially critical for
many-core architectures, since increasing area per core has

Manuscript received October 21, 2015; revised February 20, 2016 and
April 28, 2016; accepted June 7, 2016. Date of publication July 12, 2016; date
of current version December 26, 2016. This work was supported in part by
the National Science Foundation under Grant 0903549, Grant 1018972, and
Grant CAREER 0546907, in part by Semiconductor Research Corporation
under Grant CSR 1659, Grant GRC 1971, and Grant GRC 2321, and in part
by ST Microelectronics.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at Davis, Davis, CA 95616-5294 USA (e-mail:
jjpimentel@ucdavis.edu; bvbohnen@ucdavis.edu; bbaas@ucdavis.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2016.2580142

Fig. 1. Hybrid implementations offer alternatives to pure software and
pure hardware designs and enable a spectrum of designs with varying levels
of chip area and throughput.

a dramatic effect on total chip area and can much more
easily reduce the number of cores that will fit on a chip die.
There is also interest in adding embedded FP units (FPUs)
in FPGAs [8], though most commercial vendors do not offer
dedicated hard block FPUs due to the large area overhead [9].

Several approaches have been explored for increasing FP
throughput and maintaining low area overhead. Fused and
cascade multiply–add FPUs improve accuracy and provide
computational speedup [10], [11]; however, they introduce
large area [12] and power overhead, which are undesirable for
simple fixed-point processors. If blocks of data have similar
magnitudes, block FP (BFP) can be useful for increasing SNR
and dynamic range [13], [14]. Microoperations have been
used to create a virtual FPU, which reuse existing fixed-point
hardware to emulate an FP datapath for a very long instruction
word processor [14]. Hardware prescaling and postscaling
has also been used to reduce the required hardware for FP
division and square root [15]. The hardware overhead can be
reduced by shortening the exponent and mantissa widths for
video coding [16], audio applications [17], and radar image
formation [18]. Some speech recognition and image processing
applications have been shown to not require the full mantissa
width [19]. Custom FP instructions have also been explored
for an FPGA to increase FP throughput with lower area
overhead than a full hardware FPU [21]. However, Hockert
and Compton [21] did not consider modular FPUs built from
standalone addition/subtraction and multiplication designs or
the throughput when performing the multiply–add operation,
nor did they explore the area and throughput tradeoffs of
various division and square root algorithms.

This paper presents hybrid FP implementations, which
perform FP arithmetic on a small fixed-point processor using
a combination of fixed-point software instructions and addi-
tional hardware. Hybrid implementations offer alternative
area–throughput tradeoffs to full software or full hardware
approaches (Fig. 1). They provide higher throughput than full

1063-8210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

PIMENTEL et al.: HYBRID HARDWARE/SOFTWARE FP IMPLEMENTATIONS 101

software kernels by including either custom FP-specific (CFP)
instructions or unsigned, shift carry, and leading-zero detection
(USL) support, which replaces long sections of code, thereby
performing the same operation in a fewer cycles. This paper
demonstrates that hybrid implementations require less area
than conventional full hardware modules by using the existing
fixed-point hardware, such as the arithmetic logic unit (ALU)
and multiply–accumulate (MAC) unit.

USL support is added to a simple fixed-point processor
to determine the area and throughput tradeoffs provided by
minimal architectural improvements to the instruction set
architecture (ISA). These architectural improvements improve
FP throughput without adding FP-specific hardware. The ISA
modifications include adding unsigned operation support, lead-
ing zero detection, and additional shift instructions. A set of
hybrid implementations with USL support is created, which
typically require less area than the hybrid implementations
with CFP hardware, but offer less throughput.

The main contributions of this paper are as follows.
1) Eight hybrid implementations with CFP hardware and

six with USL support.
2) Design and implementation of 38 multiply–add,

8 addition/subtraction, 6 multiplication, 45 division,
and 45 square root designs. These designs include full
software kernels, full hardware modules, hybrid imple-
mentations with USL support, and hybrid implementa-
tions with CFP hardware. Three different algorithms for
division and three for square root are utilized.

3) Evaluation of the proposed software kernels, hardware
modules, and hybrid implementations, and FPUs
(i.e., the combination of two or more FP software
kernels, hardware modules, or hybrid implementations)
in terms of area, throughput, and instruction count
when performing FP multiply–add, addition/subtraction,
multiplication, division, and square root.

The remainder of this paper is organized as follows. Section II
presents background on the FP format, the algorithms utilized,
and the targeted architecture. Section III presents the full
software kernels and Section IV covers the full hardware mod-
ules. Section V discusses the proposed hybrid implementations
with USL support. Section VI discusses the proposed hybrid
implementations with CFP hardware. Section VII evaluates
the software kernels, hardware modules, and hybrid imple-
mentations, demonstrates two examples for determining the
optimal designs, and presents benchmark results. Section VIII
provides insights into the advantages of the hybrid approaches.
Section IX compares the results of this paper to previous work.
Section X summarizes the findings of this work.

II. FLOATING-POINT COMPUTATION BACKGROUND

A. Floating-Point Format

This work uses the IEEE-754 single-precision format for all
FP arithmetic, with values on the normalized value interval
±[2−126, (2−2−23)×2127] [22]. In addition, round to nearest
even, the IEEE-754 default rounding mode, and round toward
zero are supported for all FP arithmetic. However, in order
to reduce overhead, the following features are not supported:

exception handling, not a number, ±infinity, denormalized
values, and alternative rounding modes. Many applications,
such as some multimedia and graphics processing, do not rely
on all elements of the standard [20], [23].

B. Floating-Point Arithmetic

The FP operation algorithms are explained below.
1) Addition/Subtraction: This operation begins by deter-

mining the smaller magnitude operand, aligning the mantissas
of the two operands based on the difference in their exponents,
and adding or subtracting the mantissas based on the desired
operation and the signs of the operands. The initial exponent is
set to the exponent of the larger magnitude operand. The result
is then normalized and rounded. The sign bit is determined by
the larger input operand.

2) Multiplication: This operation begins by multiplying the
mantissas together. The initial exponent is set by adding
the operand exponents, the product is then normalized and
rounded, and the sign bit is set by XORing the sign bit of both
operands together.

3) Multiply–Add: The multiply–add operation performs
a + b × c. The unfused multiply–add first calculates b × c,
rounds the result, adds the rounded product to the addend a,
and then performs a second rounding. The fused multiply-add
(FMA) rounds once, after the product is added to the addend.

4) Division: Three algorithms are implemented for
division: long-division [24], nonrestoring [25], and
Newton–Raphson [1]. Division is typically an infrequent
operation [26], [27]; therefore, little area should be allocated.
The long-division and nonrestoring algorithms are chosen
for their simplicity and low area impact, whereas the
Newton–Raphson algorithm is selected for its potentially high
throughput [28].

The long-division algorithm first compares the magnitude of
the divisor and the dividend. If the divisor is smaller than or
equal to the dividend, then it is subtracted from the dividend
to form a partial remainder, and a 1 is right shifted in as the
next bit of the quotient. Otherwise, they are not subtracted
and a 0 is shifted in for the next bit of the quotient [24].
The partial remainder is then left shifted by 1 bit and set
as the new dividend. This process continues until all of the
quotient bits are determined. The result is then normalized
and rounded. The result exponent is calculated by subtracting
the input exponents and adding back the bias.

The nonrestoring division algorithm is similar to the restor-
ing algorithm except that it avoids the restoring step for each
loop iteration to improve performance [29]. The divisor is
first subtracted from the dividend. A loop is executed that
first checks if the result is negative or positive, and then left
shifts the quotient and the result. If the result is negative, the
dividend is added to the result. If the result is positive, the least
significant bit (LSB) of the quotient is set to 1 and the dividend
is subtracted from the result [30]. This loop iterates until all
bits are determined for the quotient [25]. The final step then
restores the divisor if the result was negative. The result is then
normalized and rounded. The result exponent is calculated in
the same manner as long division.

102 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

For the Newton–Raphson division algorithm, the reciprocal
of the divisor is determined iteratively and then multiplied
by the dividend [1]. The divisor and dividend are first scaled
down to a small interval. A linear approximation is then
used to estimate the reciprocal and minimize the maximum
relative error of the final result [31]. This estimation is then
improved iteratively. Once this reciprocal is determined, it
is multiplied by the scaled dividend to obtain the result,
which is then refined by computing residuals at a higher
precision [24].

These division algorithms calculate the result’s sign by
XORing the sign bits of both operands.

5) Square Root: Three algorithms are used for performing
square root: digit-by-digit, Newton–Raphson [1], and non-
restoring [32]. Square root is typically an infrequent opera-
tion [26], [27]; therefore, little area should be allocated. The
digit-by-digit and nonrestoring algorithms are chosen for their
low area impact, while the Newton–Raphson method is chosen
for providing high throughput since the algorithm converges
quadratically rather than linearly [33].

The digit-by-digit algorithm first determines the result expo-
nent. If the unbiased exponent is odd, one is subtracted to make
it even and the radicand mantissa is left shifted to account
for the change without a loss of precision. The exponent is
then right shifted by 1 bit. Solving for the root mantissa then
begins by setting the most significant bit (MSB) of the root to
one, squaring the root, and subtracting it from the radicand.
If the result is negative, the radicand’s MSB is set to zero;
otherwise, it is left as a one. The next MSB of the root is
then set to 1, and the process is continued until all of the root
bits are determined. The squaring step is unnecessary for the
first iteration of this loop. The result is then normalized and
rounded.

The nonrestoring square root algorithm involves a loop
where each iteration calculates one digit of the square root
exactly and the digits are based on whether the partial
remainder is negative or positive [32]. The result exponent
is determined by dividing the original exponent by two and
adding 63, which is half the bias rounded down. The LSB of
the original exponent is then added to this sum.

The Newton–Raphson square root algorithm finds the recip-
rocal of the square root first using an algorithm similar to
Newton–Raphson division [1]: scaling the input, applying
the linear approximation [34], and iterating to improve the
approximation. The result is determined by multiplying the
reciprocal approximation by the original input and corrected
via the Tuckerman test [35].

C. Targeted Architectures

This work applies to any fixed-point architecture. Several
methods for performing FP operations on a fixed-point data-
path are evaluated on the asynchronous array of simple
processors architecture (AsAP2). AsAP2 is an example of
a fine-grained many-core system with a fixed-point data-
path [36] and features 164 simple independently clocked
homogeneous programmable processors. Each processor
occupies 0.17 mm2 in 65-nm CMOS technology and can

operate up to a maximum clock frequency of 1.2 GHz
at 1.3 V [7]. Processors support 63 general-purpose instruc-
tions, contain a 128 × 35-bit instruction memory and a
128 ×16-bit data memory, and implement a 16-bit fixed-point
signed-only datapath including a MAC unit with a 40-bit accu-
mulator. The platform is capable of computing a wide range of
applications including audio and video processing [37], [38],
as well as ultrasound image processing [39].

III. FULL SOFTWARE KERNELS

These full software kernels are coded in AsAP instructions
and form a software library consisting of addition/subtraction,
multiplication, division, and square root. They are referred to
as “full software” because they utilize only general-purpose
fixed-point instructions. Since the platform’s word size is 16
bits, each value is received on chip as two words. To simplify
software computation, these words are split into four to store
the following: the sign bit, exponent, high and low mantissa
bits. Since these kernels use only the platform’s existing fixed-
point datapath, they do not add area.

The programs for these kernels are large due to the lack
of unsigned ALU instructions and the number of fixed-point
instructions required for emulating FP hardware. Compu-
tation time for software FP consists primarily of operand
comparisons, mantissa alignment, addition, normalization, and
rounding.

A. Addition/Subtraction Kernel (Full SW Add/Sub)

Since 222 instructions are required for this kernel,
two processors are needed for sufficient instruction memory.
The first processor sorts the operands and aligns the mantissas.
The second processor adds the mantissas, normalizes, and
rounds.

B. Multiplication Kernel (Full SW Mult)

Most of the instructions overheads for this kernel are used
for performing mantissa multiplication and rounding. The
partial products of the multiplication are created and added
using the MAC and aligned using the shifter.

C. Division Kernel Version 1 (Full SW Div Ver. 1)

This kernel uses the long-division algorithm [24]. The loop
to determine the quotient requires the greatest number of
instructions and involves several shift and subtract operations.

D. Division Kernel Version 2 (Full SW Div Ver. 2)

This kernel uses the Newton–Raphson algorithm [1]. The
kernel begins with zero input detection and handling, followed
by exponent calculation. The input is then prepared for later
calculations. The initial estimate of the reciprocal is calculated,
followed by Newton–Raphson iterations. The first input is then
multiplied by the reciprocal of the second, and then the result
is normalized and rounded. Finally, the LSB is corrected.

E. Square Root Kernel Version 1 (Full SW Sqrt Ver. 1)

This kernel uses the digit-by-digit method. Most of the
overhead involves squaring each value being tested.

PIMENTEL et al.: HYBRID HARDWARE/SOFTWARE FP IMPLEMENTATIONS 103

TABLE I

INSTRUCTIONS USED BY EACH FP DESIGN

F. Square Root Kernel Version 2 (Full SW Sqrt Ver. 2)

This kernel uses the Newton–Raphson method, similar to
Full SW Div Ver. 2, except the first input is multiplied by the
reciprocal of the square root. Most of the instruction overhead
is from handling multiword values.

IV. FULL HARDWARE MODULES

Full hardware modules offer the highest throughput, but
require the most area of the designs implemented. These mod-
ules are referred to as “full hardware” because all arithmetic is
performed on dedicated FP hardware. Since the target platform
has a 16-bit datapath, the FP values are first loaded into FP
registers. Each value is stored as two 16-bit words. An entire
FP operation is carried out by a single FP instruction and the
results are read from the FP registers, 16 bits at a time. The
instructions used in each module are shown in Table I.

For comparison purposes, a separate version of each module
is created, with a 32-bit word size and datapath. The full
hardware modules are discussed as follows.

A. Fused Multiply–Add Module (Full HW FMA)

The full hardware FMA module uses the FMA instruction,
with a two-cycle execution latency. The design of the module
matches that of a traditional single-path FMA architecture,
similar to the FMA in the IBM RS/6000 [1], [40]. The addend
is complemented if effective subtraction is performed and right
shifted by the exponent difference. The multiplier uses radix-4
Booth encoding with reduced sign extension, limiting the
widths of the partial products to 28 and 29 bits. The partial
products are then compressed using a Wallace tree into carry-
save format. A 3:2 carry-save adder then adds these values and
the lower 48 bits of the shifted addend. An end-around carry
adder with a carry lookahead adder computes the sum. In par-
allel, a leading zero anticipator (LZA) determines the number
of leading zeros for the result, to within 1 place [41], [42].
The result is complemented if the addend is larger than
the product. The result is normalized using the LZA count,
followed by a possible 1-bit correction and rounding.

Full HW FMA (32-bit I/O) is created for a 32-bit datapath
and word size and uses FMA32 with a two-cycle execution
latency. This instruction uses three source operands.

B. Addition/Subtraction Module (Full HW Add/Sub)

This module uses the FPAdd and FPSub instructions with
a two-cycle execution latency each.

Full HW Add/Sub (32-bit I/O) is created for a 32-bit
datapath and word size and uses FPAdd32 and FPSub32, each
of which has a single-cycle execution latency. If operands are
read from a processor’s local memory, then a single instruction
can perform addition/subtraction.

C. Multiplication Module (Full HW Mult)

This module uses the FPMult instruction with a single-cycle
execution latency to perform multiplication.

Full HW Mult (32-bit I/O) is created for a 32-bit datapath
and word size and uses the FPMult32 instruction to perform
multiplication with a single-cycle execution latency. Assuming
operands are read from a processor’s local memory, a single
instruction can perform multiplication.

D. Division Module (Full HW Div)

This module performs the restoring division algorithm [25]
using FPDiv. This instruction has a 30-cycle execution latency.

Full HW Div (32-bit I/O) is created for a 32-bit datapath and
word size and uses the FPDiv32 instruction with a 30-cycle
execution latency. A single instruction can perform division if
operands are read from a processor’s local memory.

E. Square Root Module (Full HW Sqrt)

This module uses FPSqrt with a 26-cycle execution latency
to perform the nonrestoring square root algorithm [32].

104 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

Full HW Sqrt (32-bit I/O) is created for a 32-bit datapath and
word size and uses the FPSqrt32 instruction to perform square
root operations with a 26-cycle execution latency. A single
instruction can perform square root operations.

V. PROPOSED HYBRID IMPLEMENTATIONS WITH

UNSIGNED, SHIFT-CARRY, AND LEADING

ZERO DETECTION SUPPORT

To determine the throughput and area achievable by increas-
ing the instruction set, USL support is added to the target
platform’s ISA. Several ISA modifications are implemented,
including adding unsigned operation support, leading zero
detection, and additional shift-carry instructions. These extra
shift instructions can set a carry flag if data are shifted out.
Table I indicates the instructions utilized, each of which has
a single-cycle execution latency, except for the MAC instruc-
tions, which require two cycles. Each value is split across four
16-bit words. The following instructions are implemented.

1) SUBU: Unsigned subtraction.
2) SUBUC: Unsigned subtraction instruction with borrow

if the carry flag is asserted.
3) ADDU: Unsigned addition.
4) ADDUC: Unsigned addition with carry in.
5) SHLC: Shift left with carry in.
6) SHRC: Shift right with carry in.
7) LZD: Return number of leading zeros.
8) MULTUL: Unsigned multiply that returns the 16 LSBs

of the result. The accumulator is not overwritten.
9) MACCUL: Unsigned multiply that returns the 16 LSBs

of the result. The accumulator is overwritten with the
result.

10) MACUL: Unsigned multiply-accumulate that returns the
lower 16 LSBs of the result.

11) MACUH: Unsigned multiply–accumulate that returns
the 16 MSBs of the result.

12) ACCSHU: Unsigned right shift for the accumulator and
returns the 16 LSBs of the result.

Each of the implementations is described as follows.

A. Addition/Subtraction Hybrid Implementation With
USL Support (Hybrid Add/Sub w/ USL)

Unsigned addition/subtraction operations increase through-
put for sorting operands, calculating the exponent difference,
adding/subtracting the mantissas, and rounding. The additional
shift instructions and the LZD reduce normalization overhead.

B. Multiplication Hybrid Implementation With
USL Support (Hybrid Mult w/ USL)

The unsigned multiply–accumulate instructions reduce the
overhead for partial product calculation. The additional shift
instruction eases normalization and the unsigned addition
instructions reduce the instruction count for rounding.

C. Division Hybrid Implementation With USL Support
Version 1 (Hybrid Div w/ USL Ver. 1)

This implementation uses the long-division algorithm [24].
Unsigned addition/subtraction and added shift instructions

reduce the instruction count for exponent calculation,
divisor and dividend mantissa subtraction, rounding, and
normalization.

D. Division Hybrid Implementation With USL Support
Version 2 (Hybrid Div w/ USL Ver. 2)

This implementation uses the Newton–Raphson division
algorithm [1]. The unsigned addition/subtraction, multiply–
accumulate, and additional shift instructions reduce the
instruction count for calculating the exponent and initial esti-
mate, executing the Newton–Raphson iterations, multiplying
the input by the reciprocal, rounding, and correcting the LSB.

E. Square Root Hybrid Implementation With USL Support
Version 1 (Hybrid Sqrt w/ USL Ver. 1)

This implementation uses the digit-by-digit method.
Unsigned addition/subtraction instructions decrease the
instruction count for exponent calculation, root incrementing,
radicand and square root subtraction, and rounding. Unsigned
multiply–accumulate reduces the instruction count for
squaring the root being tested, and the additional shift
instructions assist with setting the next radicand bit and
alignment.

F. Square Root Hybrid Implementation With USL Support
Version 2 (Hybrid Sqrt w/ USL Ver. 2)

This implementation uses the Newton–Raphson square root
algorithm [1]. Unsigned instructions ease rounding and the
correction of the LSB, calculating the exponent, determining
the initial value, and performing the Newton–Raphson itera-
tions. The additional shift instructions help with preparing the
input data and the Newton–Raphson iterations.

VI. PROPOSED HYBRID IMPLEMENTATIONS WITH

CUSTOM FP-SPECIFIC HARDWARE

Hybrid implementations with CFP hardware are composed
of fixed-point software and custom FP instructions operating
together on FP workloads [43]. They increase throughput by
reducing the bottlenecks of full software kernels and require
less area than full hardware modules.

CFP instructions perform operations on data stored in
FP registers, and each value is stored as two 16-bit words.
Table I indicates the instructions utilized in each implemen-
tation, where each instruction has a single-cycle execution
latency. Eight implementations are described in the following.

A. Addition/Subtraction Hybrid Implementation With CFP
Hardware Version 1 (Hybrid Add/Sub w/ CFP Ver. 1)

With this implementation, fixed-point instructions sort
the operands and calculate the exponent difference. The
CFP instructions described in the following perform the rest
of the operation.

1) FPAdd_SatAlign: The FP registers are loaded with the
sorted FP operands. This instruction saturates the exponent
difference and then aligns and adds the mantissas. The hidden
bits are inserted and the sticky bit is determined. For effec-
tive subtraction, the smaller magnitude operand’s mantissa is
inverted and a one is added. The unnormalized result is stored
in an FP register and the 16 MSBs are returned.

PIMENTEL et al.: HYBRID HARDWARE/SOFTWARE FP IMPLEMENTATIONS 105

2) LZD: Following mantissa addition, LZD counts the lead-
ing zeros of the result. This count is used to normalize.

3) BShiftL: Using the shift amount determined by LZD and
the sum stored in the FP registers by FPAdd_SatAlign and
BShiftL shifts left for normalization, adjusts the exponent, and
stores the result’s 27 LSBs in an FP register.

4) FPAdd_Round: Following normalization, FPAdd_Round
performs rounding and exponent adjustment. The final result
is written to an FP register and the 16 MSBs are output.

B. Addition/Subtraction Hybrid Implementation With CFP
Hardware Version 2 (Hybrid Add/Sub w/ CFP Ver. 2)

Operand sorting, exponent difference calculation and sat-
uration, sticky bit calculation, and hidden bit insertion are
performed with fixed-point instructions. This implementation
utilizes FPAdd_AlignSmall, which is described as follows.

1) FPAdd_AlignSmall: This instruction aligns and adds the
mantissas using the software calculated shift amount. The rest
of the operation uses LZD, BShiftL, and FPAdd_Round.

C. Addition/Subtraction Hybrid Implementation With CFP
Hardware Version 3 (Hybrid Add/Sub w/ CFP Ver. 3)

Algorithm 1 displays the pseudocode for this implemen-
tation; variables are italicized, comments are in green font,
CFP instructions are bolded and in blue font, and all other
lines represent operations carried out by fixed-point software.
After the input operands are loaded, FPAdd_Compare sorts the
operands and calculates the saturated shift amount and stores
this value in ExpDiff. FPAdd_Align reads the variable ExpDiff
to perform the mantissa alignment, possibly complements one
of the mantissas, and then adds them. The result is stored in
FPReg1 and the 16 MSBs are stored in FPreg3. LZD stores
the leading zeros count of FPReg3 in UpperZeros. If all bits
were zero, then LZD counts the leading zeros in the LSBs
of FPReg1. BShiftL then normalizes after adding the leading
zeros counts together. FPAdd_Round then rounds the normal-
ized result and outputs the 16 MSBs. FPAdd_Compare and
FPAdd_Align are described as follows.

1) FPAdd_Compare: This instruction sorts both operands
after they are loaded into the FP registers. The sorted operands
are then rewritten into the FP registers. FPAdd_Compare also
saturates the shift amount since exponent differences greater
than 25 result in identical mantissa alignments.

2) FPAdd_Align: This instruction is similar to
FPAdd_SatAlign, except that alignment shift amount
saturation is handled by FPAdd_Compare. This instruction
reads the sorted operands and then aligns and adds them using
the shift amount. The rest of the FP operation is performed
using LZD, BShiftL, and FPAdd_Round.

D. Addition/Subtraction Hybrid Implementation With CFP
Hardware Version 4 (Hybrid Add/Sub w/ CFP Ver. 4)

This implementation sorts the operands and calculates
the hidden bit, sticky bit, and saturated exponent difference
using fixed-point instructions. FPAdd_Align aligns mantissas,
potentially complements one of them, and adds them together.
Shift_LZA replaces BShiftL and LZD and is described as
follows.

Algorithm 1 Pseudocode of Hybrid Add/Sub w/ CFP Ver. 3

1) Shift_LZA: An LZA forms an indicator string to antic-
ipate the leading zeros in parallel with the addition [1]. The
leading zero count is then used for normalization shifting,
followed by a possible 1-bit correction. The rest of the
FP operation is performed using FPAdd_Round.

E. Multiplication Hybrid Implementation With CFP
Hardware Version 1 (Hybrid Mult w/ CFP Ver. 1)

This implementation performs mantissa multiplication and
exponent and sign bit calculation using fixed-point software
instructions. FPMult_NormRndCarry performs the rest of the
operation and is described as follows.

1) FPMult_NormRndCarry: Following mantissa multiplica-
tion and exponent calculation, the product is loaded into an
FP register. The normalized and rounded mantissa is written
back into an FP register, the 16 MSBs are returned, and
the carry flag is set. If the carry flag is set, the exponent
is incremented in software. Fig. 2(a) shows the hardware
for adding this design into the execution stage of the target
platform.

F. Multiplication Hybrid Implementation With CFP
Hardware Version 2 (Hybrid Mult w/ CFP Ver. 2)

This implementation performs mantissa multiplication in
software using fixed-point instructions. FPMult_NormRnd per-
forms the rest of the operation and is described as follows.

1) FPMult_NormRnd: Following software mantissa multi-
plication, the product, exponent, and sign bits are loaded into
FP registers. The new sign bit, exponent, and normalized and
rounded product are then calculated. The result is written to the
FP registers and selectable via a 16-bit multiplexer. Fig. 2(b)
shows the hardware for this design.

106 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

Fig. 2. (a) Hardware to implement the FPMult_NormRndCarry instruction for the Hybrid Mult w/ CFP Ver. 1 implementation. FP Reg 1 is loaded with
the product of the mantissa multiplication. The rounded result and carry bit are produced. If the carry flag is set, the exponent is incremented in software.
(b) Hardware to implement the FPMult_NormRnd instruction for the Hybrid Mult w/ CFP Ver. 2 implementation. FP Reg 1 is loaded with the product and
FP Reg 2 is loaded with the sign bits and exponents of both operands. The sign, exponent, rounded result, and zero flag are then produced.

G. Division Hybrid Implementation With CFP Hardware
Version 1 (Hybrid Div w/ CFP Ver. 1)

The nonrestoring division algorithm is used for performing
FP division with this implementation [25]. The exponent
and sign bit of the result are determined in software. The
instruction described in the following performs the rest of the
operation.

1) FPDiv_LoopExpAdj: After both inputs and the par-
tially computed exponent are loaded into the FP registers,
this instruction performs the division loop, described in
Section II-B4, to calculate the final mantissa. The exponent
is then adjusted in hardware following normalization and
rounding.

H. Square Root Hybrid Implementation With CFP
Hardware Version 1 (Hybrid Sqrt w/ CFP Ver. 1)

This implementation implements the nonrestoring square
root algorithm [32]. The exponent of the result is deter-
mined in software. FPSqrt_Loop performs the rest of the
operation.

1) FPSqrt_Loop: After loading the input into the
FP register, this instruction performs the square root loop,
described in Section II-B5, to calculate the final mantissa.

VII. RESULTS AND COMPARISONS

Each implementation is synthesized with a 65-nm CMOS
standard cell library using Synopsys DC compiler with a 1.3 V

operating voltage and 25 °C operating temperature and clock
frequencies of 600, 800, 1000, and 1200 MHz.

For accuracy and performance analysis, FPgen [44],
a test suite for verifying FP datapaths is used to include
test cases unlikely to be covered by pure random test gen-
eration. This testing is supplemented by using millions of
pseudorandomly generated FP values on the normalized value
interval ±[2−126, (2 − 2−23) × 2127].

With the exception of the full software kernels, each design
adds circuitry to the platform processor, the area for this
circuitry is referred to as additional area.

A. Individual FP Designs Compared

Fig. 3 plots additional area versus delay for each design
using four different target clock frequencies ranging from
600–1200 MHz. Additional area is plotted versus cycles per
FLOP times the clock period in nanoseconds. The designs are
plotted on separate graphs according to operation type. Since
FMA supports both addition/subtraction and multiplication
operations, it is plotted in both Fig. 3(a) and (b). Designs for
both 16-bit and 32-bit word sizes and datapaths are plotted.
The 32-bit I/O designs are smaller than their counterparts
because they do not consider the additional area required for
a processor with a 32-bit word size and datapath.

As expected, designs providing higher throughput generally
require greater area. Regardless of clock period, the dedicated
FMA requires the most area. Having a split multiplier and
addition/subtraction design requires less area than an FMA

PIMENTEL et al.: HYBRID HARDWARE/SOFTWARE FP IMPLEMENTATIONS 107

TABLE II

THROUGHPUT, INSTRUCTION COUNT, AND AREA FOR EACH DESIGN

due to extra circuitry present such as a wider alignment shifter,
adder, and normalization shifter, as well as the LZA and end-
around carry adder present in the FMA. A large area savings
is not observed for most designs when using a longer clock
period. In addition, the target platform utilizes a 1.2 GHz
clock frequency and a separate clock is not available for the
FP circuitry; therefore, the results for the rest of this paper
consider a 1.2 GHz clock frequency.

Table II lists the throughput per core, instruction count, and
area for each design. Fig. 4 plots the throughput and area
for each design. Each implementation is plotted on a separate
graph according to operation type. For each of the four plots,
full software kernels are found on the left side, along the y-
axis. Full hardware modules are located in the bottom right
hand of each plot. The hybrid implementations (with USL
support and with CFP hardware) are found in the middle of
the plots.

We can determine the optimal design subject to an area
constraint by selecting an implementation that uses less area
than the constraint and requires the fewest average cycles per
FLOP. As an example, we consider an area constraint Amax

equal to 10% of the target platform processor area. For this
example, more area is allocated for addition/subtraction and
multiplication hardware because division and square root are
less frequent operations [26], [27]. As shown in Fig. 4(a), an
area constraint is first set for the addition/subtraction design
A70% max equal to 70% of the maximum area constraint. The
optimal implementation that requires the least cycles per FLOP
while not exceeding the area constraint is denoted by the green
arrow as Hybrid Add/Sub w/ CFP Ver. 3. Using the remaining
area, the area constraint Amult max is set in Fig. 4(b) and
the optimal design for multiplication is Hybrid Mult w/ CFP
Ver. 2. There remains available area, Adiv max, for improving
division throughput in Fig. 4(c) using Hybrid Div w/ USL Ver.
1. Finally, the optimal design for square root is determined in
Fig. 4(d) to be a software kernel, Full SW Sqrt Ver. 1.

The full hardware designs require the most area and achieve
the highest throughput; however, none of these implementa-
tions meets the area constraint and the FMA is the largest
implementation, increasing processor area by 32.8%. Except
for multiplication, the hybrid implementations with USL sup-
port require the least area to improve throughput. They can

108 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

Fig. 3. Result of exploring different cycle times for different FP designs.
The markers denote the average cycles per FLOP times the clock period,
and the interval bar endpoints for each symbol denote the corresponding
minimum and maximum. Cycles per FLOP are scaled by the number of cores
required. Results are obtained from synthesis in 65-nm CMOS at 1.3 V and
600–1200 MHz. (a) Addition/subtraction designs. (b) Multiplication designs.
(c) Division designs. (d) Square root designs.

also be used for general-purpose workloads because the USL
instructions are non-FP specific. For the full software kernels,
division and square root require less cycles per FLOP using
the long-division and digit-by-digit algorithms, respectively.
However, the division and square root hybrid implementations
with USL support require slightly less cycles per FLOP when
using the Newton–Raphson algorithm.

B. Comparison When Combining FP Designs

To compare the throughput and area when combining
multiple designs, the FP designs discussed in Sections III–VI
are combined into 38 functionally equivalent FPU
implementations consisting of an addition/subtraction and
multiplication unit. These designs are evaluated for
performing unfused multiply–add, and Newton–Raphson
division and square root. These Newton–Raphson and FMA
implementations of divide and square root are mapped in
a pipelined fashion and loops are unrolled to potentially
provide high throughput [45]. These implementations are
compared with full software, full hardware, and hybrid
designs using the long-division, digit-by-digit, nonrestoring,
or Newton–Raphson algorithm.

Fig. 4. Additional area versus cycles per FLOP for each FP design and
determining the optimal designs from area constraints. The 30 markers in the
legend denote the average cycles per FLOP, and the endpoints of the interval
bars for each symbol denote the corresponding minimum and maximum.
Cycles per FLOP are scaled by the number of cores required. Area constraints
are indicated by the vertical dashed lines. The optimal design has the least
average cycles per FLOP and an area below the area constraint. For this
example, the area available for additional hardware Amax is equal to 10%
of the processor area. (a) Optimal adder/subtractor is first determined using
an area constraint of 70% of the maximum area constraint. (b)–(d) Optimal
multiplication, division, and square root designs are determined using the
remaining available area. Designs satisfying the area constraint appear in the
green regions. Results are obtained from synthesis in 65-nm CMOS at 1.3 V
and 1.2 GHz.

Fig. 5 plots the cycles per FLOP for the unfused multiply–
add operation versus additional area. Just as in Section VII-A,
the optimal design subject to an area constraint can be
easily determined. The optimal multiply–add design is first
determined, followed by the optimal division and square
root designs. For this example, the area constraint Amax is
equal to 10% of the target platform processor area; however,
80% of the area constraint A80% max is allocated for the
addition/subtraction and multiplication hardware. Based on the
cycles per FLOP for performing the multiply–add operation,
denoted by the green arrow, Hybrid Add/Sub w/ CFP Ver. 3
is the optimal addition/subtraction design and Hybrid Mult
w/ CFP Ver. 2 is the optimal multiplication design. Despite
offering reduced latency and higher throughput, the additional
area overhead for the FMA does not meet the area constraint.

PIMENTEL et al.: HYBRID HARDWARE/SOFTWARE FP IMPLEMENTATIONS 109

Fig. 5. Multiply–add (A + B × C) area versus cycles per FLOP for all FPU implementations and determining the optimal implementation from an area
constraint. Design point symbols are placed at the average cycles/FLOP point with interval bars showing the range over all possible values. Cycles per FLOP
are scaled by the number of cores required. Area constraints are indicated by the vertical dashed lines. The optimal design has the least average cycles per
FLOP and an area below the area constraint. For this example, the area available for additional hardware, Amax, equals 10% of the processor area. The optimal
adder/subtractor and multiplier are first determined using 80% of the maximum area constraint A80% max. Using the remaining available area, the optimal
designs for division and square root are determined in Figs. 6 and 7, respectively. Designs satisfying the area constraint appear in the green highlighted region.
Results are obtained from synthesis in 65-nm CMOS at 1.3 V and 1.2 GHz.

Fig. 6 plots the cycles per FLOP for the division oper-
ation versus additional area. The combinations of addi-
tion/subtraction and multiplication designs from Fig. 5 are
used to perform Newton–Raphson division. Using one of the
FPU implementations from Fig. 5 to implement division does
not require any additional area other than that already incurred
for the addition/subtraction and multiplication designs. Using
the area left over from choosing a design in Fig. 5, the
optimal design for improving division throughput is deter-
mined. The division implementation using the optimal FPU
from Fig. 5 is denoted by the blue arrow; however, it does
not improve throughput versus full software. Subject to the
constraint Adiv max, the optimal division design is Hybrid
Div w/ USL Ver. 1, which uses the long-division algorithm.
Scaled by core count, none of the addition/subtraction and
multiplication combinations using Newton–Raphson division
increases throughput.

Fig. 7 plots the cycles per FLOP for the square root
operation versus additional area. The combinations of addi-
tion/subtraction and multiplication designs from Fig. 5 are
used to perform Newton–Raphson square root. Using one
of the FPU implementations from Fig. 5 to implement
square root does not require any additional area other
than that already incurred for the addition/subtraction and

multiplication designs. Asqrt max is the area left over from
choosing an addition/subtraction and multiplication design in
Fig. 5 and a division design in Fig. 6 and is used to determine
an optimal square root design. The square root implementation
using the optimal FPU from Fig. 5 is denoted by the blue
arrow; however, it achieves lower throughput than the software
implementation. Subject to the area constraint, the optimal
square root design is Full SW Sqrt Ver. 1, which imple-
ments the digit-by-digit algorithm. Contrary to division, some
Newton–Raphson square root implementations using com-
binations of addition/subtraction and multiplication designs
improve throughput over the full software implementation.

The FPU implementations are also evaluated for performing
two scientific kernel benchmarks. Fig. 8(a) and (b) plots the
cycles per FLOP for a radix-2 complex butterfly computation
and a 2 × 2 matrix multiplication. These benchmarks are two
examples of kernels in many scientific workloads [46]. They
are implemented using the minimum number of cores and the
addition/subtraction and multiplication designs from Fig. 5 and
subject to the same area constraint. Similar tradeoffs between
the designs are seen in Figs. 5 and 8. As denoted by the
green arrow, Hybrid Add/Sub w/ CFP Ver. 3 and Hybrid Mult
w/ CFP Ver. 2 remain the optimal addition/subtraction and
multiplication designs, respectively. The full hardware designs

110 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

Fig. 6. Division area versus cycles per FLOP with all implementations and determining the optimal implementation from an area constraint. Four methods
are evaluated for performing division: the Newton–Raphson method, division in software, division in hardware, and hybrid division. Design point symbols are
placed at the average cycles/FLOP point with interval bars showing the range over all possible values. Cycles per FLOP are scaled by the number of cores
required. The optimal division implementation is determined with the remaining available area, Adiv max. Designs satisfying the area constraint appear in the
green highlighted region. Using the remaining available area, the optimal design for square root is determined in Fig. 7. The remaining legend is shown in
Fig. 5. Results from synthesis in 65-nm CMOS at 1.3 V and 1.2 GHz.

Fig. 7. Square root area versus cycles per FLOP with all implementations and determining the optimal implementation from an area constraint. Four methods
are evaluated for performing square root: the Newton–Raphson method, square root in software, square root in hardware, and hybrid square root. Design
point symbols are placed at the average cycles/FLOP point with interval bars showing the range over all possible values. Cycles per FLOP are scaled by the
number of cores required. The optimal square root implementation is determined with the remaining available area, Asqrt max. Designs satisfying the area
constraint appear in the green highlighted region. Remaining legend shown in Fig. 5. Results from synthesis in 65-nm CMOS at 1.3 V and 1.2 GHz.

provide the highest throughput but do not meet the area
constraint. The policy of using cycles per FLOP and additional
area for each FP design from Figs. 4–7 can be employed to
roughly estimate the performance and area requirements for
computing other benchmarks.

VIII. ADVANTAGES OF HYBRID APPROACHES

When area cannot be increased, software implementations
are the only option for performing FP arithmetic. Dedi-
cated hardware designs are ideal when the goal is maximum
throughput. When area is constrained, hybrid designs are
optimal because they increase throughput and require less

area than dedicated FP hardware. They provide a method for
satisfying an area constraint that dedicated hardware would
violate. Hybrid implementations with USL support increase
throughput and reduce area overhead by adding functionality
to existing hardware to simplify multiword operations. The
hybrid implementations with CFP exceed the performance of
the USL support designs by adding custom hardware which
performs specific steps of an FP operation. These steps would
otherwise require many fixed-point instructions.

The full software implementations require many operations
on large (multiword) data values. Multiword operations require
carrying between words or summing and carrying between

PIMENTEL et al.: HYBRID HARDWARE/SOFTWARE FP IMPLEMENTATIONS 111

Fig. 8. Benchmark results for two scientific application kernels. (a) Benchmark results for calculating a 2 × 2 matrix multiplication. (b) Benchmark results
for computing a radix-2 complex butterfly operation. Design point symbols are placed at the average cycles/FLOP point with interval bars showing the range
over all possible values. Cycles per FLOP are scaled by the number of cores required. Area constraints are indicated by the vertical dashed lines. The optimal
design has the least average cycles per FLOP and an area below the area constraint. The optimal adder/subtractor and multiplier are determined using the
same area constraint as Fig. 5, A80% max. Designs satisfying the area constraint appear in the green highlighted region. The legend is shown in Fig. 5. Results
from synthesis in 65-nm CMOS at 1.3 V and 1.2 GHz.

partial products. The programmer must avoid using the bit that
is treated as signed (bit 16 for the target platform) and must
handle carry flags and partial product summation in software.
Therefore, signed hardware cannot operate on completely
utilized 16-bit words. Words must be partitioned into 15 bits
each at most. The hybrid implementations with USL support
provide unsigned hardware, which allows efficient handling
of multiword values, improving Newton–Raphson throughput.
The long-division and digit-by-digit methods see much less
benefit, as they depend more on shifts.

Multiple hybrid designs with CFP are implemented to
explore the benefits of different design approaches. Each
version differs in terms of which steps or the proportion of the
FP operation that is performed in software. Which steps justify
hardware support is based on the throughput increase and
area overhead. Hybrid Add/Sub w/ CFP Ver. 3 increases addi-
tion/subtraction throughput the most by supporting operand
comparison in hardware. Otherwise, sorting the operands
requires many instructions to compare the exponents and the
multiword mantissa. Hybrid Add/Sub w/ CFP Ver. 4 includes
an LZA, which increases throughput, but requires more area
and improves throughput less than supporting operand sorting
in hardware. For multiplication, Hybrid Mult w/ CFP Ver. 2
increases throughput the most by adding more hardware
support than Ver. 1. This implementation reduces the executed
instruction count by calculating the sign bit and exponent and
determining if the result is zero in hardware. This additional
circuitry increases area and is shown in Fig. 2. The division
and square root implementations use less area than dedicated
FP hardware by performing sign bit and exponent calculation

in software; the throughput of these operations is increased by
performing the rest of the operations in hardware.

IX. RELATED WORK AND COMPARISON

Since this work presents single-precision FP implementa-
tions, we compare our results with other work that increase
single-precision FP throughput with less area overhead than
a dedicated hardware design and do not compare with imple-
mentations using BFP or a reduced FP word width. Table III
summarizes a comparison with other methods for improving
FP throughput. Our results include designs with a 16-bit
and 32-bit word size and datapath, all implementing single-
precision FP. Not every work reports area data; therefore,
to make a consistent comparison, the area overhead of each
design is evaluated against the area of the dedicated full
hardware design reported in that respective work. This paper
and two of the papers in Table III explore alternatives to an
FMA [14], [15], while one compares against an Altera FPU
without divide [21]. This paper reports the area overhead for
supporting each FP operation individually. Other work do not
publish area for specific operations; therefore, area is recorded
under the FP operation categories for which cycle counts are
reported. Except for the FMA design, our implementations for
multiply–add perform an unfused operation.

The work by Gilani et al. [14] and Viitanen et al. [15]
did not explore modular designs. Hockert and Compton [21]
explored modular designs with varying amounts of hardware
support, but did not evaluate the overhead for supporting
individual FP operations.

Our work presents a wider range of area overheads for
improving FP throughput, allowing more versatility across a

112 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

TABLE III

COMPARISON OF METHODS FOR IMPROVING FP THROUGHPUT WITH LESS OVERHEAD

large range of area constraints. Our designs also offer the
lowest cycles per FLOP for both the divide and square root
operations while requiring less area than an FMA. Compar-
ing our 32-bit I/O designs with other work that reduce FP
area overhead compared with dedicated FP hardware, our
implementations achieve the lowest cycles per FLOP for all
operation types.

X. CONCLUSION

In this paper, eight hybrid implementations with CFP hard-
ware and six hybrid implementations with USL support are
presented for a fixed-point processor. These implementations
increase the throughput of FP operations by adding USL
support instructions to the ISA, and custom FP instructions.
The area overhead is kept low by utilizing the existing fixed-
point functional units.

The circuit area and throughput are found for 38 multiply–
add, 8 addition/subtraction, 6 multiplication, 45 division, and
45 square root designs. This paper presents designs that
improve FP throughput versus a baseline software imple-
mentation and require less area overhead compared with an
FMA than other works. Several examples demonstrate how to
determine the optimal FP designs for a given area constraint.
Hybrid implementations are an effective design method for
increasing FP throughput and require up to 97.0% less area
than a traditional FMA.

ACKNOWLEDGMENT

The authors would like to thank STMicroelectronics for
donating the chip fabrication.

REFERENCES

[1] J.-M. Muller et al., Handbook of Floating-Point Arithmetic, 1st ed.
Basel, Switzerland: Birkhäuser, 2009.

[2] S. Z. Gilani, N. S. Kim, and M. Schulte, “Energy-efficient floating-
point arithmetic for software-defined radio architectures,” in Proc. IEEE
Int. Conf. Appl.-Specific Syst., Archit. Processors (ASAP), Sep. 2011,
pp. 122–129.

[3] S. M. Shajedul Hasan and S. W. Ellingson, “An investigation of the
Blackfin/uClinux combination as a candidate software radio proces-
sor,” Dept. Elect. Comput. Eng., Virginia Polytechn. Inst. State Univ.,
Blacksburg, VA, USA, Tech. Rep. 2, 2006.

[4] Floating Point Arithmetic on the PicoArray, accessed on Jun. 5, 2015.
[Online]. Available: https://support.picochip.com/picochip-resource-
folder/Nexu5utu/4598jf4897f/floatingpoint.pdf/download

[5] C. Iordache and P. T. P. Tang, “An overview of floating-point support
and math library on the Intel XScale architecture,” in Proc. 16th IEEE
Symp. Comput. Arithmetic, Jun. 2003, pp. 122–128.

[6] Z. Yu et al., “AsAP: An asynchronous array of simple processors,” IEEE
J. Solid-State Circuits, vol. 43, no. 3, pp. 695–705, Mar. 2008.

[7] D. N. Truong et al., “A 167-processor computational platform in 65 nm
CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1130–1144,
Apr. 2009.

[8] Y. J. Chong and S. Parameswaran, “Configurable multimode embed-
ded floating-point units for FPGAs,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 19, no. 11, pp. 2033–2044, Nov. 2011.

[9] The Industry’s First Floating-Point FPGA. Altera, accessed on
Jun. 5, 2015. [Online]. Available: https://www.altera.com/content/dam/
altera-www/global/en_US/pdfs/literature/po/bg-floating-point-fpga.pdf

[10] S. Boldo and J.-M. Muller, “Exact and approximated error of the FMA,”
IEEE Trans. Comput., vol. 60, no. 2, pp. 157–164, Feb. 2011.

[11] S. Galal and M. Horowitz, “Energy-efficient floating-point unit design,”
IEEE Trans. Comput., vol. 60, no. 7, pp. 913–922, Jul. 2011.

[12] M. J. Beauchamp, S. Hauck, K. D. Underwood, and K. S. Hemmert,
“Architectural modifications to enhance the floating-point performance
of FPGAs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16,
no. 2, pp. 177–187, Feb. 2008.

[13] K. Kalliojarvi and J. Astola, “Roundoff errors in block-floating-point
systems,” IEEE Trans. Signal Process., vol. 44, no. 4, pp. 783–790,
Apr. 1996.

[14] S. Z. Gilani, N. S. Kim, and M. Schulte, “Virtual floating-point units
for low-power embedded processors,” in Proc. IEEE 23rd Int. Conf.
Appl.-Specific Syst., Archit. Processors (ASAP), Jul. 2012, pp. 61–68.

[15] T. Viitanen, P. Jääskeläinen, and J. Takala, “Inexpensive correctly
rounded floating-point division and square root with input scaling,”
in Proc. IEEE Workshop Signal Process. Syst. (SiPS), Oct. 2013,
pp. 159–164.

[16] F. Fang, T. Chen, and R. A. Rutenbar, “Lightweight floating-point
arithmetic: Case study of inverse discrete cosine transform,” EURASIP
J. Appl. Signal Process., vol. 2002, no. 1, pp. 879–892, Jan. 2002.

[17] S.-W. Lee and I.-C. Park, “Low cost floating-point unit design for audio
applications,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 1.
2002, pp. I-869–I-872.

[18] J. J. Pimentel, A. Stillmaker, B. Bohnenstiehl, and B. M. Baas, “Area
efficient backprojection computation with reduced floating-point word
width for SAR image formation,” in Proc. 49th Asilomar Conf. Signals,
Syst. Comput., Nov. 2015, pp. 726–732.

[19] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power by
optimizing the necessary precision/range of floating-point arithmetic,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 3,
pp. 273–286, Jun. 2000.

[20] H.-J. Oh et al., “A fully pipelined single-precision floating-point unit in
the synergistic processor element of a CELL processor,” IEEE J. Solid-
State Circuits, vol. 41, no. 4, pp. 759–771, Apr. 2006.

PIMENTEL et al.: HYBRID HARDWARE/SOFTWARE FP IMPLEMENTATIONS 113

[21] N. Hockert and K. Compton, “Improving floating-point performance in
less area: Fractured floating point units (FFPUs),” J. Signal Process.
Syst., vol. 67, no. 1, pp. 31–46, Apr. 2012.

[22] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2008,
2008.

[23] D. R. Lutz and C. N. Hinds, “Novel rounding techniques on the NEON
floating-point pipeline,” in Proc. 39th Asilomar Conf. Signals, Syst.
Comput., Oct./Nov. 2005, pp. 1342–1346.

[24] A. H. Karp and P. Markstein, “High-precision division and square root,”
ACM Trans. Math. Softw., vol. 23, no. 4, pp. 561–589, Dec. 1997.

[25] M.-B. Lin, Digital System Designs and Practices: Using Verilog HDL
and FPGAs. New York, NY, USA: Wiley, 2008.

[26] S. F. Oberman and M. J. Flynn, “Design issues in division and
other floating-point operations,” IEEE Trans. Comput., vol. 46, no. 2,
pp. 154–161, Feb. 1997.

[27] Z. Jin, R. N. Pittman, and A. Forin, “Reconfigurable custom floating-
point instructions,” Microsoft Res., Tech. Rep. MSR-TR-2009-157,
Aug. 2009.

[28] S. F. Oberman and M. Flynn, “Division algorithms and implementa-
tions,” IEEE Trans. Comput., vol. 46, no. 8, pp. 833–854, Aug. 1997.

[29] H. Nikmehr, “Architectures for floating-point division,”
Ph.D. dissertation, School Elect. Electron. Eng., Univ. Adelaide,
Adelaide, SA, Australia, 2005.

[30] N. Takagi, S. Kadowaki, and K. Takagi, “A hardware algorithm for inte-
ger division,” in Proc. 17th IEEE Symp. Comput. Arithmetic (ARITH),
Jun. 2005, pp. 140–146.

[31] M. J. Schulte, J. Omar, and E. E. Swartzlander, Jr., “Optimal initial
approximations for the Newton–Raphson division algorithm,” Comput-
ing, vol. 53, nos. 3–4, pp. 233–242, Sep. 1994.

[32] Y. Li and W. Chu, “Implementation of single precision floating point
square root on FPGAs,” in Proc. 5th Annu. IEEE Symp. Field-Program.
Custom Comput. Mach., Apr. 1997, pp. 226–232.

[33] P. Soderquist and M. Leeser, “Division and square root: Choosing the
right implementation,” IEEE Micro, vol. 17, no. 4, pp. 56–66, Jul. 1997.

[34] P. Montuschi and M. Mezzalama, “Optimal absolute error starting values
for Newton–Raphson calculation of square root,” Computing, vol. 46,
no. 1, pp. 67–86, Mar. 1991.

[35] P. Markstein, IA-64 and Elementary Functions: Speed and Precision.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2000.

[36] D. Truong et al., “A 167-processor 65 nm computational platform with
per-processor dynamic supply voltage and dynamic clock frequency
scaling,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2008, pp. 22–23.

[37] Z. Xiao and B. M. Baas, “A 1080p H.264/AVC baseline residual encoder
for a fine-grained many-core system,” IEEE Trans. Circuits Syst. Video
Technol., vol. 21, no. 7, pp. 890–902, Jul. 2011.

[38] Z. Xiao and B. Baas, “A high-performance parallel CAVLC encoder on a
fine-grained many-core system,” in Proc. 26th IEEE Int. Conf. Comput.
Design (ICCD), Oct. 2008, pp. 248–254.

[39] D. N. Truong and B. M. Baas, “Massively parallel processor array for
mid-/back-end ultrasound signal processing,” in Proc. IEEE Biomed.
Circuits Syst. Conf. (BioCAS), Nov. 2010, pp. 274–277.

[40] R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the IBM
RISC system/6000 floating-point execution unit,” IBM J. Res. Develop.,
vol. 34, no. 1, pp. 59–70, Jan. 1990.

[41] E. Hokenek and R. K. Montoye, “Leading-zero anticipator (LZA) in
the IBM RISC system/6000 floating-point execution unit,” IBM J. Res.
Develop., vol. 34, no. 1, pp. 71–77, Jan. 1990.

[42] V. G. Oklobdzija and R. K. Krishnamurthy, Eds., High-Performance
Energy-Efficient Microprocessor Design (Integrated Circuits and Sys-
tems), 2006th ed. Berlin, Germany: Springer, Aug. 2006.

[43] J. J. Pimentel and B. M. Baas, “Hybrid floating-point modules with low
area overhead on a fine-grained processing core,” in Proc. 48th Asilomar
Conf. Signals, Syst. Comput., Nov. 2014, pp. 1829–1833.

[44] M. Aharoni, S. Asaf, L. Fournier, A. Koifman, and R. Nagel, “FPgen—
A test generation framework for datapath floating-point verification,”
in Proc. 8th IEEE Int. High-Level Design Validation Test Workshop,
Nov. 2003, pp. 17–22.

[45] S. F. Oberman and M. J. Flynn, “An analysis of division algorithms
and implementations,” Dept. Elect. Eng. Comput. Sci., Stanford Univ.,
Stanford, CA, USA, Tech. Rep. CSL-TR-95-675, 1995.

[46] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick,
“Scientific computing kernels on the cell processor,” Int. J. Parallel
Program., vol. 35, no. 3, pp. 263–298, Jun. 2007.

Jon J. Pimentel (S’07) received the B.S. degree in
electrical engineering in 2009, and the M.S. degree
in electrical and computer engineering from the
University of California at Davis (UCD), Davis, CA,
USA, in 2015, where he is currently pursuing the
Ph.D. degree in electrical and computer engineering.

He has been a Graduate Student Researcher
with the VLSI Computation Laboratory, Davis,
since 2009. In 2013, he was an Intern with the Many
Integrated Core Group, Intel, Hillsboro, OR, USA.
His current research interests include floating-point

architectures, VLSI design, synthetic aperture radar imaging, and many-core
processor architecture.

Mr. Pimentel has been a GAANN Fellow since 2009. He received the
Graduate Research Mentorship Fellowship in 2011, the UCD and Humanities
Graduate Research Award in 2012 and 2014, the Frank and Carolan Walker
Fellowship in 2012 and 2014, the George S. and Marjorie Butler Fellowship
in 2014, the ECEGP Fellowship in 2014 and 2015, the ECE TA Program
Support Fellowship in 2015, and the Herbert Tryon Fellowship and Laura
Perrot Mahan Fellowship in 2016. He also received the Third Place Best
Student Paper at Asilomar 2014.

Brent Bohnenstiehl (S’15) received the B.S. degree
in electrical engineering from the University of
California at Davis, Davis, CA, USA, in 2006, where
he is currently pursuing the Ph.D. degree in electrical
and computer engineering.

He has been a Graduate Student Researcher
with the VLSI Computation Laboratory, Davis,
since 2011. His current research interests include
processor architecture, VLSI design, hardware–
software codesign, DVFS algorithms, and many-core
simulation tools.

Bevan M. Baas (M’95–SM’11) received the B.S.
degree in electronics engineering from California
Polytechnic State University, San Luis Obispo, CA,
USA, in 1987, and the M.S. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, USA, in 1990 and 1999, respectively.

He was with Hewlett-Packard, Cupertino, CA,
USA, from 1987 to 1989, where he participated
in the development of the processor for a high-end
minicomputer. In 1999, he joined Atheros Commu-
nications, Santa Clara, CA, USA, where he served as

an early employee and served as a core member of the team which developed
the first IEEE 802.11a (54 Mbps, 5 GHz) Wi-Fi wireless LAN solution. In
2003, he joined the Department of Electrical and Computer Engineering,
University of California at Davis, Davis, CA, USA, where he is currently
an Associate Professor. He leads projects in architecture, hardware, software
tools, and applications for VLSI computation with an emphasis on DSP
workloads. Notable projects include the 36-processor Asynchronous Array of
simple Processors (AsAP) chip, applications, and tools; a second generation
167-processor chip; low density parity check decoders; FFT processors; viterbi
decoders; and H.264 video codecs. In 2006, he was a Visiting Professor with
the Circuit Research Laboratory, Intel, Hillsboro, OR, USA.

Dr. Baas was a National Science Foundation Fellow from 1990 to 1993 and
an NASA Graduate Student Researcher Fellow from 1993 to 1996. He was
a recipient of the National Science Foundation CAREER Award in 2006 and
the Most Promising Engineer/Scientist Award by AISES in 2006. He received
the best paper award at ICCD 2011, the Third Place Best Student Paper at
Asilomar 2014, and Best Student Paper Nominations at Asilomar 2011 and
BioCAS 2010. He also supervised the research that received the Best Doctoral
Dissertation Honorable Mention in 2013. From 2007 to 2012, he was an
Associate Editor of the IEEE JOURNAL OF SOLID-STATE CIRCUITS and an
IEEE Micro Guest Editor in 2012. He was the Program Committee Co-Chair
of HotChips in 2011, and a Program Committee Member of Hotchips from
2009 to 2010, of ICCD from 2004 to 2005 and from 2007 to 2009, of ASYNC
in 2010, and of the ISSCC SRP Forum in 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

