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Abstract— A processor array containing 1000 independent
processors and 12 memory modules was fabricated in 32-nm
partially depleted silicon on insulator CMOS. The program-
mable processors occupy 0.055 mm2 each, contain no algorithm-
specific hardware, and operate up to an average maximum
clock frequency of 1.78 GHz at 1.1 V. At 0.9 V, processors
operating at an average of 1.24 GHz dissipate 17 mW while
issuing one instruction per cycle. At 0.56 V, processors operating
at an average of 115 MHz dissipate 0.61 mW while issuing
one instruction per cycle, resulting in an energy consumption
of 5.3 pJ/instruction. On-die communication is performed by
complementary circuit and packet-based networks that yield
a total array bisection bandwidth of 4.2 Tb/s. Independent
memory modules handle data and instructions and operate up
to an average maximum clock frequency of 1.77 GHz at 1.1 V.
All processors, their packet routers, and the memory modules
contain unconstrained clock oscillators within independent clock
domains that adapt to large supply voltage noise. Compared with
a variety of Intel i7s and Nvidia GPUs, the KiloCore at 1.1 V
has geometric mean improvements of 4.3× higher throughput
per area and 9.4× higher energy efficiency for AES encryption,
4095-b low-density parity-check decoding, 4096-point complex
fast Fourier transform, and 100-B record sorting applications.

Index Terms— Globally asynchronous locally synchro-
nous (GALS), many core, multicore, NoC, parallel processor.

I. INTRODUCTION

IMPORTANT computing applications of the future range
from embedded Internet-of-Things devices to cloud data-

centers and are characterized by an increased emphasis on high
energy efficiency in addition to high performance [1].

Semiconductor fabrication technologies have fortunately
continued to provide increasing levels of integration [2] and
provide interesting possibilities for new architectural designs
with potential usages both as standalone systems and as
components in heterogeneous systems [3]. The performance
and efficiency gains possible through parallel processing [4]
are well known [5] and substantial effort has been made to
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Fig. 1. Top-level processor array diagram.

integrate many processors onto a single die rather than increase
the complexity of a smaller number of processors [6]–[9].
As well as increasing capabilities, the ever increasing costs
of fabrication have motivated the search for programmable
and/or reconfigurable processors that are not tailored to a
single application or a small class of applications and may
be scaled to address widely varying computing domains. The
presented chip addresses all of the aforementioned factors in a
massively parallel computing platform that is easily scalable,
energy efficient under a wide variety of conditions, capable
of very high performance, and suitable for a broad range of
applications or critical kernels from embedded to the cloud as
a standalone engine or as a coprocessor in a heterogeneous
system.

Section II provides an overview of the chip’s architecture.
Section III describes the clocking methodologies and circuits
used throughout the system that provide high efficiencies and
robust operation. Section IV covers the design and CMOS
implementation of the chip. Section V presents measured
results. Section VI provides application results and compar-
isons, and Section VII concludes this paper.

II. HIGH-LEVEL ARCHITECTURE

The KiloCore chip includes 1000 independent, uniform,
programmable, RISC-type, in-order, single-issue processors;
and 12 independent memory modules [10]. Processors are
arrayed in 32 columns and 31 rows with eight processors and
12 independent memories in a 32nd row, as shown in Fig. 1.
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Fig. 2. Major components and connections of the seven-stage processor pipeline. Many control and configuration signals are omitted for clarity.

Processors and independent memory modules with no work
to do dissipate exactly zero active power (leakage only)—this
is an important capability in the 1000-processor-chip era due
to the difficulty in implementing complex software workloads
that spread evenly over thousands of processors, which leads
to the increasing prevalence of processors with widely varying
activity levels [11]. Under most conditions, the processor array
has a near-optimal proportional scaling of power dissipation
over a wide range of activity levels.

A. Processors

Each processor contains a 128 × 40-b instruction memory,
512 B of data memory, three programmable data address
generators, two 32 × 16-b input buffers, and a 16-b fixed-
point datapath with a 32-b multiplier output and a 40-b
accumulator. The 72 instruction types include signed and
unsigned operations to enable efficient scaling to 32 b or
larger word widths, with no instructions being algorithm-
specific. Processors support predication for any instruction
using two conditional execution masks, static branch predic-
tion, and automated hardware looping for accelerating inner
loops. Although the natural word width of the datapaths and
memories is 16-b, through software other word widths are
easily handled—for example, 32-b floating point [12] and
10-B sorting keys for 100-B data records [13].

Each processor issues one 40-b instruction in-order per
cycle into its seven-stage pipeline (shown in Fig. 2) from its
local instruction memory, and it may also source large pro-
grams from an on-die independent memory module. Instruc-
tion input operands and output results commonly come from
or go to the local data memory, one of several circuit-switched
network ports, the packet router port, an attached independent
memory, a pipeline forwarding path, or a series of special
dedicated-purpose registers that include dereferenceable point-
ers, address generator configuration, predication flag masks,
oscillator frequency selection, and other software-accessible
core configuration fields.

B. On-Die Communication

The processor array connects processors and independent
memories via a 2-D mesh, a topology which maps well to
planar integrated circuits and scales simply as the number

of processors per die increases. Communication on-chip is
accomplished by two complementary means: a very high-
throughput and low-latency circuit-switched network [14] and
a very-small-area packet router [15]; details are provided in
Fig. 3.

The circuit-switched links are source-synchronous, so the
source clock travels with the data to the destination, where it
is translated to the destination-processor’s clock domain. The
network supports communication between adjacent and distant
processors, as resources allow, with each link supporting a
maximum rate of 28.5 Gb/s with optionally inserted registers
to maintain data integrity over long distances. Each of the
four edges of each processor has two such links entering
and two links exiting the processor. The high-throughput
circuit-switched network is especially efficient—transferring
data to an adjacent processor dissipates 59% less energy
than writing and later reading that data using local data
memory, and transferring that data to a processor four tiles
away requires only 1% more energy than using local data
memory.

The packet router inside each processor occupies only
9% of each processor’s area and is especially effective for
high fan-in and high fan-out communication, as well as for
administrative messaging. Each router supports 45.5 Gb/s of
throughput with a maximum of 9.1 Gb/s per port. Routers
operate autonomously from their host processors and contain
their own clock oscillators, so they can power down to zero
active power when there are no packets to process. Each
router contains five 4 × 18-b input buffers, one for each
cardinal direction and one for the local processor. Routers
utilize wormhole routing to efficiently transfer long data bursts,
in which a header packet will reserve a path and is followed
by an arbitrary number of data packets, terminating in a tail
packet which releases the path.

Each circuit or packet link terminates in a dual-clock
FIFO memory [16], which reliably transfers data between
clock domains. In addition, links contain the necessary
asynchronous wake-up signals, which inform idle modules
when they need to activate their local clock to process
new work or to verify when FIFOs are full or empty.
Both network types contribute to a total bisection bandwidth
of 4.2 Tb/s.
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Fig. 3. Overview of intercore communication using circuit and packet networks. Writes are source-synchronous; responses include asynchronous wake-up
signals for sleeping processors. Circuit links include configurable registers and an east–west connection for one layer is expanded on the right.

C. Processor Data Memory Organization

Processors with a relatively small amount of memory per
core require that memory is used efficiently. A straightforward
solution to sustain a throughput of one instruction per cycle
with common two-input-operand and one-output-operand
instructions would be to utilize an N-word three-port data
memory, which is unfortunately not very area or power
efficient. If a three-port memory is unavailable, one can
be made easily albeit very inefficiently, from two N-word
memories with write ports shorted together and reads made
independently [7], [17]. A third possibility is to utilize two
independent N-word memories, which has the great advantage
of yielding a total data space of 2N words and being able to
sustain two reads and one write per cycle, but only if there are
no conflicts where both input operands are in one of the two
banks. Conflicts can be resolved by detecting their occurrence
and stalling the processor when they occur. We have chosen
a hybrid approach, which uses compile-time information to
place data into banks to minimize conflicts. When conflicts
cannot be avoided or ruled out, data are written into both
banks, eliminating the conflict for that datum and allowing a
sustained throughput of one instruction per cycle at a cost
of the loss of one otherwise-useful data word. Profiles of
five diverse applications (AES encryption, 4095-b code length
low-density parity-check (LDPC) decoder, 100-B database
record sorting, 802.11a/g OFDM Wi-Fi receiver, and software
single-precision floating-point arithmetic) showed that 99.66%
of all operands across all applications could be mapped to

Fig. 4. Multibank data memory read and write circuitry.

an address in only one bank, and thus, only a very small
number of operands needed to be written to both banks
redundantly to avoid conflicts during subsequent reads. The
scheme permits conflict-free addressing with optimal memory
space maximization. Fig. 4 shows the circuitry to implement
the three types of writes (bank0, bank1, and both banks) and
properly route read data to the processor.
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Fig. 5. Components used in streaming instructions from a shared memory to
a neighboring processor. Streaming logic is shared between two processors,
with only the port 0 connection shown here.

D. Independent Memory Modules

Independent memory modules each contain a 64-kB
SRAM and are shared between two neighboring processors.
Modules support random and a variety of programmable burst
access patterns for data reading and writing, and are also
capable of streaming instructions for large-program execution
to an adjoining processor using an internal control module.
When executing an instruction stream from an independent
memory, a processor transfers program control and branch pre-
diction control to dedicated circuits inside the memory block
to more efficiently execute across branches. Each memory
module contains two 32 × 18-b input buffers, two 32 × 16-b
output buffers, and one 16 × 2-b processor response buffer,
and supports 28.4 Gb/s of I/O bandwidth. Fig. 5 gives the
details of the module’s internal blocks.

Fig. 6(a) shows the various methods of transferring data
from one point in an application to another. These points
may be within a single processor or spread across different
processors depending on how code has been partitioned.
Fig. 6(b) reports the energy costs for each method and includes
both a write and a single read, implying transferred data
are used only once. Since pipeline forwarding is the lowest-
energy method, energy values are reported as additional energy
required beyond forwarding, that is, pipeline forwarding = 0.0
in this graph.

III. FINE-GRAIN CLOCKING

Many-core applications often require processors to remain
idle or operate at low activity for substantial periods of time.
Therefore, energy-efficient many-core designs must adapt to
wide variations in core workloads. In KiloCore, each core,
each packet router inside each core, and each indepen-
dent memory module contains its own local programmable
clock oscillator in an independent fully synchronous clock
domain [18], resulting in a total of 2012 globally asynchronous
locally synchronous (GALS) [19] clock domains.

Fig. 6. Path diagram (a) and measured energies (b) to transfer a bit of data
from one point in an application to another versus distance, in addition to the
energy required for pipeline forwarding (i.e., pipeline forwarding = 0.0). (A)
Pipeline forwarding or (B) local Dmem may be used for in-core transfers.
Independent memory may be used for (C) local or (D) neighbor-processor
transfers. Both (E) circuit and (F) packet networks support distant transfers.

Oscillators do not use PLLs and each one is allowed
to change its frequency, halt, or restart arbitrarily including
with respect to other clock domains. Halting is very help-
ful in saving energy when there is no work to do, which
is detected by the processor when it attempts to read an
empty input buffer or when attempting to write a full output
buffer. Oscillator halting is handled automatically by local
hardware logic, which observes instruction source and des-
tination operands, and also the state of interprocessor buffers
for both upstream inputs and downstream outputs. When an
oscillator is halted, the core/router/memory consumes zero
active power. A halted processor consumes only 1.1% of
its typical active power through leakage. Oscillators restart
in response to asynchronous signals from connected cores
when they send data to an empty buffer or free room in a
full buffer, for upstream and downstream links, respectively.
Cores exiting a halt state require up to three cycles to read
input buffers before program execution may continue; cores
entering a halt state require a variable number of cycles after
program execution pauses to complete any pending writes to
the communication network. This inefficiency is negligible



BOHNENSTIEHL et al.: KiloCore: A 32-nm 1000-PROCESSOR COMPUTATIONAL ARRAY 895

Fig. 7. Digitally programmable clock oscillators, halting and configuration logic, and clocking system used in processors and independent memories.

in many cases; however, it can be significant in situations
where high-workload and low-workload cores are connected
and performing fine-grain communication, such that the low-
workload core is regularly waiting on the high-workload core,
but not for long enough periods of time to benefit from clock
halting. Per-core oscillator frequency tuning is used to help
in this situation, slowing the low-workload core, such that
its data production or consumption rate is matched to the
high-workload core. We estimate the ideal clock frequency
for each core to be the lowest frequency at which a core
may operate without reducing overall application throughput.
These frequencies are identified during application profiling.
Fortunately, even significantly inaccurate frequency estimates
typically result in small increases in power dissipation over
the ideal case. Tuning could certainly also be done during a
run-time tuning phase or even during program execution by
a dedicated hardware controller [7]. For the four applications
described in Section VI, on average, clock halting yields a 61%
reduction in energy usage compared with processors which
never halt and do not utilize per-core frequency tuning. Of the
energy that is consumed, 87% is from program computation
and leakage while 13% is from stall cycles.

The clock oscillators inside processors and independent
memories are composed of two separate ring oscillators, as
shown in Fig. 7. The lower oscillator is used to generate low
frequencies. The main oscillator utilizes six configuration bits
for 64 frequency selections and the low-frequency oscillator
utilizes two bits for four selections. Both oscillators divide
their output by 1, 2, 4, or 8 before the root clock enters
the main clock tree. Each packet router contains a low-area
oscillator with four frequency selections.

A. Tolerating Power Grid Voltage Variations

One thousand cores arbitrarily switching between being
halted with leakage only to fully active can clearly result in

significant power grid noise. Rather than trying to minimize
the noise, clock oscillators are designed to rapidly adjust
their instantaneous frequencies to compensate for supply noise
variations through circuit design and by being powered by the
local core’s power grid, as shown in Fig. 7. Oscillators are
designed so that their frequency tracks closely below the core’s
maximum operating frequency when voltage droop occurs, and
in fact, cores were found to operate error-free when configured
to operate at their maximum frequency without any additional
margin for voltage droop, though some margin may be needed
for overshoot depending on the power supply characteristics.
In a manner similar to oscillators, circuit elements in the clock
trees, such as buffers and clock gates, naturally adjust their
instantaneously delay, because they too are powered by the
core’s local power grid.

Fig. 8 shows measured waveforms from a beyond-worst
case voltage droop event, where 999 processors are simultane-
ously turned on. In actual usage, only approximately 2/3 of the
array could start at one time, because halted cores are restarted
by the arrival of external data sent from nonhalted cores, and
processors with outputs connected to more than two other
processors at a time are very rare in our explored applications.
In this test, a single victim processor in the center of the
array at coordinates (15,15) runs a critical path test program
while the other 999 cores in the array are simultaneously
turned on to maximum frequency and begin running an energy
intensive program. A globally broadcast configuration signal
is used to synchronize this event. The test is performed at a
nominal supply voltage of 1.0 V. The victim processor was
found to operate error-free throughout the event at a nominal
clock frequency equal to its measured standalone maximum
frequency to within 20 MHz, the oscillator step size at the
test voltage.

A measured on-die waveform of the supply voltage is shown
in Fig. 8(a), showing the short term supply noise using a
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Fig. 8. Supply voltage noise at a nominal 1.0 V when simultaneously
turning on 999 processors from fully halted to fully active at maximum
frequency, while measuring the clock oscillator of a single victim core in
the center of the array; 1.0 V appears as 965 mV and 870 mV appears
as 840 mV due to a resistor divider created by our 1.9-� SMA cable and
50-� scope input. (a) 20-ns/division waveform capture, showing a clock
frequency reduction in response to a 14% supply voltage reduction over 4 ns.
(b) 40-μs/division waveform capture, showing gradual supply droop and
recovery, with a corresponding clock frequency recovery. (c) (Lower orange
waveform) Instantaneous clock frequency calculated from the time-domain
waveform in (b), and (upper green waveform) estimated Fmax derived from
independent measurements, showing victim processor operation below but a
maximum of 10% from its maximum possible operating frequency Fmax.

200-ns capture window. A 13% reduction in voltage occurs
over 4-ns, with a corresponding decrease in the victim proces-
sor’s clock frequency to compensate. Fig. 8(b) shows the

long term voltage droop and recovery using a 400-μs capture
window; 84 μs after the turn-on event, the voltage begins
recovering from 13% below nominal as a function of the
PCB and bench power supply electrical environment. To
maintain visibility of the clock waveforms, the processor
output clock is divided by 8 for Fig. 8(a) and is reduced to a
630-MHz source frequency and divided by 8192 for Fig.
8(b). Fig. 8(c) shows the victim processor’s instantaneous
frequency (labeled “Actual Measured”) during the test using
a higher clock rate data capture, and with the same timescale
as Fig. 8(b). Also plotted is the processor’s maximum sup-
ported frequency corresponding to the instantaneous voltage
(labeled “Fmax”), based on pretest measurements. The victim
processor’s oscillator remains below but within 10% of this
maximum Fmax frequency; 84 μs after the turn-on event, the
maximum frequency is reduced to 28% below nominal, while
the oscillator’s frequency is reduced 35%.

IV. DESIGN AND IMPLEMENTATION

The processor array is built from standard cells and was
synthesized except for small circuits, such as the clock
oscillator, which were designed by hand. Cell placement
and routing were performed by industry-standard CAD tools.
Except for the 64-kB SRAMs inside the independent mem-
ory modules, all memories are built from clock-gated flip-
flops with synthesized interfacing logic, which greatly simpli-
fies the physical design and lowers the minimum operating
voltage for applications which do not use the independent
memories.

The 8.0 mm × 8.0 mm chip was fabricated in a
32-nm partially depleted silicon on insulator technology and
contains 621 million transistors. The entire array measures
7.94 mm × 7.82 mm. Each processor contains 575 000 transis-
tors and occupies 239 μm × 232 μm; therefore 18 processors
occupy almost 1 mm2. Fig. 9 is a die micrograph showing
outlines of the 1000 cores and 12 independent memories, and
564 C4 solder bumps for flip-chip mounting in the center of
the array. The chip is mounted inside a stock 676-ball BGA
package that delivers full power to only the approximately
160 central processors; therefore, a maximum execution rate
of 1.78 trillion MIMD instructions/s per chip is possible only
with a custom-designed chip package. I/O signaling is handled
by 64 LVDS drivers and 38 single-ended drivers. Pad drivers
are placed along the periphery of the processor array. Ten
analog voltage probe points are included to support on-chip
voltage measurements.

Fig. 10(a) is a postplacement plot of a single processor tile
showing regions of the largest components along with details
on the die area occupied by the various components. Both the
circuit-switched network (including FIFO0 and FIFO1) and
the packet-switched network (includes router clock oscillator)
occupy 9% of each tile’s area. The processor’s two clock
oscillators and associated control occupy 1% of the tile’s area
and recover some of that area by eliminating the need for a
chip-level clock tree. Fig. 11 shows the same information for
a single independent memory tile.
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TABLE I

ENERGY PER OPERATION OR ACTIVITY AT A SUPPLY VOLTAGE OF
900 mV. ROUTER FLIT TRANSFER DOES NOT INCLUDE CLOCK

ENERGY; PROCESSOR AND MEMORY OPERATIONS INCLUDE

CLOCK ENERGY; BRANCH MISPREDICTION ENERGY INCLUDES

THREE HIGH-ACTIVITY INSTRUCTIONS ON THE
MISPREDICTED PATH

Fig. 9. Die micrograph.

V. MEASURED RESULTS

Processors, routers, and independent memories operate from
a maximum voltage of 1.1 V down to minimum voltages
of 560, 670, and 760 mV, respectively. Fig. 12 shows the
average maximum frequency for each of these modules across

Fig. 10. (a) Annotated layout and (b) area breakdown of a single processor
tile.

their operable ranges. Independent memories have a reduced
operating voltage due to their large SRAM array. The reason
for the routers’ reduced operating voltage is not known but
suspected to be due to a specific implementation feature in
their GALS network interfaces. Individual cores are allowed
to operate at their local Fmax due to GALS clocking. At
their highest voltage, processors average 1.78 GHz. When
certain critical paths related to ALU carry and zero flags
are avoided or coded with two instructions, a processor may
operate up to 22% above its normal maximum frequency—a
typical processor using this technique was measured operating
at 2.29 GHz. This is done by a simple reprogramming of the
clock oscillator, so that its frequency is appropriately higher
than normal based on the critical paths used by the program
assigned to that processor.
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Fig. 11. (a) Annotated layout and (b) area breakdown of a single independent
memory tile.

Fig. 12. Maximum operating frequency of processors, memories, and routers.

Table I lists energy usage of a variety of instructions and
events when operating at 900 mV. ALU and MAC instruc-
tions are categorized according to their pipeline groupings,
where input latches for each group isolate them from each

Fig. 13. Energy per typical operation for processors, memories, and routers.

Fig. 14. Power of a processor, memory, and router when 100% active and
operating at the maximum clock frequency at the indicated supply voltage.

other. Measurements are taken with high operand bit activity.
A missed timing path through the MAC causes a reduced max-
imum frequency of operation for MAC instructions, however
operation beyond Fmax is possible with a 2-cycle software
change.

Fig. 13 shows the typical energy per operation for each mod-
ule type across its operable voltage range. Processor power
varies considerably with instruction selection and memory
access patterns. Therefore, processor instruction energy is
calculated using weighted averages based on code from a pro-
filed 334-processor fast Fourier transform (FFT) application,
including data reads/writes along with circuit network commu-
nication. At 560 mV, a single processor dissipates 5.3 pJ per
typical instruction while operating at 115 MHz. Packet router
energy varies with port activity level; values reported are for
transferring a single flit, assuming two router ports are actively
transferring and sharing clock energy. Independent memory
energy also depends on activity and so values reported are an
average of random read and random write energies, and are
further averaged between one or both ports active.

Fig. 14 shows the power for each module across its voltage
range when active 100% of the time utilizing the same weight-
ings and conditions as were used for energy measurements.

VI. APPLICATION PERFORMANCE AND COMPARISONS

Programming is accomplished by a multistep process. Indi-
vidual programs are written, replicated, or generated in the C,
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TABLE II

KILOCORE APPLICATION METRICS FOR OPERATION AT 1.1 V. *DOES NOT INCLUDE TIME SPENT WAITING FOR NETWORKS

C++, or Assembly language. An automatic mapping tool maps
tasks to cores with considerations, such as avoiding faulty or
partially functional processors; optimizations to take advantage
of process, voltage, and temperature variations; self-healing for
failures due to wear-out effects; and simultaneous execution
of unrelated workloads.

Several applications have been mapped to KiloCore and
their performance estimated using simulations, which assume
custom chip packaging. Simulations are cycle accurate within
a core, use subcycle precision for core interactions, fully
model varied per-core frequencies, and utilize subinstruction
energy measurements. Application code has been lightly to
moderately optimized and additional effort would yield sig-
nificant improvements. All four applications store instructions
inside local processor memories, and so usage of independent
memories, run-time instruction swapping, or run-time off-chip
instruction streaming is not required. Performance metrics at a
supply voltage of 1.1 V for applications are found in Table II.

An advanced encryption engine (AES) application is imple-
mented with 974 processors. It uses 128-b keys and is orga-
nized into seven parallel lanes. At a reduced 0.9 V, it supports
a throughput of 14.5 Gb/s while using 6.5 W. It is operable
down to 560 mV, where a throughput of 1.23 Gb/s is achieved
using 158 mW.

An LDPC decoder is implemented with 944 processors and
12 independent memories. It supports a (4095,3717) code
with row and column weights of 64 and 6, and utilizes 12
parallel decoding lanes. At a reduced 0.9 V, with four decoding
iterations, it has a throughput of 111 Mb/s while using 3.4 W.
It is operable down to 760 mV, where it decodes 62 Mb/s
using 1.1 W.

A 4096-point complex FFT application is implemented with
980 processors and 12 independent memories. It processes
16-b complex data and calculates 12 transforms in parallel.
At 0.9 V, 567 MSamples/s are processed using 4.1 W. It is
operable down to 760 mV, with 313 MSamples/s using 1.4 W.
A second 4096-point complex FFT application was developed,
which processes a single FFT transform at a time and uses 619
processors and 12 memories to transform 295 MSamples/s
using 2.6 W at 0.9 V.

The first phase of an “external” record sort is implemented
with 1000 processors; 100-B records contain a 10-B sorting
key and are processed into sorted blocks of 185 KB in

support of the second merging phase of the external sort.
At 0.9 V, this application sorts 1.47 GB/s using 1.2 W. It
is operable down to 560 mV, where it can sort 137 MB/s
using 61 mW.

KiloCore’s applications are compared against a selection
of Intel i7 and Nvidia GPU processors due to their wide
acceptance and deployment, highly optimized hardware, and
mature programming tools. In addition, Intel Core (and related
Xeon) and Nvidia GPUs are frequently deployed in computing
domains ranging from mobile, desktop, server, datacenter,
to scientific supercomputer. Comparison data are given in
Table III and include KiloCore data both unscaled and scaled
to the same technology using data from Holt [2]. The AES
comparisons on an Intel i7 [20] and Nvidia GPU [21] are
taken from the literature, and do not use the specialized AES
hardware present in many Intel processors. The LDPC com-
parisons on an i7 [22] and GPU [23] implement (9216,4608)
and (2304,1152) codes with row and column weights of 6,3
and 24,12, respectively, and perform five decoding iterations.
The i7 FFT uses the FFTW library with eight independent
threads iterating on cached data. The GPU FFT is implemented
on an Nvidia GTX 960 using the cufftExecC2C function
from the Nvidia Cuda cuFFT library. Both implementations
utilize single-precision floating-point operations. Interestingly,
a hypothetical floating-point KiloCore would actually experi-
ence a speedup compared with this fixed-point version, which
must explicitly handle data alignment and overflow functions.
Sorting is implemented on an i7-3770k using std::sort in C++
with eight independent threads operating on separate record
groups in cache, and is implemented on a GTX 960 using
the sort function from the Nvidia Cuda Thrust library. Power
is measured using on-die energy counters when available, or
by the measured power delta with a correction for power
supply efficiency. For cited designs without reported power,
we use half of the thermal design power (TDP) [24]; i7 power
numbers do not include uncore power. Area comparisons
are made using die area, subtracting the estimated area for
the graphics, memory controller, and unused cores in the
comparison CPUs.

Across these applications and when scaled to the same
fabrication technology, KiloCore at 1.1 V has geometric mean
improvements of 4.3× higher throughput per area and 9.4×
higher energy efficiency compared with the other processors.
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TABLE III

APPLICATION METRICS AND COMPARISONS OF KiloCore WITH CPU AND GPU IMPLEMENTATIONS. KiloCore METRICS ARE NORMALIZED AGAINST
THE COMPARISON DEVICE, ARE (COLUMNS 7–8) UNSCALED AND OPERATING AT 1.1 V, AND ARE †(COLUMNS 9–10) SCALED TO THE SAME

TECHNOLOGY USING DATA FROM HOLT [2]. ‡ASSUMES DEVICE POWER IS HALF OF TDP [24]

Significantly higher efficiencies are possible at lower supply
voltages.

Analyzing programming effort, in general, is difficult;
however, these benchmarks provided an opportunity to
gain experience in scaling smaller application kernels into
order-1000-core applications. Despite using an immature tool
set, porting and upscaling all four applications to their final
sizes of 944–1000 cores required in total one to two days of
programming effort each.

VII. CONCLUSION

Processor maximum operating frequencies average
1.78 GHz at 1.10 V, which results in a maximum execution
rate of 1.78 trillion MIMD instructions/s per chip. At a
supply voltage of 0.84 V, 1000 cores process a maximum
of 1.0 trillion instructions/s while dissipating 13.1 W. At a
supply voltage of 0.56 V, processors dissipate 5.3 pJ per
instruction at 115 MHz, which enables a chip to process
115 billion instructions/s while dissipating only 0.61 W; or
multiple chips could execute 1.0 trillion instructions/s while
dissipating only 5.3 W.

Throughout the history of computing, adding functionality
onto a single chip has virtually always brought increased
performance at a reduced cost [25]. While it is a near certainty
that more chips containing 1000 processors will be built in
the future [1], [26], there are challenging open questions
regarding how those processors will communicate with each
other and external system components, and how applications
will be written for them. The KiloCore chip demonstrates the
feasibility and some advantages of this promising new era.
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