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Abstract—The design for a configurable motion estimation
accelerator is presented and demonstrated as suitable for realtime
digital 4K as well as H.265/HEVC. The design has two 4-KB
frame memories necessary to hold the active and reference
frames, designed using a standard cell memory technique, with
line-based pixel write, and block-based pixel accesses. It computes
a 16 pixel sum of absolute differences (SAD)s per cycle, in a 4×4
block, and is pipelined to take advantage of the high throughput
block pixel memories. The architecture supports configurable
search patterns and threshold-based early termination which
allow for run-time tradeoffs to be made between pixel throughput
and final quality of result. CMEACC is independently clocked and
can operate up to 812 MHz at 1.3 V in 65 nm CMOS, achieving
a throughput of 105 MPixel/sec for a single instance while
consuming 0.933 pJ×sec/Pixel, and occupying approximately
1.04 mm2 post place-and-route in 65 nm CMOS. While operating
at 0.9 V, the presented design consumes 0.393 nJ/Pixel, which
scales to 8.06 mW at 22.26 FPS in 720p.

I. INTRODUCTION

As the number of pixels in video streams continues to
increase and new video coding standards are introduced to
cope with the increased compute requirements, new scalable
hardware architectures are needed to perform these operations
in real-time. The goal of digital video compression is to
reduce the size of a video stream by identifying redundant
information, removing it, and replacing it with a scheme to
recreate that information during decompression.

There are two kinds of redundancies: inter-frame redun-
dancy between frames in a video stream, and intra-frame
redundancy within a single frame of a video stream. Stated
another way: inter-frame redundancy describes repetition of
data over time while intra-frame redundancy describes repeti-
tion of data over space. An object which is present throughout
an entire sequence of frames would be an example of the kind
of redundancy that inter-frame compression seeks to remove.
A large section of blue sky taking up the top-half of a scene
would be the sort of information redundancy that intra-frame
compression would remove.

Redundancy is a qualitative description of an effect that
humans see. The computer must be able to quantify the
similarity between two sets of images. This quantification
process generates a figure of merit which can be used to
determine whether or not the two images are redundant enough
to remove without significant loss of image quality. Two figures
of merit are mean absolute error (MAE) and sum of absolute
differences (SAD) [1]. These figures of merit are applied to
pixel differences between the images. In the video coding
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Fig. 1: Example of a sum of the absolute differences (SAD)
computation, with the current frame on the right. Subslices of
each frame are taken from 128x128, to 64x64, to 16x16 before
computing the SAD of both 16x16 blocks.

standards that this work addresses (H.264 and H.265), the
accepted figure of merit is SAD, an example of which is shown
in Fig. 1.

IEEE promotes a standard for video coding referred to as
H.264 [2], and published a new standard H.265, in 2013 [3].
These standards allow hardware designs for encoding and
decoding video to be developed separately. The primary goal
of the H.265 coding standard was to increase the compres-
sion efficiency of video streams by 50% without negatively
impacting the overall video quality [4]. Initial analysis of the
H.265 standard indicates that the standard meets that goal, with
demonstrations on multiple video streams [5]. Each of these
standards contain a set of tools to use to compress a video
stream. For H.265, the various effects of each of these tools
has been broken out into different levels, attempting to define a
smooth tradeoff curve between computational complexity and
final result quality [6].



II. PREVIOUS WORK

Significant work has been done in the motion estimation
accelerator design space. Systolic array-based designs could
initially handle the limited frame search areas of previous
video coding standards, but as the effective search area has
grown, up to a 128×128 pixel search area from the original
16×16 pixel search areas of past standards, systolic designs
became more difficult to scale efficiently. Further analysis of
available video streams have shown that 99.4% of the best
block candidates are found in a 128×128 pixel search area [7].

A. Systolic Array Solutions

Systolic array implementations are motion estimation en-
gines that make use of many parallel processing elements
to generate the SADs for macroblocks as the image frame
streams into the device. Lai and Chen introduced a 2D full-
search block matching algorithm architecture, which achieved
100% hardware utilization in a tile-able architecture [8]. This
architecture used a total of 256 PEs to process a 16×16
macroblock within a search area of [−8,+7] in both the
X and Y directions and was scalable to process the same
macroblock across a search range of [−16,+15] with 1024
PEs. Elagamel introduced an early termination mechanism in a
systolic array that disabled PEs that were not going to produce
a competitive matching candidate as well as the accumulation
adders on the edge of the array, which saved 45% power over
a normal array, by reducing the total number of comparisons
by 50% [9]. Both of the previous designs could handle only
fixed block sizes after implementation. Huang introduced a
2D systolic array implementation that was less efficient, with
the PE array being only at 97% utilization, but capable of
variable block size computations, chosen at run time, suitable
for processing 720×480 video at 30 FPS [10]. This design
also made use of a rectangular search range, with a larger
search area in the horizontal direction [−24,+23] than the
vertical direction [−16,+15]. Deng expanded the search area
of Huang to [−32,+31] in both directions and scaled it up
to handle 720×576 video at 30 FPS, at the cost of roughly
double the total number of gates [11].

Chen et al. give an analysis of the cost of supporting vari-
able block size motion estimation (VBSME) in systolic array
style implementations, and propose an architecture suitable
for 720p 30 FPS processing [12]. Their design makes use
of pixel truncation, rounding to 5 bits for each pixel. The
distortion from the loss of 3 LSB was about 0.1 db, while
4 LSB reduction costs 0.2 dB. Additionally, they make use
of a prediction unit to choose which area of the search range
their implementation will check, reducing the total area which
needs to be searched, though rapid changes in direction will
cause their prediction algorithm to miss.

B. Block Motion Estimation and Search Patterns

There are other motion estimation engines that use different
architectures from 2D systolic arrays. These designs make use
of search patterns, picking fewer points to sample using a
strategy to trade PSNR loss for faster processing and signif-
icantly fewer points checked overall. Chun et al. modified a
programmable DSP processor architecture to fetch and perform
a subtract, absolute, add operation on 8 pixels at a time in the

same cycle it fetches the next 8 pixels, resulting in a 20×
speedup over a SISD architecture [13]. Since they were ex-
tending a programmable processor, their implementation could
be extended to cover a wide range of search patterns, though
they used it primarily with three step searches (TSS, typically
Diamond-Diamond-Cross). Fatemi et al. experimented with
using pixel truncation alongside bit-serial pipeline architec-
ture to improve throughput further, while paying a similar
cost to PSNR [14]. Their implementation looks similar to a
2D systolic array implementation, but its use of a bit-serial
architecture instead of a bit-parallel one, distinguishes it.

Vanne et al. developed their own motion estimation im-
plementation with design time configuration of search patterns
and block access memory architectures [15]. This design can
process 1080p video at 30 FPS while consuming 123mW, and
they demonstrated its robustness across five different search
patterns. They also discussed, in detail, the math necessary to
have separable memory addresses such that the pixel memory
can be written in lines, but accessed in blocks. Their contri-
bution was the primary starting point of our design.

Diamond search patterns have been built into fixed pattern
motion estimators, where repeated repetitions of the diamond
pattern can manage 1080p video frames at 55 FPS [16].
The number of points in a particular search pattern directly
effects its computational complexity, but cross-based patterns
miss diagonal movement. Purnachand looked into hexagonal
patterns, recognizing that there are two types, called now
HexA and HexB, which are biased in either the vertical or
horizontal direction. Further work on search patterns have lead
to back and forth hexagonal search patterns of type A and
B, such as HexABA and HexBAB, which save 23% number
of points checked versus the diamond patterns used in other
accelerators [17].

Xiao et al. demonstrated a fully-featured H.264 compatible
encoder on a 167-core asynchronous array of simple processors
(AsAP) platform [18]. The design used a dedicated motion
estimation accelerator by Landge et al. [19], along with
115 of the simple cores to implement a design suitable for
640×480, 21 FPS video encoding for 931 mW average power
consumption. The design could also be scaled to the workload
by managing the power supplies, from 95 inter FPS at 0.8V
to 478 inter FPS at 1.3V in QCIF frames [20]. A better way
of thinking of this is that the design could operate anywhere
from 20% to 100% of its maximum throughput capacity by
controlling the core voltage levels.

Kim and Sunwoo introduced an application specific pro-
cessor that they called MESIP, which was capable of 720p,
50 FPS processing for 22.22mW and a total of 8 KB of
SRAM [21]. The MESIP required the development of its own
software tools, but can leverage those tools to optimize data-
reuse strategies. The execution unit of the MESIP resembles
the 2D systolic arrays, but the memory management and search
pattern functionality provided by its control unit removes it
from the 2D systolic array class.

C. Standard Cell Memories

Meinerzhagen explored standard cell memories (SCM) in
65 nm, demonstrating memories with a 49.98% area penalty
in trade for a 36.54% power reduction for the overall memory



array [22]. Further investigation into how such memories
stack up in the subthreshold domain, compared to SRAM
macros, found that these SCMs were better than standard
SRAM macros, but worse than full custom macros designed
specifically for subthreshold operation [23]. This research,
however, also surfaced the idea that these SCMs could be used
in distributed memory blocks closely integrated with logic,
and further, that these memories would work consistently with
their accompanying logic. For a design that makes use of
voltage dithering, low operating voltage, or other similar power
control techniques, these memories would be very suitable.
Meinerzhagen also demonstrated a 4-kb SCCM built with an
automated compilation flow and demonstrated its reliability at
subthreshold voltages [24].

III. ARCHITECTURE

The configurable motion estimator accelerator (CMEACC),
shown in Fig. 2 builds on Vanne’s block-addressed mem-
ory [15] and search pattern encoding motion estimator and
Meinerzhagen’s SCM [23]. This is a natural extension, since
the block-addressed memory architecture results in highly frag-
mented memory blocks which serve very particular parts of the
datapath, as illustrated in Fig. 9, where the optimal placement
of the reference frame memory, as dictated by the place-and-
route tool, was distributed across the die. Additionally, those
fragments are the correct size to outperform SRAM macros in
terms of performance, without paying the full density penalty,
as previously described by Meinerzhagen [23]. The use of
SCMs also allows a power-conscious system on chip (SoC)
which incorporates CMEACC to operate the entire block on a
single low, near-threshold voltage. Our design is implemented
as an accelerator for a SoC [25].

The accelerator can be conceptualized as a specialized
micro-controller. It has its own instruction set, communicates
with other blocks through input and output FIFOs, and has
its own clock and sleep signals, which makes the design with
respect to the other modules in the chip globally asynchronous
locally synchronous (GALS). This encapsulation makes it
straightforward to integrate as many accelerators as desired
by the overall system designers of an SoC. These FIFOs do
not limit the maximum throughput of CMEACC, as the block
operating frequency of 812MHz is sufficient even at 50%
FIFO utilization to support the pixel transfers necessary for
processing digital 4K at 60 FPS.

A top level block diagram of the entire accelerator is shown
in Fig. 2. It’s assumed that the input and output dual-clock
FIFOs lead to separate modules with asynchronous clocks,
but this is not architecturally necessary, and it is possible
for the same module to act as both transmitter and receiver
to CMEACC. This is made possible by the transmit and
receive commands both being part of the same instruction set
with non-overlapping opcodes. The device is capable of both
full-search and pattern-search operations, by use of a pattern
memory. Patterns are stored using the same encoding proposed
by Vanne et al. [15]. This pattern memory is implemented
using SCMs combined with a ROM, encoded with several
different potential patterns. This lets a user pick between full-
search, built-in patterns, or a programmable pattern depending
upon user needs for throughput and overall search quality.
Additionally, the user-defined and built-in patterns share the

same pattern memory address space, so a user can define the
first stage of a pattern and then use the built-in stages to finish.

The pixel datapath is a carry-save adder tree, pipelined
for throughput, combined with a pixel rotation block from the
active frame memory to deal with the offset introduced by the
block memory addressing scheme. A pipeline diagram of the
pixel datapath is shown in Fig. 3. The depth of the pipeline
needed to be balanced against the nature of search patterns,
where a number of candidate blocks are examined before a
search-stage decision is made. If the datapath is pipelined too
deeply, there are many wasted cycles, and the pipeline empties
as the search-stage decision is made by the controller. An
overall search controller manages the execution of the search
and which candidate blocks are examined. An additional circuit
checks to see whether all the necessary pixels for the block
compare are in reference frame memory before executing the
search; if they are not in memory, the block issues a memory
request and stalls the pipeline until the pixels can be fetched.

A. Scalability

One of the advantages of building CMEACC so that its
local working memory can contain an entire H.265-specified
tile, is that multiple instances of CMEACC can can then scale
smoothly to encoders which process tiles in parallel. Each
image stream is divided into 256x256 tiles, and each tile can be
processed separately. For an 832x480 stream, the partitioning
fills 3 tiles completely, and 5 partial tiles. Since our simulations
were run in series for each tile, with only one instance of
CMEACC, the work can be sped up at least 3 times as 3
tiles can be kept at full utilization, while partial tiles have
less utilization. Similarly, for a 1280x720 stream, there are 8
full tiles and 7 partial tiles, resulting in, at minimum, an 8x
speedup. This additional silicon area is not free, especially in
power and memory bandwidth terms, but if a system calls for
maximum throughput, the architecture can be scaled to meet
that throughput requirement.

IV. CONTROLLER IMPLEMENTATION

The control unit consists of the configuration registers,
pattern memory, full-search address generator, pattern-memory
address generator, out of bounds point checker, the controller
FSM, and an instruction decoder, as shown in Figure 4. The
instruction decoder samples the op-code bits of every input
word and translates these into control signals for the controller
FSM. In order to prevent random bits in the pixel transfers
from being misinterpreted, all instruction decode signals pass
through the controller FSM, where they are masked if the
controller is not in an instruction-receiving state. Both address
generators can generate the next inspection point for either a
smart full-search or a pattern search run out of the pattern
memory. The address out of bound checker, combined with
the controller FSM handles pixel replacement for the reference
frame memory.

The top FSM controller is not a monolithic FSM. Instead
it is a series of hierarchical FSMs. Hierarchical finite state
machines are a technique for managing the complexity of a
controller with many separate states, but relatively ordered
transitions [26]. These hierarchical FSMs are built so that
there is no latency lost when traveling down the hierarchy,
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which requires careful handling of the idle states in each
machine. This allows us to retain the full efficiency of a
fully integrated top level FSM, without paying as much of
the complexity price in terms of analysis and difficulties in
correct implementation. The list of the component FSMs, and
the relational hierarchy, is shown in Figure 5. Since both full
search and pattern search make use of pixel replacement, the
actual implementation of the execute search contains mux
logic to arbitrate between which FSM has control of the
scanner FSM. The state transition diagram is shown in Figure 6
with the hierarchical FSMs marked in dashed borders. The
return to IDLE behavior adds latency to the rare register and
pattern memory writes. Searches and their associated memory
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Fig. 6: State diagram of the top level controller. States which
trigger other FSMs are given in dashed circles, and the reset
state is shown with a double circle.

Fig. 7: 3-Stage, 12-point circular search pattern showing the
three pixel search stages on an image.

operations are handled by a lower level state machine and are
set up to be pipelined. The read out commands have their own
state machines so that CMEACC can stall correctly if its output
FIFO is full.

V. A 12-POINT CIRCULAR SEARCH PATTERN

In the course of developing and testing CMEACC it
became apparent that the current search pattern methodology
could be extended to trade further compute for distortion.
A cross pattern, for instance, captures motion in only the
cardinal directions, while a diamond pattern captures motion in
both the cardinal and diagonal directions. Hexagonal patterns
capture motion, biased in either the horizontal or vertical
direction depending upon the type of hexagon (type A or
type B). All of these search patterns were developed in the
context of H.264 and previous standards, where the maximum
image size only went to 1080p. Movement in the cardinal
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directions and the diagonals, then, would capture most of the
movement possible in a particular frame. With larger image
sizes, up to 4x the size of 1080p, motion within the image
may fall within the areas missed by cardinal and diagonal
motion vectors. At the same time, H.265 brings in additional
motion vectors as possible candidates and with process shrink,
the actual computation of a candidate SAD, once its relevant
pixels have been brought into memory, is also relatively less
expensive. Therefore, additional patterns which contain more
search points (and require more compute), but cover more
possible motion vectors, can become advantageous. A 12 point
circular pattern, with a three-stage example shown in Figure 7,
balances keeping the total number of points searched low,
while still covering more possible motion directions. It also
has the same overlapping characteristics of diamond, cross,
and hexagonal patterns, where repeated searches at the same
stage have overlapping check points which can be skipped,
as shown in Figure 8. This reuse of 3 points is less than
the reuse of the diamond pattern, which reuses either 3 or
5 points depending upon the movement type, comparable to
hexagonal patterns which also reuse 3 points, and results in
less distortion on average than the cross pattern, which reuses
only 1 point. Table I gives a breakdown of points reuse in
different patterns, excluding the center point of the pattern. As
a percentage measure, the Circular pattern’s per-stage pixel
reuse is equivalent to the cross, while checking 3 times the
total number of points results in less distortion.

TABLE I: Point reuse between stages in various search pat-
terns.

Pattern NumPts Reuse Reuse Pct.
Cross 4 1 25%

Diamond 8 3 or 5 38% - 50%
HexA 6 3 50%
HexB 6 3 50%

Circular 12 3 25%

VI. RESULTS

The CMEACC architecture was synthesized using a low
leakage 65 nm CMOS standard cell library, then placed and

Fig. 9: A plot of the physical layout of the CMEACC which
measures 1020 µm×1020 µm. The two types of memories,
implemented with SCM, as well as the control and datapath
logic are highlighted.

routed to a final design where it measured 1.04mm2. A plot
showing the resulting design is shown in Fig. 9. Results
were collected at 1.3V and 0.9V. The design was able to
reach a maximum operating frequency of 812MHz at 1.3V.
Throughput for the design was modeled by replicating the
design in Matlab, maintaining bit and cycle accuracy, running
that model against various model video streams with a variety
of characteristics and multiple search patterns, and then using
those model runs to generate stimulus patterns to run against
the device RTL. When simulated on the RTL, the total number
of clock cycles spent, including transferring the necessary
pixels into the CMEACC and configuring a search pattern,
were collected. Final power and cycle period values were
taken from place and route. Overall, in the video streams run,
between 55.78% and 82.62% of the cycles were spent fetching
or reading pixels from external memory, and the remaining
31.80% and 17.23% of the cycles were spent computing the
SAD values, heavily dependent upon search pattern and video
stream.

Comparisons against recent motion estimator hardware
are shown in Table II. Note that a majority of the designs
reported results from synthesis, which tends to be optimistic
when compared to results from a full layout that have gone
through the place and route step, as the CMEACC reported
values have. Throughput was calculated as the total number
of pixels processed, attained by multiplying the frame size
by the FPS. As shown in the table, the CMEACC has the
highest throughput at 105 MPixel/sec and lowest energy×time,
at 0.933 pJ×sec/Pixel. At 0.9 V, CMEACC requires only
0.393 nJ/Pixel, which is believed to be the highest energy
efficiency reported for a hardware motion estimator accelerator.

VII. CONCLUSION

We have designed and implemented a new, modular, mo-
tion estimation engine architecture, CMEACC suitable for



TABLE II: Comparisons of results with recent application specific hardware for motion estimation.

Die Clock
Process Voltage Supported Area Freq. Power Throughput Energy Energy×Time

Work (nm) (V) Alg. Block Sizes Format (mm2) (MHz) FPS (mW) (MPixel/sec) (nJ/Pixel) (nJ×sec/Pixel)
Chun [13] - - TSS 16×16 CIF - 250* 24* - 2.43* - -
Fatemi [14] 180 - FS 4×4-16×16 CIF - 440* 41* - 4.16* - -
Vanne [15] 130 1.2 Prog. 4×4-16×16 1080p - 200* 30* 59* 62.2* 0.948* 4740*
Landge [19] 65 1.3 FS 4×4-16×16 CIF 0.672 938 210 195 21.3 9.16 9770
Kim [21] 90 1.08 Prog. 4×4-16×16 720p - 150* 50* 22.2* 46.1* 0.482* 3220*
CMEACC 65 1.3 Prog. 4×8-64×64 720p 1.04 812 114.4 79.8 105 0.757 933
CMEACC 65 0.9 Prog. 4×8-64×64 720p 1.04 158 22.26 8.06 20.5 0.393 2490

* These values were taken from synthesis.

use with modern video coding techniques, and with sufficient
throughput to sustain real time 4K video streams. The device
builds upon previous work on motion estimation hardware,
while incorporating standard cell memories to implement the
frame and pattern memories, pipelining the pixel datapath,
and implementing a novel controller to handle memory access
requests, pipeline control, and search pattern execution. It
compares favorably in throughput and energy×time against
previous works, while being more flexible in both block size
and search pattern, which can both be configured at run time.
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