
A Low-Cost Slice Interleaving DSC Decoder
Architecture for Real-Time 8K Video Decoding

Shifu Wu and Bevan Baas
Department of Electrical and Computer Engineering

University of California, Davis
{ucdwu, bbaas}@ucdavis.edu

Abstract—High resolution and high frame rate video including
4K and 8K is increasingly popular, however its real-time decoding
using H.264 and HEVC is challenging due to its high hardware
computational cost and large memory requirement. In contrast,
the Display Stream Compression (DSC) video decoder requires
much smaller hardware and easily supports very high pixel rates.
We present a low-cost DSC decoder utilizing a slice interleaving
architecture, as well as four designs that utilize the architecture
implemented and synthesized in a 28 nm CMOS standard cell
process. The designs are able to perform real-time decoding
at frame rates up to 94–107 frames per second (fps) for 8K
UHD and 376–430 fps for 4K UHD, both in 4:4:4 mode with
a throughput of 3 pixels per clock cycle. The frame rates are
doubled in native 4:2:2 and 4:2:0 modes. The designs have gate
counts of 161K–282K in minimum-sized NAND2 equivalent gates
and main memory of 36.9KB–54.7KB to support 8K UHD.

I. INTRODUCTION

Ultra high definition (UHD) video resolutions of 4K UHD
(3840×2160) and 8K UHD (7680×4320) are more preva-
lent, and higher frame rate is attracting more interests, both
of which make real-time video decoding challenging, due
to ultra high throughput requirement. H.264/AVC [1] and
H.265/HEVC [2] are widely used in video decoding. Though
decoders of both standards are able to achieve high decom-
pression rate, the computation complexity is very high and
large amounts of on-chip and off-chip memory is required.
HEVC is even more complex than H.264, because of more
advanced techniques used to increase performance. There have
been several high performance video chips of H.264 [3], [4]
and HEVC [5], [6] targeting at 4K or 8K resolution, all of
which are able to perform real-time video decoding.

Display Stream Compression (DSC) [7], [8], a new video
compression standard released by Video Electronics Standards
Association (VESA), is designed to enable low-cost hardware
implementation of visually lossless video compression over
display links. The compressed bit rate of DSC can be con-
figured to 8 bits per pixel (bpp) or higher (6bpp or higher
in native 4:2:0 mode). Comparing to H.264 and HEVC, a
remarkable advantage of DSC is that only one picture line
memory is required and no off chip memory is needed.
Besides, DSC does not contain computation intensive blocks.

To the best of our knowledge, this work is the first published
hardware architecture description of DSC decoder. A low-
cost slice interleaving decoding architecture of DSC v1.2a is
presented. Based on the proposed architecture, four designs

Slice Slice

Slice Slice

(a). Picture (b). Slice

P0 P1 P2

(c). Group

Fig. 1. Relationship of picture, slice, group and pixel: (a) A picture configured
into two rows and two columns of slices, (b) A slice of size 18×10 contains
60 groups, and (c) A group contains three pixels.

are implemented in 28 nm CMOS, all of which are able to
perform real-time decoding of 8K UHD videos.

II. DSC DECODING ALGORITHM OVERVIEW

DSC decoder takes compressed bitstream as input and
reconstructs image output. An image, which is also called a
picture or a video frame, can be configured into one or more
identical sized non-overlap rectangular slices and each slice is
independently decoded. The number of columns of slices in
an image is called slices per line. The decoding of one slice is
performed on a group basis, which is three neighboring pixels
of the same slice line. Fig. 1 shows the relationship of picture,
slice, group and pixel.

Fig. 2 [7], [8] illustrates the decoding process of one
slice. Rate Buffer buffers the compressed bitstream and sends
up to four muxwords to Substream Demultiplexer in each
group time. Substream Demultiplexer splits single bitstream
into three or four substreams, each of which is stored in a
different funnel shifter. The VLC Entropy Decoding (VLD)
block takes substream bits from funnel shifter and decodes
flatness information and encoding mode of current group.
Each group is encoded in either predictive mode (P-mode) or
indexed color history (ICH) mode (ICH-mode). Based on the
encoding mode, VLD further decodes quantized residuals in
P-mode or ICH indices in ICH-mode. Rate Control algorithm
generates quantization parameter (Qp) used in each group.
Three predictors are used to predict pixel values: block pre-
diction (BP), modified median adaptive prediction (MMAP)
and midpoint prediction (MPP). ICH contains 32 recently
used pixels, which are stored in a shift register. If P-mode
is selected, pixels are reconstructed using the predicted values
and quantized residuals, otherwise, the pixels pointed to by
ICH indices are used as the reconstructed pixels. Line Buffer

Substream

Demultiplexing

VLC

Entropy

Decoding

Prediction,

Inverse Quantization,

Reconstruction

YCoCg-R to

RGB

 (if RGB out)

Rate Control

ICH

Bitstream

Input

Line Buffer

Rate

Buffer

Reconstructed Pixels

Image

Output

ICH-mode

Control

Fig. 2. Block diagram of DSC decoding process.

Line Buffer

Chroma

Down

Sample

Slice Decoder

Rate Buffer

Memory

Slice

DeMUX

PPS

Bitstream Pixels

is_pps

1

0

Fig. 3. Block diagram of DSC decoder architecture.

stores previous line reconstructed pixels, which are used in
non-first line ICH and MMAP. If RGB pixel format is desired
in output, decoder converts reconstructed pixels’ format from
YCoCg-R to RGB.

III. SLICE INTERLEAVING ARCHITECTURE

The block diagram of the proposed decoder architecture is
shown in Fig. 3. Picture Parameter Set (PPS) is a register
of 94 bytes which stores the configuration parameters. Slice
Demultiplexer (Slice DeMUX) decodes size and states of
chunk, which is a portion of bitstream containing a set of data
bytes. Slice Decoder is the major component of DSC decoder
which decodes slices. It contains the blocks of DSC decoding
process, as shown in Fig. 2. Line buffer and rate buffer are
the main memories in DSC decoder. PPS bits are indicated by
is pps flag and enter decoder before compressed bitstream.
Chroma downsample is applied to pixels only in simple 4:2:2
mode. Fig. 6 shows the 5-stage pipeline of major data paths
in the proposed architecture.

A. Slice Demultiplexer

Fig. 4 describes the major blocks of slice demultiplexer. It
has four functions: 1) Decode chunk size at the start of each
chunk if decoder runs in variable bit rate (VBR) mode, 2)
Send bitstream to slice decoder, 3) Determine the owner slice
of current bitstream chunk using slice controller, and 4) Detect
the boundary of bitstream between neighboring slices, which
is critical to make sure correctness of rate buffer writes and
reads at the end of slice.

B. One Slice Per Line–No Interleaving

When slice width is configured to be equal to picture width,
there is only one column of slice, namely one slice per
line. All compressed bits of a slice in picture enter decoder
before any bit of later slices. In addition, all the pixels of

Slice

Controller

Bitstream

Buffer

Bitstream Slice

Bitstream

Generator

Chunk Size

Decoder

(VBR mode)

Chunk Byte

Controller

Chunk

Counter

Chunk Size

VBR Chunk Size # Bytes to Output

VBR Enable
Slice End

Detector

Slice End

1

0

State

Slice Bits

Fig. 4. Block diagram of slice demultiplexer.

Slice 0 Line 0 Slice 1 Line 0 Slice 0 Line 1 Slice 1 Line 1

Time

Picture Line 0 Picture Line 1

Fig. 5. Slice interleaved decoding of first two lines of a picture which is
configured into 2 slices per line.

a slice are decoded before any pixel of later slices. For a
DSC decoder which only supports one slice per line, no slice
interleaving is needed. Decoder starts decoding next slice only
when current slice decoding is done. The slice controller in
slice demultiplexer is simplified, since all the chunks belong
to the slice being decoded.

C. Multiple Slices Per Line–Slice Interleaving

When a picture is configured into more than one slice per
line, the bitstream of different slices in the same row are
multiplexed. For example, in the case of two slices per line,
the order of bitstream input is (slice0 chunk0, slice1 chunk0,
slice0 chunk1, slice1 chunk1, ...). Meanwhile, DSC decoded
pixels output in raster scan order, which means the decoding
of second picture line will start only when all pixels of first
picture line are decoded. Fig. 5 shows the timing of decoding
first two picture lines in two slices per line configuration.
Therefore, decoder has to keep switching between slices in
every slice line.

To decode bitstream compressed with multiple slices per
line configuration, slice interleaving architecture is used. First,
the decoding state of one slice should be stored when decoder
switches to decode another slice and be recovered when
switching back to decode the next slice line. Therefore, all
the registers that store the decoding state should be replicated
as many times as the maximum supported number of slices per
line. Fig. 7 describes an example of no interleaving and two-
way interleaving architecture. Comparing to no interleaving
architecture, slice interleaving architecture uses same combi-

Bitstream

PPS

Updater
Prediction,

Inverse

Quantization,

Reconstruction

ICH Updater

YCoCg

to

RGB

Chroma

Down

Sample

PixelsVLC

Entropy

Decoder

Funnel

Shifter

Updater

Subs.

DeMUX

Rate

Buffer

Slice

DeMUX

Short-term

RC,

Flatness

Long-

term

RC

Linear

Trans.

Cal.

Offset,

Scale

Buffer

Level

Tracker

hPos, vPos

Block

Prediction

Search

of Bits

Preious linePPS

Qp

is_pps

ICH

selected

1

0
1

0

Fig. 6. Pipeline diagram of major data paths in proposed DSC decoder architecture.

Combinational

Logic

a b

Combinational

Logic

a[0]

a[1]

b[0]

b[1]

state state

(a). No slice interleaving (b). Two-way slice interleaving

Fig. 7. Comparison of (a) No slice interleaving architecture, and (b) Two-way
slice interleaving architecture.

national logic, which is shared by all slices of the same row,
while registers are replicated for each slice. At the starting
point of combinational path, a multiplexer is needed to select
the source register value. Similarly, a demultiplexer is used to
select the destination register at the end point of path. Second,
line buffer and rate buffer have same number of banks as the
maximum supported slices per line. The data of different slices
is stored in different banks, since slices are independently
decoded. For a decoder supporting up to four slices per line,
each bank is used by a different slice when decoding four
slices per line, while two banks are used by each slice when
decoding two slices per line.

Two controllers are used to enable slice interleaving archi-
tecture: 1) state, which is generated in slice demultiplexer,
indicates the owner slice of current chunk and controls the
write of rate buffer, and 2) pixel state indicates the owner slice
of current decoded slice line and controls rate buffer read and
rest of slice decoder.

D. Main Memories

Line buffer memory has a size of one picture line, which
is 30.9KB and 45KB to support 8K UHD with maximum bits
per component (bpc) of 10 bits and 16 bits, respectively.

Rate buffer size is rc model size – initial offset +
dinitial xmit delay * bits per pixele + groupsPerLine *
first line bpg offset number of bits. By adopting the sug-
gested parameter values from DSC, the equation can be
reduced to 10,240 + slice width * 5. Therefore, the minimum
rate buffer size is 5.94KB to support one slice per line in
8K UHD. When multiple slices per line is supported, each
column of slices should have separate rate buffer bank(s).

7.57%7.57%

Rate Control

Prediction

ICH

YCoCg to RGB

VLD

Rate Buffer

Misc

1.19%1.19%

Slice Decoder

PPS

Slice DeMUX

Misc

Line buffer

(a). DSC decoder (b). Slice decoder

Fig. 8. Logic area utilization in (a) DSC decoder, and (b) Slice decoder.

Thus, rate buffer size is increased to (10,240 + slice width
* 5) * slices per line, which is 7.2KB and 9.7KB to support
up to 2 and 4 slices per line in 8K UHD, respectively.

IV. IMPLEMENTATION RESULTS AND ANALYSIS

A. Summary

Based on the proposed architecture, four designs are im-
plemented in register transfer level (RTL) using Verilog. The
designs support all mandatory and optional operations of DSC
v1.2a decoding process and are verified by comparing to the
DSC v1.2a reference C model. Key features include support
of simple 4:4:4 (both RGB and YUV output formats), simple
4:2:2, native 4:2:2 and native 4:2:0 modes with both constant
and variable bit rate modes. Design I and II support one slice
per line without using slice interleaving. Design III and IV
use slice interleaving architecture and support one and multiple
slices per line. Design I supports maximum bits per component
of 10 bits and the other three designs support up to 16 bits.
Design III supports one and two slices per line, while design
IV supports one, two and four slices per line. The designs are
synthesized with a 28 nm CMOS standard cell library using
typical-typical corner device and 1.2 V supply voltage.

B. Results and Analysis

1) Area Utilization: Fig. 8 shows the logic area utilization
of design II. Slice decoder is the most complex block in entire
decoder and takes 92.61% of total logic area. In slice decoder,
prediction block occupies much more logic area than other
blocks.

TABLE I
COMPARISON WITH 8K H.264 AND HEVC VIDEO DECODER CHIPS

Standard
Tech Voltage Clock Max Frame Rate (fps) Throughput Gate On-Chip Main Max
(nm) (V) (MHz) 4K UHD 8K UHD (Gpixel/s) Count (K) Memory (KB) bpc

ISSCC’12 [4] H.264 65 1.2 340 (1251*) 883* 60 (220*) 2 (7.36*) 1338 79.9 -

JSSC’17 [6] HEVC 40 1.0 300 (427*) 683* 120 (170*) 4 (5.70*) 2887 396 10

Design I DSC 28 1.2 1190 430 107 3.55 161 36.9 10

Design II DSC 28 1.2 1120 405 101 3.35 231 50.9 16

Design III DSC 28 1.2 1087 393 98 3.25 258 52.2 16

Design IV DSC 28 1.2 1040 376 94 3.11 282 54.7 16

* Estimated value when scaled to 1.2V 28 nm technology using scale factors from [9].

0 500 1000 1500

Clock Rate (MHz)

0

20

40

60

80

100

120

140

M
a

x
im

u
m

 A
tt

a
in

a
b

le
 F

ra
m

e
 R

a
te

 (
fp

s
) 8K UHD4K UHD

331.8 663.6 1327.1165.9 1190

(1190,107)

Fig. 9. Maximum attainable frame rate when decoding 4K and 8K UHD
videos with a throughput of 3 pixels per clock cycle for 4:4:4 pixels. For
native 4:2:2 and 4:2:0 pixel formats, frame rates are double these values.

2) Gate Count: Table I reports gate count in minimum-
sized NAND2 equivalent logic gate, which is 161K–282K. The
gate count of design I is 1.43× smaller than design II, due to
the reduced component bit width of pixels. Though maximum
supported component bit width are the same, design III and
IV have larger gate count than design II. This is the effect of
both the extra register selection logic and the fact that some
logic can’t be shared between slices and is replicated.

3) Maximum Frequency: The designs have maximum fre-
quency of 1.04–1.19 GHz. Increasing maximum component bit
width slows down the maximum clock frequency, as shown in
the result of design I and II. Design III and IV are slower
than design II, since register selection logic makes extra
contribution to path delay. Furthermore, design IV requires
larger register selection logic than design III, thus maximum
frequency is smaller.

4) Throughput and Maximum Frame Rate: The throughput
is 3 pixels per clock cycle in simple 4:4:4 and simple 4:2:2
modes, and 6 pixels per clock cycle in native 4:2:2 and 4:2:0
mode. Fig. 9 shows the maximum attainable frame rate with
regards to clock rate when decoding 4K UHD and 8K UHD
videos in 4:4:4 mode. The maximum achievable frame rates
are 376–430 frames per second (fps) in 4K UHD and 94–107

fps in 8K UHD.
5) Comparison with H.264 and HEVC Decoders: When

scaled to same technology as of the proposed designs, H.264
decoder [4] and HEVC decoder [6] have higher estimated
throughput and maximum frame rate than the four designs
of this work. Comparing to H.264 and HEVC decoders, the
designs of this work have much smaller hardware cost. The
designs have gate count of 4.7×–8.3× smaller than [4] and
10.2×–17.9× smaller than [6], while on-chip main memory
is 1.46×–2.16× and 7.23×–10.7× smaller, respectively.

V. CONCLUSION

This paper presents a slice interleaving decoding architec-
ture which is able to decode one and multiple slices per line.
Four designs that fully support DSC v1.2a decoding algorithm
are implemented and synthesized with a 28 nm standard cell
library. The designs have very low hardware cost in terms of
gate count and on-chip main memory, and are able to perform
real-time decoding for 4K UHD and 8K UHD videos with
frame rates up to 376–430 fps and 94–107 fps, respectively.

REFERENCES

[1] T. Wiegand et al., “Overview of the H.264/AVC video coding standard,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 13,
no. 7, pp. 560–576, July 2003.

[2] G. J. Sullivan et al., “Overview of the High Efficiency Video Coding
(HEVC) standard,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1649–1668, Dec 2012.

[3] D. Zhou et al., “A 530 Mpixels/s 4096x2160 60fps H.264/AVC high
profile video decoder chip,” IEEE Journal of Solid-State Circuits, vol. 46,
no. 4, pp. 777–788, April 2011.

[4] D. Zhou, J. Zhou et al., “A 2Gpixel/s H.264/AVC HP/MVC video decoder
chip for super Hi-Vision and 3DTV/FTV applications,” in 2012 IEEE
International Solid-State Circuits Conference, Feb 2012, pp. 224–226.

[5] C. T. Huang et al., “A 249Mpixel/s HEVC video-decoder chip for quad
full HD applications,” in 2013 IEEE International Solid-State Circuits
Conference Digest of Technical Papers, Feb 2013, pp. 162–163.

[6] D. Zhou et al., “An 8K H.265/HEVC video decoder chip with a new
system pipeline design,” IEEE Journal of Solid-State Circuits, vol. 52,
no. 1, pp. 113–126, Jan 2017.

[7] V. E. S. Association, “VESA Display Stream Compression (DSC)
standard v1.2a,” Jan 2017. [Online]. Available: http://vesa.org

[8] F. G. Walls and A. S. MacInnis, “VESA Display Stream Compression
for television and cinema applications,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 6, no. 4, pp. 460–470, Dec
2016.

[9] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction
of CMOS device performance from 180 nm to 7 nm,” Integration, the
VLSI Journal, vol. 58, pp. 74–81, 2017.

