
Indexed Color History Many-Core Engines for
Display Stream Compression Decoders

Shifu Wu and Bevan Baas
Department of Electrical and Computer Engineering

University of California, Davis

Abstract—This paper describes and compares 9 many-core
designs and software implementations of the Indexed Color
History (ICH) module, which is part of VESA Display Stream
Compression (DSC) decoders. The smallest design is mapped
to only 8 small processors. Other designs use a new algorithm
to split the ICH table update process into index update and
entry update tasks. This algorithm is implemented with a variety
of parallel and optimized architectures to provide a range
of throughputs and energy efficiencies utilizing from 9 to 53
processors. The proposed ICH designs deliver frame rates in
1080p (1920×1080) up to 75, 74, and 38 frames per second (fps)
in 4:2:0, 4:2:2, and 4:4:4 modes, while dissipating 15 mJ, 16 mJ,
and 30 mJ per frame respectively at 1.75 GHz at 1.1 V. Compared
to reference designs implemented on an Intel i7-7700HQ, the
proposed designs achieve up to 3.4×, 3.9×, and 5.3× higher
frame rates, and up to 177×, 193×, and 261× lower energy per
frame in 4:2:0, 4:2:2, and 4:4:4 modes respectively.

I. INTRODUCTION

Video applications have been in increasing demand. For
example, the global video conferencing market stood at USD
3.02 billion in 2018 and is projected to reach USD 6.37 billion
by 2026 [1]. Video compression is one of the key technologies
that will drive the growth of video-based applications.

The VESA Display Stream Compression (DSC) [2] stan-
dard offers visually-lossless video compression [3] with low
hardware cost and low latency which is essential in many real-
time applications. While application-specific integrated circuit
(ASIC) DSC codecs [4], [5] achieve high performance for
real-time encoding and decoding, software DSC codecs on
programmable computational platforms offer greater flexibility
and scalability.

We present the design and implementation of the critical
Indexed Color History (ICH) module for DSC decoders on
a programmable many-core computational platform. Through
task-level parallelism, the optimized designs are able to per-
form real-time decoding on 1080p video streams.

II. ICH AND THE MANY-CORE PLATFORM

A. Indexed Color History (ICH)

In the context of DSC, every frame is partitioned into one
or more slices which are regions processed independently.
DSC supports both RGB and YCbCr pixel format in 4:4:4
mode, in which a pixel contains 3 components. In addition,
two chroma-subsampled YCbCr formats are also supported:
1) the 4:2:2 format, in which only the even-position pixels
contain chroma components, and 2) the 4:2:0 format, which

I0 P2 I0 I5

I1

I2

...

I28

I29

I30

I31

P1

P0

I0

I1

I2

...

I27

I28

I27

(a)

I1

I2

I3

I5

I6

...

I31

I4

I3

I1

I0

I4

I6

...

I31

I2

(b)

I0 I5

I1

I2

I3

I5

I6

...

I31

I4

I3

I0

I1

I4

I6

...

I31

I2

(c)

I0 I3

I1

I2

I3

I6

...

I31

I4

I0

I1

I2

I5

I6

...

I31

I4

(d)

...

I5

Fig. 1. ICH table update examples: (a) P-mode, (b) ICH-mode with indices
(1, 3, 5), (c) ICH-mode with indices (5, 3, 5), and (d) ICH-mode with indices
(3, 3, 3).

contains only one chroma component (Cb in even-numbered
lines and Cr in odd-numbered lines) in the even-position pixels
and no chroma components in the odd-position pixels. In 4:2:0
and 4:2:2 formats, two neighboring pixels are packed into one
container pixel, resulting in approximately twice throughput.
A container pixel has 3 components in 4:2:0 format and 4
components in 4:2:2 format.

Three neighboring pixels (container pixels in 4:2:0 and
4:2:2 modes) of the same slice line form a group, which is
coded using either predictive coding (P-mode) or indexed color
history coding (ICH-mode). P-mode codes every group with
the quantized residuals, while ICH-mode codes each group
with three 5-bit ICH indices.

The ICH module maintains a 32-entry table, which stores
one pixel in each location that is addressed by a 5-bit index.
The location at address 0 contains the most-recently-used
(MRU) pixel. For the first line (and second line in 4:2:0 mode)
of each slice, all 32 entries are actual history pixel values,
while for non-first line groups the last seven entries point to
previous line reconstructed pixels.

The ICH table is updated once per group. In P-mode, the
reconstructed pixels of the current group, denoted as P0, P1
and P2 from left to right, enter the top of the ICH table. All
other entries are shifted down by 3, as shown in Fig. 1(a). In



Input Output

ICH 

Update 0

ICH 

Update 1

ICH 

Update 2

ICH 

Update 3

Index 

Sort

Output 

Merge

Fig. 2. Dataflow diagram of the Shift Table Entries algorithm.

Index 

Sort

Input

Output

ICH 

Update 

3

ICH 

Update 

1

ICH 

Update 

2

ICH 

Update 

0

Merge4Merge2

Merge2

Fig. 3. Processor mapping of the Shift-Entry design.

ICH-coded groups, the selected ICH entries are moved to the
top of the ICH table. In Fig. 1(b), the selected indices are 1,
3, and 5 for the left, middle and right pixels. Therefore, I5
becomes the MRU, while I3 and I1 are moved to the second
and third entries. The original entries I0, I2 and I4 are shifted
down by 3, 2, and 1, respectively, while other entries remain
unchanged. When the number of unique indices is less than 3,
as shown in Fig. 1(b–c), only the last occurrence of a replicated
index is counted for an ICH table update.

B. The Many-Core Computational Platform

The KiloCore chip [6] contains 1000 simple RISC-style
independent processors connected via a 2-D mesh network,
which supports communication between adjacent and distant
processors. Each processor occupies 0.055 mm2 in 32 nm
CMOS technology, contains 128×40-bit words of instruction
memory and 256×16-bit words of data memory, and operates
to a maximum clock frequency of 1.78 GHz [7].

III. PROPOSED ICH IMPLEMENTATIONS

This section presents 2 algorithms and 2 optimization meth-
ods for the ICH module. Nine designs are implemented to
evaluate these algorithms and methods.

A. The Shift Table Entries Algorithm

Figure 2 shows the dataflow diagram of the Shift Table
Entries algorithm. It performs ICH table update by shifting
the ICH table entries. This algorithm is composed of three
tasks:

1) Index Sort: This task sorts the ICH indices and finds the
number of unique indices. It then distributes the sorted indices
and other inputs for ICH table update.

2) ICH Update: This task updates the ICH table using the
approach described in Section II. By exploiting component-
level parallelism, this task is further partitioned into 4 parallel
subtasks, each of which stores and updates the ICH table of
one component.

Input Output

Entry 

Update 0

Entry 

Update 1

Entry 

Update 2

Entry 

Update 3

Index 

Update

Index 

Sort

Index 

Update

Output 

Merge

Fig. 4. Dataflow diagram of the Separate Index and Entry Update algorithm.

1 4

2

...

26

28

29

30

31

5

...

29

30

31

0

1

2

27

(a)

7

8

...

3

2

4

1

5

0

(b) (d)

ICH-modeP-mode 

0 3

7

8

...

0

1

2

3

4

5

(c)

6 6

P-mode 

Fig. 5. Example of index table update: (a) initial state, (b) P-mode is selected,
(c) P-mode is selected, and (d) ICH-mode is selected with indices (1, 3, 5).

3) Output Merge: This task merges the decoded pixel
values of the 3 or 4 components into a single output stream.

The Shift-Entry design is implemented based on this
method. Fig. 3 shows the 8-core processor mapping on the
many-core platform. Each task/subtask is mapped to one
processor, except that the Output Merge task is mapped to
3 processors, since each processor has only two input ports
and thus can merge only two inputs.

To find the throughput bottleneck, we performed separate
simulations on each processor running alone, which can
achieve maximum performance since no I/O stalls are caused
by other processors. The ICH Update processors take 561
cycles on average to process one group, while Index Sort,
Merge2 and Merge4 processors require 90, 6, and 12 cycles,
respectively. Therefore, the ICH Update processors limit the
performance. By running the Shift-Entry design on the targeted
many-core platform at 1.75 GHz, it achieves 9.1 fps, 9.0 fps,
and 4.4 fps in 4:2:0, 4:2:2, and 4:2:4 modes, which is too
slow for real-time applications. Due to the data dependency
in shifting the ICH table entries, further parallelism on the
ICH table update task is not possible with this algorithm.

B. The Separate Index and Entry Update Algorithm

Motivated by the fact that in every group no more than 3
new pixels enter the ICH table, while the majority of ICH
entries remain in the table with only their indices changed,
we propose the Separate Index and Entry Update algorithm
which partitions the ICH table update task into index update
and entry update tasks. An index table is maintained for ICH
indices and an entry table is used to store ICH entries, where
the index of each ICH entry is stored in the same location of
the index table. The index table is serially updated by looping
through the 32 indices, while the entry table is updated by
writing 0–3 new pixel values into the appropriate locations,



Index 

Sort 

Output

Input

Index 

Update

Entry 

Update 

2

Merge2

Entry 

Update 

0

Merge2 Merge4

Entry 

Update 

3

Entry 

Update 

1

Fig. 6. Processor mapping of the Split-Index design.

the addresses of which are provided by the index update task.
The dataflow diagram of this method is shown in Fig. 4.

Figure 5 shows an example of the index table update. The
ith word is initialized to i. In this example, the first two groups
are P-mode coded, thus the index values of 29, 30, and 31
are updated to 0, 1, and 2, respectively, while the remaining
29 indices are increased by 3, as shown in Fig. 5(b–c). The
third group uses ICH-mode coding with indices (1, 3, 5).
Therefore, the ICH indices 5, 3, and 1 are updated to 0, 1, and
2, respectively. Index 0 is increased to 3, since it is smaller
than all three selected indices. Index 2 and 4 are smaller than
two and one of the selected indices, thus they are increased
by 2 and 1, respectively. All other indices remain unchanged.

The 9-core Split-Index design is implemented using this
algorithm, as shown in Fig. 6. The simulation on processors
running alone shows that the Index Update processor takes
1,154 cycles to process one group, while 68 cycles are
needed for the Entry Update processor. Therefore, to increase
throughput, it is essential to speed up the index update task.

C. Design Optimization I — Parallel Index Update

Unlike shifting ICH table entries, there is no data depen-
dency in the update process between ICH indices. Therefore,
the index table update task can be partitioned into multiple
parallel subtasks, the output of which are merged later. We
use N , a number evenly divisible by 32, to denote the number
of index update subtasks. Every subtask maintains a table of
32/N indices, resulting in N times speed up compared to the
non-parallel index update task. Since one subtask does not
contain all indices, the three ICH outputs can contain 0–3
valid addresses. In addition, for every ICH address, there is
one and only one valid output in the N subtasks. By setting
the invalid outputs to 0, the ICH addresses of the subtasks are
merged together using bitwise OR operations.

Figure 7 shows the dataflow of this method. For evalu-
ation purpose, we implemented 5 designs: Parallel-Index-2,
Parallel-Index-4, Parallel-Index-8, Parallel-Index-16, Parallel-
Index-32, which correspond to N = 2, 4, 8, 16, and 32,
respectively. Each index update subtask is mapped to a dif-
ferent processor. For N ≤ 8, the ICH addresses are merged
in one of the index update processors, which saves an extra
merging processor. Parallel-Index-2 and Parallel-Index-4 are
mapped to 10 and 12 processors, respectively. Fig. 8 shows
the processor mapping of Parallel-Index-8. Since the index
sort task of Parallel-Index-8 needs 12 output connections (4
for entry update and 8 for index update) but every processor
has 8 output ports, it is mapped into 2 processors, where
one processor distributes data to the index update processors,
resulting in a total of 17 processors. For Parallel-Index-16, 4

Input Output

Entry 

Update 0

Entry 

Update 1

Entry 

Update 2

Entry 

Update 3

Index 

Update 

0

Index 

Update 

N-1

..
.

N tasks

Index 

Sort

Output 

Merge

Address 

Merge

Fig. 7. Dataflow diagram of the Parallel Index Update method. For clarity,
the connection from index sort to entry update is omitted.

Entry 

Update 

3

Entry 

Update 

2

Merge2 Merge4

Sort 

Index

Index 

Update 

0

Index 

Update 

1

Index 

Update 

3

Input

Output

Index 

Update 

5

Index 

Update 

4

Index 

Distri-

bution

Index 

Update 

2

Index 

Update 

7
Merge2

Entry 

Update 

0

Entry 

Update 

1

Index 

Update 

6

Fig. 8. Processor mapping of the Parallel-Index-8 design.

processors are used for the index sort task, where 1 processor
distributes data to entry update processors, 1 processor sorts
the indices, and 2 processors distribute data to the index update
processors. The results of every 8 index update processors
are merged first, which are then merged using an additional
processor. As a result, in total 28 processors are required.
Parallel-Index-32 is mapped to 52 processors, out of which
4 processors are used to distribute data to the 32 index update
processors and 7 processors merge the results.

D. Design Optimization II — I/O Stall Reduction

During the time that the entry processors are waiting for
the ICH addresses, their other input FIFOs keep accumulating
data from the index sort processors. On the other hand,
increasing the number of parallel index update processors
reduces the average execution delay, which means the index
sort processors write to the entry update processors faster. In
Parallel-Index-16 and Parallel-Index-32, stalls occur in the
index sort processors due to full input FIFOs of the entry
update processors, which degrades the overall throughput.
Two designs Parallel-Buffer-16 and Parallel-Buffer-32 are
implemented by using a buffer processor between index sort
processors and entry update processors in Parallel-Index-16
and Parallel-Index-32, resulting in stall reductions of 6% and
51%, and throughput increases of 2.2% and 8.1%, respectively.

IV. RESULTS AND ANALYSIS

The 9 proposed ICH engine designs are evaluated in a
cycle-accurate C++ simulator of the KiloCore chip [8]. The
simulations are performed at 1.75 GHz with a supply voltage
of 1.1 V. Results are obtained from simulating two 1080p
frames—a noise image and an image of mandrills. Two ref-
erence designs i7-Shift-Entry and i7-Split-Index implemented



0

10

20

30

40

50

60

70

10
80

p 
Fr

am
e 

Ra
te

 (f
ps

)

i7-Shift-E
ntry

i7-Split-In
dex

Shift-E
ntry

Split-In
dex

Parallel-Index-2

Parallel-Index-4

Parallel-Index-8

Parallel-Index-16

Parallel-Buffer-16

Parallel-Index-32

Parallel-Buffer-32
0

20

40

60

80

100

120

140

160
Th

ro
ug

hp
ut

 (M
pi

xe
ls/

se
c)

4:4:4
4:2:2
4:2:0

Fig. 9. Throughput and frame rates of the many-core and i7 designs.

i7-Shift-E
ntry

i7-Split-In
dex

Shift-E
ntry

Split-In
dex

Parallel-Index-2

Parallel-Index-4

Parallel-Index-8

Parallel-Index-16

Parallel-Buffer-16

Parallel-Index-32

Parallel-Buffer-32
0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 P

er
 A

re
a 

(M
pp

s/
m

m
2 )

4:4:4
4:2:2
4:2:0

Fig. 10. Throughput per chip area of the many-core and i7 designs.

with similar methods are evaluated on an i7-7700HQ processor
using the same test images.

Figure 9 shows the average throughput and the frame rates.
The throughput of 4:2:0 and 4:2:2 modes is around twice
of 4:4:4 mode in the same design, since a container pixel
is processed in the same way as a 4:4:4 pixel. Increasing
the number of parallel index update processors results in a
near linear increase in throughput. Parallel-Buffer-32 has the
highest throughput of 155.6 million pixels per second (Mpps)
in 4:2:0 mode, 153.3 Mpps in 4:2:2 mode and 78.9 Mpps in
4:4:4 mode, which are 75 fps, 74 fps, and 38 fps at 1080p, and
3.4×, 3.9×, and 5.3× higher than the i7 reference designs.

To fairly compare performance, the throughput is nor-
malized by the total chip area used, as shown in Fig. 10.
For the i7 reference designs, only the area of 4 cores is
counted, which we estimate as 32 mm2 based on a publicly-
available die photo. Our highest normalized throughputs of
64.9 Mpps/mm2, 64.6 Mpps/mm2, and 31.0 Mpps/mm2 in
4:2:0, 4:2:2, and 4:4:4 modes are achieved in Parallel-Index-
16, and are 45×, 53×, and 66× higher throughput per chip
area than the i7 reference designs.

Figure 11 shows the energy consumption to process one
1080p frame. For the i7 designs, we assume the power
consumption is half of TDP [9]. After scaling to 32 nm

Shift-E
ntry

Split-In
dex

Parallel-Index-2

Parallel-Index-4

Parallel-Index-8

Parallel-Index-16

Parallel-Buffer-16

Parallel-Index-32

Parallel-Buffer-32
0

10

20

30

40

En
er

gy
 P

er
 F

ra
m

e 
(m

J)

4:4:4
4:2:2
4:2:0

Fig. 11. Energy per 1080p frame of the 9 many-core designs. The i7 reference
designs are not shown because they range from 1,956–6,934 mJ and are
therefore far off scale.

using data from Holt [10], i7-Shift-Entry consumes 2,551 mJ,
3,075 mJ, and 6,029 mJ per frame, and i7-Split-Index con-
sumes 1,956 mJ, 2,306 mJ, and 6,934 mJ per frame in 4:2:0,
4:2:2, and 4:4:4 modes. Since 4:4:4 frames contain twice the
number of groups compared to 4:2:0 and 4:2:2 frames, 4:4:4
mode consumes ∼2× energy per frame compared to 4:2:0
and 4:2:2 modes. Parallel-Index-8 is the most energy efficient,
featuring 11 mJ, 12 mJ and 23 mJ in 4:2:0, 4:2:2, and 4:4:4
modes, which are 177×, 193×, and 261× lower energy per
frame compared to the most energy efficient i7 design.

V. CONCLUSION

We have presented two algorithms and two optimization
methods for the DSC ICH module on many-core platforms.
Nine designs were implemented and evaluated on a simple
RISC-style processor array. Results show large increases in
throughput and massive increases in energy efficiency com-
pared to a 4-core Intel i7. These ICH designs can be integrated
into complete DSC decoder designs on many-core platforms.

REFERENCES

[1] Fortune, “Video conferencing market size, share & ind. analysis, by
type, by appl., by enterp. size and reg. forecast, 2019-2026,” Dec 2019.

[2] VESA, “VESA Display Stream Compression (DSC) standard v1.2a,”
Jan 2017. [Online]. Available: http://vesa.org

[3] F. G. Walls et al., “VESA Display Stream Compression for television
and cinema applications,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 6, no. 4, pp. 460–470, Dec 2016.

[4] S. Wu and B. M. Baas, “A low-cost slice interleaving DSC decoder
architecture for real-time 8K video decoding,” in IEEE International
Midwest Symposium on Circuits and Systems, Aug. 2018.

[5] S. Wu et al., “Display stream compression encoder architectures for
real-time 4K and 8K video encoding,” in IEEE Asilomar Conference on
Signals, Sysems and Computers, Oct. 2018.

[6] B. Bohnenstiehl et al., “KiloCore: A 32 nm 1000-processor array,” in
IEEE HotChips Symposium on High-Performance Chips, Aug. 2016.

[7] B. Bohnenstiehl, A. Stillmaker et al., “Kilocore: A 32-nm 1000-
processor computational array,” IEEE Journal of Solid-State Circuits
(JSSC), vol. 52, no. 4, pp. 891–902, Apr. 2017.

[8] B. Bohnenstiehl et al., “KiloCore: A fine-grained 1,000-processor array
for task parallel applications,” IEEE Micro, pp. 63–69, Mar. 2017.

[9] M. Butler, “Bulldozer a new approach to multithreaded compute perfor-
mance,” in IEEE Hot Chips Symposium, 2010, pp. 1–17.

[10] W. M. Holt, “Moore’s law: A path going forward,” in 2016 IEEE
International Solid-State Circuits Conference (ISSCC), 2016, pp. 8–13.


