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ABSTRACT
Canonical Huffman codecs have been used in a wide variety of
platforms ranging from mobile devices to data centers which all
demand high energy efficiency and high throughput. This work
presents bit-parallel canonical Huffman decoder implementations
on a fine-grain many-core array built using simple RISC-style pro-
grammable processors. We develop multiple energy-efficient and
area-efficient decoder implementations and the results are com-
pared with an Intel i7-4850HQ and a massively parallel GT 750M
GPU executing the corpus benchmarks: Calgary, Canterbury, Arti-
ficial, and Large. The many-core implementations achieve a scaled
throughput per chip area that is 324× and 2.7× greater on average
than the i7 and GT 750M respectively. In addition, the many-core
implementations yield a scaled energy efficiency (bytes decoded
per energy) that is 24.1× and 4.6× greater than the i7 and GT 750M
respectively.

CCS CONCEPTS
• Mathematics of computing → Coding theory; • Computer
systems organization→ Multiple instruction, multiple data.
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1 INTRODUCTION
Data compression plays a critical role in reducing the cost of stor-
age and communication as systems using data compression require
fewer computing resources to store, transmit, and process data.
Huffman coding [11] is a popular lossless data compression tech-
nique and is used in applications such as JPEG, DEFLATE, and
others. Canonical Huffman coding is a type of Huffman coding and
is the primary topic of this paper. Canonical Huffman coding has
the advantage of less memory usage and a reduction in overall com-
putation by eliminating the requirement of storing the complete
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Huffman tree, and thereby removing the need to traverse the whole
tree from the root to leaf nodes during the decoding process [13].

Over the years there has been extensive work on Huffman codec
implementations over different computing platforms. Notably, some
of the earlier work was focused on optimizing the VLSI architec-
tures for Huffman codecs [14, 17]. Aspar et al. proposed a real-time
decoder implementation on FPGAs using an optimized lookup table
(LUT) [4], which was well suited to achieve high frame rates in
JPEG and MPEG implementations. Angulo et al. [3] implemented
Huffman compression and decompression on GPUs by altering the
original Huffman encoding scheme. Patel et al. [16] developed a
block-based format for Huffman coding using Burrows-Wheeler
and move-to-front transformation; however, this approach didn’t
help GPUs well in terms of performance. Ozsoy et al. [15] presented
an implementation of the Lempel-Ziv-Storer-Szymanski (LZSS) loss
less data compression algorithm by using NVIDIA GPUs and CUDA.
Funasaka et al. [9] demonstrated how decompression could be per-
formed very efficiently on GPUs and presented an adaptive loss-less
compression method. However, this approach does not closely fol-
low Huffman’s method [18].

Parallelization in Huffman decoding is challenging due to the
fact the location of a decoded symbol depends on the locations of
all its predecessors, thus its serial dependency [12]. Therefore, most
of the work mentioned earlier alters Huffman’s original method
by splitting up the input data into independent chunks which can
be compressed and decompressed separately. This method results
in poor compression efficiency and is unsuitable for several file
formats [18].

Weißenberger and Schmidt [18] proposed a massively parallel
Huffman decoder on GPUs based on the self-synchronizing prop-
erty of the Huffman code. The use of this property enables parallel
implementations using a large number of computing units at the
cost of added complexity due to computation of synchronizing
points across data chunks and its effect on overall area and energy
efficiency, which is discussed later in Section 4.

The major contributions of our work are as follows:

• We propose LUT based bit-parallel and scalable architectures
for canonical Huffman decoders on many-core processor
arrays preserving Huffman’s original method.

• The proposed area and energy efficient mapping of the ar-
chitectures is evaluated on a programmable many-core pro-
cessor array, KiloCore (KC) over standard benchmarks and
metrics such as throughput per area and bytes decoded per
µJoule of energy are compared to results with optimized soft-
ware implementations on an Intel i7 and a massively parallel
GPU [18].
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• Wealso discuss the trade-offs for serial, LUT-based bit-parallel,
and self-synchronization based parallel decoding approaches.

The remainder of the paper is organized as follows. Section 2
describes the canonical Huffman decoding process. Section 3 de-
scribes the implementations of the proposed mapping of canonical
Huffman decoder kernels on many-core arrays, and Section 4 dis-
cusses the results and presents comparisons with the optimized
Intel i7 and GPU software implementations. Section 5 concludes
the paper.

2 CANONICAL HUFFMAN DECODER
ALGORITHM AND EXAMPLE

Figure 1: Block diagram of a canonical Huffman decoder.

Figure 1 shows a block diagram of the canonical Huffman decod-
ing process. The first step requires parsing of the header information
containing code lengths and symbols that are sorted lexicograph-
ically for different code lengths and subsequently, generating a
look-up table (LUT) consisting of symbol and code length pairs.
The next step does the actual decoding of the encoded bitstream by
extracting the symbols from the LUT contents using codewords as
table address indices.

Figure 2 details the canonical Huffman encoding process for a
given encoded bitstream and header. Firstly, the number of symbols
for each code length data from the header is used to generate the
starting codeword for each code length following the pseudo code as
shown in Figure 2(a). The next step is to read the starting symbol for
each code length and assign the corresponding starting codeword
to them. The codeword for other symbols with same code length get
assigned by incrementing the codeword of the predecessor symbol
by one.

For example, symbol ‘C’ gets the starting codeword which is
‘110’ and symbol ‘D’ gets assigned with ‘111’. For a maximum code
length of three as shown in the example, the depth of the LUT is
eight and therefore, the LUT shown in Figure 2(c) has eight words
and each of them stores both symbols and code lengths. The con-
tents of the LUT are populated based on the prefix of the codeword
for each symbol, which means the LUT’s address index ‘000’to
‘011’points to the data related to symbol ‘A’ as it has the one-bit
codeword ‘0’. Similarly, LUT’s address indices ‘100’ and ‘101’ refer
to the data related to symbol ‘B’ as the codeword for ‘B’ is ‘10’.

The next step is to read 3 bits (same as MAX_BITS for this
example) at a time from the encoded bitstream, index it to the LUT
address, and extract the corresponding symbol as the output. If a
symbol has a code length of less than MAX_BITS, the difference in
corresponding code length and MAX_BITS number of bits from the
current chunkwill be appended back in the beginning to the original

bitstream buffer and the decoding process follows as mentioned
above to result in ‘CDBAA’ as the decoded symbols for this example.

3 IMPLEMENTATIONS
3.1 Many-Core Processor Array Hardware
To demonstrate our many-core architectures, we utilize the Kilo-
Core 32 nm chip [5, 7] to execute three canonical Huffman decoder
designs. Each of the 1000 programmable processors in the array oc-
cupies 0.055 mm2 and contains 575,000 transistors. Each processor
has an instruction memory of 128x40-bits and a data memory of
256x16-bits [6]. The datapath inside each processor is pipelined into
seven stages and contains a MAC with a 16x16-bit multiplier and
a 40-bit accumulator. The array also contains a number of 64 KB
SRAM modules.

3.2 Many-Core Software Implementations
The mapping of the canonical Huffman decoder on the many-core
processor array primarily comprises the following tasks: parsing
header information and creating symbol-code length pairs, LUT
generation using a SRAM module with every word containing
symbol-code length data indexed by the corresponding codeword,
and bitstream decoding by accessing the LUT.

Firstly, the number of symbols per code length information in
the header are passed to a single or multiple processors in a lane
(for loop unrolled implementation) and symbols that are sorted
lexicographically in the header based on the code length are passed
to the corresponding processors in the next lane of processors as
shown in Figure 3. Secondly, symbols and code lengths are grouped
together, passed downstream, and get stored in the LUT with the
corresponding shifted codewords acting as the address indices for
the LUT. Once the starting codeword for a code length is computed,
the rest of the codewords can be computed in parallel based on the
number of symbols available for the specific code length. Finally,
the encoded bitstream is streamed through a processor, two bytes
of bitstream data gets buffered to generate the index address. The
hashed symbol stored in the word outputs the array as the decoded
symbol and corresponding code length data is extracted, which is
used to generate the next chunk of data for indexing.

3.3 Baseline Implementation
In the baseline implementation shown in Figure 3 one processor is
responsible to generate the starting codeword for each code length
following the pseudo code shown in Figure 2(a). The starting code-
word computation for each code length depends on the number of
symbols encoded with the previous code length. Next, the processor
downstreams the starting codeword data to the processor in south.

The first processor in that lane keeps the symbols with code
length one and two, and passes the rest of the symbols to the corre-
sponding processors in east. Each processor dedicated for a code
length then maps the symbols with the corresponding codewords
by assigning the first symbol with the starting codeword and sub-
sequent symbols with a codeword by incrementing the codeword
of the predecessor symbol.

The next task for a set of processors is to combine code length
and symbol set as a word to be written into the LUT. Moreover,
address generator processors generate the corresponding address
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Figure 2: Example of a canonical Huffman decoding process (a) starting codeword for each code length computation (b) map-
ping of symbols to codewords (c) LUT containing symbols and code lengths (d) parsing encoded bitstream chunks and decoding
of symbols.

Figure 3: Mapping of header to lookup table conversion logic for: (a) baseline implementation and (b) optimized kernel imple-
mentation. This architecture involves starting codeword generation for each code length, subsequently assigns codewords to
all symbols, and loads the symbol and corresponding code length data into a LUT.

for memory write operation using codewords as direct addresses for
the memory module. A single SRAM module is used to implement
the required LUT. The address generator processors set the start
and end address based on the maximum code length available in
the bitstream.

In the encoded bitstream task shown in Figure 4 the encoded
bitstream data is buffered. Two bytes of data are buffered and sent to
the processor to the south. The task of the corresponding processors

to the south is to generate the read address and index the two
bytes chunk to the memory module through the memory controller
processor. Each memory access results in a single decoded symbol,
but the corresponding code length of the symbol decides the next
chunk of data to be indexed, either by shifting the considered chunk
of data or obtaining the next chunk from the buffer processor. This
task is done by the next chunk of bitstream determination task
processors.
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Figure 4:Mapping of the encoded bitstreamparsing and LUT
based decoding process. This architecture uses the bitstream
chunk as hash index, access the LUT, and read the corre-
sponding symbol and code length. The corresponding sym-
bol is decoded as the output and code length is used to decide
the next chunk of the encoded bitstream.

Figure 5: (a) No loop unrolling (b) loop unrolling 14 times to
speed up the starting codeword task execution.

The proposed decoder architecture does not follow reading one
bit at a time from the encoded bitstream and Huffman tree traversal
based decoding method, which is relatively slow. Instead, a block
of the encoded bits whose size is the same as the maximum code
length for the given encoded bitstream is accessed and the look
up table decodes a symbol in every iteration as explained earlier.
Therefore, the decoder architecture is named the bit-parallel and
LUT-based decoding method.

3.4 Optimized Kernel Implementation
One of the ideas to speed up the starting codeword computation
task is to exploit loop unrolling and assigning the task across set
of processors instead of one processor. The same has been imple-
mented in two designs by adopting loop unrolling as shown in
Figure 4 seven and fourteen times respectively for area and speed
up trade-offs. The mapping of the symbol-code length data join-
ing, LUT generation, and bitstream decoding tasks follow the same
architecture as of the baseline implementation.

In terms of scalability, lane of processors dedicated for starting
codeword and symbols-codewords mapping task can be replicated
to cater to varying header and code length data across compression
standards. Overall, the many-core processor array implementations
presented in this paper support symbols with a maximum code
length of 15, which is suitable for various compression standards.

3.5 Application Task Example Mapping
Figure 6 shows themapping of the optimized kernel implementation
onto the physical array using 52 processors and a memory module.
The resulting task graph for the kernel is given as an input to a
place-and-route tool designed for the many-core processor array,
which shows mapping of the tasks discussed earlier to a set of I/O
handlers, processors, and memory.

Figure 6: Applicationmapping of the optimized decoder ker-
nel showing processors required for all tasks, a single 64 KB
memory (on the bottom of the array), and I/O handlers.

4 RESULTS AND DISCUSSIONS
4.1 Platforms and Benchmarks
We consider the following computing platforms to evaluate the
canonical Huffman decoder implementations in terms of area and
energy efficiency.

• Intel i7-4850HQ containing four cores and eight threads with
a base clock frequency of 2.3 GHz [1].

• GeForce GT 750M with 384 shader cores running at a base
clock of 941 MHz [2].

• KiloCore featuring a 1000-processor array with each proces-
sor running at 1.2 GHz at 0.9 V [7].
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All implementations have been tested and functionally verified
before conducting experiments for various performance metrics.
The following benchmarks for lossless text compression or decom-
pression are used to validate the functionality of all designs and
compare the area and energy efficiency metrics across all three
computing platforms: Artificial corpus, Calgary corpus, Canterbury
corpus, and Large corpus. Moreover, we added a large text file of
size 1 GB to the Large corpus data sets to evaluate the implemen-
tations across a wide variety of file sizes and types of Huffman
tree.

4.2 Experimental Setup
We simulate KiloCore implementations using a cycle-accurate sim-
ulator which is modeled based on the fabricated chip data [7]. The
default simulated processor supply voltage is set to 0.9 V. The fol-
lowing key parameters have been analyzed for various implementa-
tions; throughput, area, power, and workload per unit energy. The
optimized throughput and energy data are presented after opting
supply voltage scaling while preserving the functionality across
benchmarks. The Intel i7 and GPU simulation results are reported
after speeding up the execution time by triggering the –O3 flag for
both gcc and nvcc compilers respectively.

We have referred to the source code for canonical Huffman
decoder implementation [8] for Intel i7-4850HQ implementation.
The source code has been modified to do bit-parallel decoding
instead of reading one bit at a time from the compressed bitstream
to make the execution faster. For power calculations for the Intel
i7-4850HQ chip, TDP/2 = 23.5 W is used since the actual power
dissipation is not known. The die size of the Intel i7-4850HQ is
reported as 260 mm2 [1].

To implement the parallel decoder [18], we have considered a
CUDA-enabled GT 750M GPU with compute capability 3.0, which
is compatible to run the given implementation. The GT 750M GPU
has a TDP ratings of 50 W and a TDP/2 = 25 W is used for power
calculations since the actual power dissipation is unknown. The
die size of the GT 750M GPU is reported as 118 mm2 [2].

4.3 Throughput, Area, and Energy Efficiency
Analysis

The optimized implementation on the many-core processor array
exploiting loop unrolling by 14 for the starting codeword computa-
tion task results in the overall highest throughput per area and the
baseline implementation gives the highest number of compressed
bytes decoded per µJ of energy. KiloCore implementations yield
a reduction in power dissipation of 72× and 37× when compared
to Intel i7 and GPU implementations respectively. The GPU imple-
mentation is based on a massively parallel decoding algorithm and
exploits all of its massive die area to yield an average throughput
improvement of 20× and 54× when compared to KiloCore and Intel
i7 implementations respectively. Unfortunately, the improvement
in throughput results for the GPU implementation utilizing self-
synchronizing property of the Huffman code comes at the cost of
both power and chip area where the proposed many-core proces-
sor array implementations have an advantage—the area-efficient
KiloCore designs give an area improvement of 181× and 51× over
Intel i7 and GPU respectively.

Table 1 reports the implementation results in terms of throughput
per area and bytes decoded/µJ for all the benchmarks and processors.
It also shows the improvement in terms of both area and energy
efficiency with a metric throughput per area × bytes compressed
per energy where KiloCore achieves the best among all. For each
metric the geometric mean of the results for all the files inside a
benchmark are reported. The Intel i7-4850HQ (22 nm) and GeForce
GT 750M (28 nm) results are scaled to 32 nm for a fair comparison
with KiloCore. The many-core implementations achieve a scaled
throughput per chip area that is 324× and 2.7× greater on average
than the i7 and GT 750M respectively. In addition, the many-core
implementations yield a scaled energy efficiency (bytes decoded
per energy) that is 24.1× and 4.6× greater than the i7 and GT 750M
respectively. Figure 7 shows a scatter plot with raw throughput per
area vs. bytes compressed per energy where for every benchmark
KiloCore outperforms both in terms of area and energy efficiency.

4.4 Bit-serial vs. Bit-parallel vs.
Self-synchronization based Parallel
Decoding

The tree parsing based bit-serial decoding approach which is used
in Huffman decoder doesn’t apply in case of canonical Huffman
decoder as the header devoids of tree information. LUT based bit-
parallel approach provides faster decoding compared to bit-serial
based approach. We have considered a single LUT based decoding
approach which is a good fit for a single SRAM module. However,
multi-LUT based approach can be used for space constrained de-
signs at the cost of slower decoding for symbols with code lengths
higher than the code length meant for primary table.

Self-synchronization based parallel decoder [18] offers a great
improvement in throughput utilizing all the computing resources
available in a GPU. However, this approach adds more challenge
due to added complexity of finding synchronization point for each
encoded sequence, proper selection of an optimum thread block
and subsequence size per available GPU resources. Therefore, an
optimized bit-parallel approach using a small number of energy-
efficient and high performance processors is more suitable in terms
of both area and energy efficiency while preserving Huffman’s orig-
inal method. Moreover, the GPU implementation [18] also decodes
only one symbol per memory access like the bit-parallel approach
presented in this work with each symbol of size one byte.

5 CONCLUSION
In conclusion, we discuss various canonical Huffman decoding
methods and present bit-parallel architectures based on the original
Huffman’s method. Many-core processors array shows a promising
results in terms of both area and energy efficiency across standard
lossless compression benchmarks when compared to general pur-
pose CPU and GPU. The proposed mappings on the many-core pro-
cessor array can be easily scaled to support variety of compression
standards with varying code lengths support. The GPU implemen-
tation of a massively parallel decoder based on self-synchronizing
sequences of Huffman code results in a better throughput at the
cost of power and area. However, self-synchronizing property for
all possible Huffman codes may not be viable. In general, LUT based
bit-parallel implementation on many-core processor array offers
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Table 1: Throughput per area (Area efficiency) and Bytes decoded per energy (Energy efficiency) data for Intel i7, GPU, and
Many-Core (KiloCore) implementations. The i7 and GPU values are scaled to 32 nm (technology for KiloCore) to account for
differences in technology generations using data by Holt [10].

Benchmark Platform Throughput/Area Bytes compressed/Energy Throughput/Area * Bytes compressed/Energy
(Normalized to i7-4850HQ)

Mbps/mm2 Bytes/µJ Mbps/mm2 * Bytes/µJ
Artificial Corpus i7-4850HQ 0.4 0.9 1.0

GT 750M 79.1 6.6 1450
Many-Core 172.0 23.7 11,320

Calgary Corpus i7-4850HQ 1.0 1.4 1.0
GT 750M 190.4 3.3 449
Many-Core 448.2 14.5 4642

Cantrbry Corpus i7-4850HQ 0.8 1.1 1.0
GT 750M 64.9 5.1 376
Many-Core 229.4 22.0 5735

Large i7-4850HQ 0.3 0.3 1.0
GT 750M 14.2 2.1 331
Many-Core 39.5 13.0 5706

Figure 7: Comparison of scaled throughput per area
(Mbps/mm2) vs. scaled bytes compressed per energy
(Bytes/µJ) for the many-core array (KiloCore), GeForce GT
750M GPU, and Intel i7 implementations.

better area and energy efficiency results while supporting all sorts
of Huffman codes and yields no degradation in compression ratio.
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