
1730 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 5, MAY 2021

Display Stream Compression Decoders for
Fine-Grained Many-Core Processor Arrays

Shifu Wu , Student Member, IEEE, and Bevan M. Baas, Senior Member, IEEE

Abstract—This brief presents two software Display Stream
Compression (DSC) video decoder designs for many-core pro-
cessor arrays. The first design exploits fine-grained task-level
parallelism and is able to decode pictures configured into one
column of slices; it is implemented with 88 processors and 2
shared memory modules. The second design facilitates higher
performance by leveraging scalable slice-level parallelism and is
tailored for pictures configured into multiple columns of slices;
one implementation of this design is mapped to 359 processors
and 6 shared memory modules. At 1.75 GHz and 1.1 V, the
proposed decoders decode 1080p video sequences in 4:2:0, 4:2:2,
and 4:4:4 pixel formats—achieving up to 94.7 frames per second
(fps), 95.6 fps, and 47.9 fps, while dissipating 23.9 nJ, 26.7 nJ,
and 47.2 nJ per pixel, respectively. Our designs achieve up to
159× higher throughput and 841× lower energy per pixel than
a DSC decoder implemented on one core of an Intel i7-7700HQ
processor.

Index Terms—Display stream compression (DSC), many-core,
real-time, software, video decoder, visually lossless.

I. INTRODUCTION

W ITH the increasing use of high screen resolutions, high
frame rates, and greater dynamic range in video appli-

cations, transmitting uncompressed pixel data over display
links requires significant data traffic. For example, 120 Gbps is
needed for 8K ultra-high-definition (UHD) videos with 10 bits
per component (bpc) at 120 frames per second (fps). However,
the bandwidth of the physical layer is not keeping pace. To
address the disparity, a widely accepted solution is to reduce
the required data rate by transmitting compressed video data.

The Display Stream Compression (DSC) standard [1], [2],
which was developed by Video Electronics Standards
Association (VESA), offers low-cost, low-latency, and visu-
ally lossless [3] video compression over display links. DSC
performs intra-picture coding at a programmable bit rate of
8 bits per pixel (bpp) or higher, resulting in up to 3× com-
pression for pictures of 8 bpc. It requires only one picture line
storage and a small rate buffer; no off-chip memory is needed.

Although H.264/AVC [4] and High Efficiency Video Coding
(HEVC) [5] can achieve higher coding efficiency [6] than
DSC, their computation complexity [7], [8], implementation
costs, and latency are higher. In addition, DSC supports more
color bit depths, including 8, 10, 12, 14, and 16 bpc. Moreover,

Manuscript received February 6, 2021; accepted March 8, 2021. Date of
publication March 23, 2021; date of current version April 30, 2021. This
brief was recommended by Associate Editor J. R. Cavallaro. (Corresponding
author: Shifu Wu.)

The authors are with the Department of Electrical and Computer
Engineering, University of California, Davis, CA 95616 USA (e-mail:
ucdwu@ucdavis.edu; bbaas@ucdavis.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSII.2021.3068272.

Digital Object Identifier 10.1109/TCSII.2021.3068272

Fig. 1. The DSC decoding process, modified from [1, Figs. 3–5].

H.264/AVC Intra-only cannot achieve visually lossless quality
for all types of content at 8 bpp with low hardware complexity
for real-time high-throughput implementations [2]. The HEVC
screen content coding extension (HEVC-SCC) [9] enhances
screen coding capabilities of HEVC but it has high complexity.
Comparison of DSC and HEVC-SCC is published in [10].

Application-specific integrated circuit (ASIC) video
decoders achieve the best performance and energy efficiency,
but are neither flexible nor scalable, whereas software
decoders allow for full flexibility and scalability. Software
video decoders implemented on single-core or multicore
processors mostly utilize coarse-grained parallelism, such
as at the thread level, whereas many-core computation
platforms enable fine-grained task-level parallelism that leads
to significant improvements over coarse-grained parallelism
on performance and energy efficiency. There has been
significant research on software design of H.264/AVC and
HEVC decoders [8], [11], [12]. In terms of DSC, multiple
hardware codecs have been published [13]–[15]; however, no
software DSC decoder designs have yet been reported.

We present two software DSC decoders for programmable
many-core processor arrays. By exploiting fine-grained task-
level parallelism within the DSC decoding algorithm, the
decoder is partitioned into small tasks, each of which is
mapped to one small processor. Moreover, slice-level paral-
lelism is applied to achieve higher decoding performance.

The remainder of this brief is organized as follows.
Section II overviews the DSC decoding process and the tar-
geted many-core processor arrays. Section III presents a slice
decoder design. Section IV discusses a parallel slice decoder.
Section V presents and analyzes the results. Finally, Section VI
concludes the brief.

II. BACKGROUND

A. Display Stream Compression (DSC) Decoding Process

DSC supports pictures in RGB, YCbCr 4:4:4, YCbCr 4:2:2,
and YCbCr 4:2:0 formats. In 4:2:0 and 4:2:2 formats, every
two consecutive pixels are packed as a container pixel, result-
ing in approximately twice the throughput. A pixel contains
four components in 4:2:2 format and three components in other
formats. Three adjacent pixels are defined as a group. DSC

1549-7747 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 04,2021 at 00:28:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2583-4442

WU AND BAAS: DSC DECODERS FOR FINE-GRAINED MANY-CORE PROCESSOR ARRAYS 1731

Fig. 2. Dataflow diagram of the rate buffer, substream demultiplexer, and
entropy decoder.

defines slices as identical-sized rectangular regions which are
processed independently.

DSC decoders decompress a compliant bitstream into pix-
els which are output in raster-scan order. Fig. 1 illustrates the
decoding process. The bitstream enters the rate buffer (RB),
which packs bits into fixed-length packets, called mux words.
The substream demultiplexer requests mux words from the rate
buffer and splits them into three or four substreams, which are
parsed by the variable length coding (VLC) entropy decoder.
The rate control (RC) module manages rate buffer fullness and
calculates a quantization parameter (Qp) for every group. The
prediction, inverse quantization, and reconstruction module
inverse quantizes the quantized residuals, which are decoded
by the entropy decoder, and predicts the pixel values with
appropriate predictors. The inverse quantized residuals are
added to the predicted values to form reconstructed pixel val-
ues. Indexed color history (ICH) keeps a record of 32 recently
reconstructed pixel values, each of which is addressed by a
5-bit index. If ICH is used to code a group, each pixel is
decoded as the ICH pixel pointed to by the selected index.
Otherwise, the reconstructed pixels of the current group are
used. The decoded pixels are written to the line buffer (LB)
and read out in the next line. The YCoCg-R to RGB conversion
occurs if RGB format output is desired.

B. The Targeted Many-Core Processor Arrays

This brief targets fine-grained multiple instruction multiple
data (MIMD) many-core arrays of independent, programmable
processors. The KiloCore chip [16] is an example of such a
processor array. It consists of 1,000 RISC-style processors and
12 64-KB shared memory modules connected via a 2-D mesh
network that supports communication between adjacent and
distant processors. Each processor contains 128×40-bit words
of instruction memory, 256×16-bit words of data memory, two
32 × 16-bit input FIFOs, and occupies 0.055 mm2 in 32 nm
CMOS technology.

III. SLICE DECODER

This section presents a many-core software DSC decoder
design, called slice decoder, which is capable of decoding
pictures configured into one column of slices. Task-level par-
allelism is exploited to partition the decoder into small tasks.
Furthermore, different pixel components are processed in par-
allel. Multiple data dependencies, where the results of a group
are used in the following group, form feedback loops and
limit performance. The latency of the loops is minimized in
two steps. First, since inter-processor communication incurs
latency overhead, the number of processors involved in the
feedback loops is minimized by fitting as much work as
possible in each processor, which in turn reduces the chip area

used. Second, instructions are scheduled such that the execu-
tion time of the instructions in the loop is minimized. Area in
non-critical paths is further reduced by fitting multiple tasks
into one processor. For example, the YCoCg-R to RGB pixel
format conversion is merged with one processor of the ICH
module. Fig. 3 illustrates an example of mapping the slice
decoder to 88 processors and 2 shared memory modules using
an unpublished internally-developed automatic mapping tool.
The tool maps the partitioned tasks to processors including
considerations such as inter-processor communication patterns
to reduce routing congestion and energy usage.

A. Rate Buffer and Substream Demultiplexer

Fig. 2 depicts the dataflow of the rate buffer, substream
demultiplexer, and entropy decoder. Four parallel funnel
shifters buffer the substreams. In every group, the demulti-
plexer receives requests from each funnel shifter indicating a
mux word is needed. Then it requests mux words from the
rate buffer and sends them to the funnel shifters. The time
that funnel shifters spend waiting for mux words is minimized
by reading mux words from the rate buffer beforehand. Thus,
mux words can be sent back to funnel shifters right after the
demultiplexer receives requests. The funnel shifter is updated
with the newly received mux word. Then, it sends bits to the
entropy decoder, which returns the actual number of bits used.
The funnel shifter is updated again by removing the decoded
bits. The latency of this path is optimized by sending bits to
the entropy decoder right after enough bits have been updated.
While waiting for data from the entropy decoder, the funnel
shifter keeps updating the remaining bits in its buffer. As such,
some latency in this path is hidden.

B. Entropy Decoder

As Fig. 2 shows, substreams are decoded in parallel with
different entropy decoders. An entropy decoder consists of
three serial tasks: residual size prediction; prefix decode; ICH
index decode in ICH-mode, or quantized residual decode
and size calculation in predictive mode. In addition, flatness
and coding mode are decoded in the first component. The
residual size prediction is based on decoded residual sizes
of the previous group, which means the decoding of cur-
rent group cannot start until the previous group is finished.
Therefore, minimizing the total latency improves performance.
We achieve this by mapping the entropy decoder into one
processor per component, with the exception of the first com-
ponent, where a processor is dedicated for flatness decoding.

C. Rate Control

Rate control dynamically selects a Qp for entropy decod-
ing and prediction of the next group. It consists of five
tasks: buffer level tracking, linear transformation, long-term
parameter selection, short-term Qp adjustment, and flatness
Qp overrides. We further partition this module into nine small
tasks, each of which is mapped to one processor. Note that
the entropy decoder uses Qp from the rate control to calcu-
late input data for rate control of the next group. This loop is
optimized by mapping short-term Qp adjustment and flatness
Qp overrides to two and one processors, respectively.

D. Prediction, Inverse Quantization, and Reconstruction

Every group is predicted with one of the three predic-
tors: modified median-adaptive prediction (MMAP), block

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 04,2021 at 00:28:02 UTC from IEEE Xplore. Restrictions apply.

1732 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 5, MAY 2021

Fig. 3. Processor array mapping of the slice decoder by a mapping tool. For clarity, unused inter-processor communication links are omitted. Processors
corresponding to pixel components contain “c0”, “c1”, “c2”, or “c3” in their names; “c01” and “c23” denote processors performing merging operations. Tasks
mapped to multiple processors are named with a suffix of “s1”, “s2”, or “s3” to denote the stage of computation.

prediction (BP), and midpoint prediction (MPP), all of which
require reconstructed pixels of the previous group. Three pro-
cessors are used to process one component—the first processor
performs inverse quantization and the operations of MMAP
which do not use reconstructed values of the previous group,
and the other two processors conduct the remaining prediction
operations and reconstruction. The decision between MMAP
and BP is made by the BP search process, which calculates
nine 9-pixel sum of absolute differences (SAD) using previous
line reconstructed pixels. To reduce computation complexity,
3-pixel SADs are calculated for every group. Then, the 3-pixel
SADs of the two previous groups are reused and added to that
of the current group to form 9-pixel SADs. The optimal par-
tition of the 3-pixel SAD calculation task, which achieves the
smallest area without becoming the bottleneck in the decoder,
is to use three processors to calculate the 3-pixel SAD of one
component, resulting in a total of 12 processors.

E. Indexed Color History (ICH)

The main challenge of the ICH module is updating the ICH
entries in every group. A straightforward approach is to man-
age the ICH entries as shift registers and serially shift the
entries. However, even with the shifting operations performed
in parallel across components, the design is still too slow.
To achieve higher throughput, the ICH indices and entries
are updated separately, as shown in Fig. 4. First, eight pro-
cessors are used to update the indices in parallel, each of
which maintains the indices of four ICH entries. Then, the
ICH entries are updated by writing zero to three new pixels
into the appropriate locations, and thereby the shifting oper-
ation is avoided. In the proposed slice decoder, using eight
processors to update indices gives sufficient throughput. More
details on parallelizing the ICH have been published [17].

Fig. 4. Dataflow diagram of prediction, indexed color history, and line buffer.

F. Line Buffer

In this design, a shared memory is used for line buffer stor-
age. As Fig. 4 shows, buffer write and read are partitioned
into separate tasks and mapped to different processors, so that
write and read can occur in parallel. The read data is dis-
tributed to four processors, each of which stores and sends
the data of one component to BP search, prediction, and ICH.
Constructing the previous line ICH pixels is mapped to three
processors. In total, nine processors are used for the line buffer.

IV. PARALLEL SLICE DECODER

Since the DSC standard is designed to work in raster-
scan order and slices are independently decoded, pictures
configured into multiple columns of slices allow for paral-
lel decoding of slices. We propose a scalable parallel slice
decoder design, which utilizes slice-level parallelism and
decodes every column of slices with a separate modified slice
decoder—the same as the slice decoder except without a rate
buffer. Fig. 5 shows the dataflow of the parallel slice decoder.
Throughput scales linearly with the number of modified slice
decoders, whereas energy efficiency remains almost the same.

In the parallel slice decoder, it is essential to make sure all
modified slice decoders are synchronized. In every group, the

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 04,2021 at 00:28:02 UTC from IEEE Xplore. Restrictions apply.

WU AND BAAS: DSC DECODERS FOR FINE-GRAINED MANY-CORE PROCESSOR ARRAYS 1733

TABLE I
COMPARISON OF SOFTWARE VIDEO DECODER IMPLEMENTATIONS*

Fig. 5. Dataflow diagram of the parallel slice decoder.

decoder reads the budgeted amount of data from the input bit-
stream and writes them into rate buffer memory, where every
column of slices is allocated a dedicated portion of memory
locations. On the buffer read side, sending a constant amount
of bits to each slice decoder can cause synchronization prob-
lems, since the number of bits to code each group can vary
significantly. Therefore, only the requested number of mux
words are read out and sent to the modified slice decoders.

Another challenge is to rasterize the decoded pixels. Since
the modified slice decoders are synchronized, and the output
pixels of each slice are in raster-scan order within the slice,
our solution is to implement a pixel buffer: write the output
pixels of all modified slice decoders into a shared memory and
read them out in raster-scan order whenever one picture line of
pixels has been written. The purpose of the pixel buffer is to
store the pixels of the modified slice decoders when they are
not sent to decoder output, so that processors do not stall on
output writes. To facilitate concurrent buffer writes and reads,
separate processors are used for write and read control.

A parallel slice decoder that contains four modified slice
decoders is implemented on the KiloCore processor array uti-
lizing 359 processors (each modified slice decoder utilizes
87 processors; the control of rate buffer and pixel buffer are
mapped to 4 processors; 7 additional processors are used for
routing and merging data) and 6 shared memory modules.
Fig. 6 shows the mapping of this design by the mapping tool.
Note that the KiloCore has 1,000 processors and the decoder
is mapped to the bottom half of the array.

V. RESULTS AND ANALYSIS

The slice decoder and parallel slice decoder comply with
DSC v1.2a, and support 8 and 10 bpc in constant bit rate
(CBR) mode. They are evaluated on a cycle-accurate C++ sim-
ulator of the KiloCore chip [21]. Both designs are configured

Fig. 6. Processor array mapping of the parallel slice decoder. Four line
buffers, a rate buffer, and a pixel buffer are mapped to six memory modules
at the bottom of the array. Input and output ports are at the top-left and top-
right corners of the array, respectively. Black, blue, and green lines represent
inter-processor communication links, according to the link length.

to run at 8 bpc and 8 bpp in CBR mode, and are simulated at
1.75 GHz with a supply voltage of 1.1 V. Results from decod-
ing three 1080p (1920×1080) pictures of different scenes are
reported in Fig. 7 and Table I.

Fig. 7 shows the area and energy dissipation breakdown of
the slice decoder. The area of processors and shared memory
modules used in the decoder is considered in this analysis. The
prediction module is the largest and accounts for one third of
the total area in the decoder, due to the high computation
requirement in BP search and component-level parallelism.
The total area of prediction and ICH is over 50% of the entire
decoder. 4:2:2 format is used for energy dissipation analysis,
since the fourth component is used only in this format. Energy
dissipation is correlated with the chip area used; therefore,
energy breakdown is similar to the area breakdown.

Table I shows the throughput and energy results of the
proposed DSC decoders. Compared to 4:4:4 format, the
decoders achieve approximately 2× throughput and 50%
energy per pixel in 4:2:0 and 4:2:2 formats, since two pixels
are packed together and processed as one. Note that 4:2:2 for-
mat dissipates 12% more energy per pixel than 4:2:0 format,
since 4:2:2 format has one more component. Dividing through-
put by the number of pixels per frame results in frame rate.
In 4:2:0, 4:2:2, and 4:4:4 formats of 1080p, the slice decoder
achieves 23.7 frames per second (fps), 24.0 fps, and 12.0 fps,

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 04,2021 at 00:28:02 UTC from IEEE Xplore. Restrictions apply.

1734 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 5, MAY 2021

Fig. 7. Slice decoder breakdown. (a) Area. (b) Energy dissipation.

whereas the parallel slice decoder delivers 94.7 fps, 95.6 fps,
and 47.9 fps, respectively. Both decoders achieve almost the
same energy per pixel and throughput per chip area.

Compared to the DSC C model provided by VESA that runs
on one core of an Intel i7-7700HQ processor, our designs
achieve up to 159× higher throughput, 841× lower energy
per pixel, and 192× higher throughput per chip area—this
shows the performance and energy efficiency benefits of
our many-core design approach over general purpose proces-
sors. The H.264/AVC intra-frame decoder by Zhu et al. [11]
uses a hardware accelerator and single instruction multiple
data (SIMD) instructions, resulting in increased throughput,
reduced area and energy per pixel. Nevertheless, our paral-
lel slice decoder achieves 2.6× higher throughput. Moreover,
our designs achieve 3.4× higher throughput and 21× lower
energy per pixel than a HEVC decoder [8] on an Intel i7-
3720QM processor. Despite lower throughput, our designs
achieve up to 8.4× and 8.5× lower energy per pixel than
a HEVC decoder [12] on a 6-core Intel i7 E5-1650 processor
and a Versatile Video Coding (VVC) decoder [18] on an Intel
i9-9980HK processor, respectively.

The proposed DSC decoders support higher resolutions such
as 4K and 8K UHD without any design modifications. The
size of line buffer, pixel buffer, and rate buffer are related
to picture width; therefore, DSC requires larger buffers for
higher resolutions. In our designs, all three buffers use 64-KB
memory modules, which are sufficient to support 8K. In addi-
tion, the parallel slice decoder is fully scalable to achieve
higher throughput by increasing the number of parallel modi-
fied slice decoders. The throughput and energy efficiency for
4K and 8K are expected to be similar to that for 1080p.

VI. CONCLUSION

This brief presents two software VESA Display Stream
Compression (DSC) decoder designs for many-core processor
arrays. The slice decoder design exploits fine-grained task-
level parallelism of the DSC decoding algorithm. Performance
and area are optimized by minimizing the latency of feedback
loops caused by data dependencies. Area is further reduced
by fitting more work to each processor in non-critical paths,
resulting in smaller number of processors. Furthermore, the
scalable parallel slice decoder design leverages slice-level par-
allelism and results show that by using four modified slice
decoders, it achieves 47.9–95.6 fps at 1080p, which is suffi-
cient for most real-time applications. The proposed decoders
also support 4K and 8K videos and the parallel slice decoder
is fully scalable to achieve higher throughput by processing
more slices in parallel.

REFERENCES

[1] VESA Display Stream Compression (DSC) Standard v1.2a, Video
Electron. Stand. Assoc. Stand., Jan. 2017. [Online]. Available:
http://vesa.org

[2] F. G. Walls and A. S. MacInnis, “VESA display stream compression
for television and cinema applications,” IEEE Trans. Emerg. Sel. Topics
Circuits Syst., vol. 6, no. 4, pp. 460–470, Dec. 2016.

[3] R. S. Allison et al., “Large scale subjective evaluation of display
stream compression,” in SID Symp. Dig. Tech. Papers, vol. 48, 2017,
pp. 1101–1104.

[4] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[5] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[6] J. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand,
“Comparison of the coding efficiency of video coding standards—
Including high efficiency video coding (HEVC),” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1669–1684, Dec. 2012.

[7] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC
baseline profile decoder complexity analysis,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 704–716, Jul. 2003.

[8] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity and
implementation analysis,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 12, pp. 1685–1696, Dec. 2012.

[9] J. Xu, R. Joshi, and R. A. Cohen, “Overview of the emerging HEVC
screen content coding extension,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 1, pp. 50–62, Jan. 2016.

[10] W.-H. Peng et al., “Overview of screen content video coding:
Technologies, standards, and beyond,” IEEE Trans. Emerg. Sel. Topics
Circuits Syst., vol. 6, no. 4, pp. 393–408, Dec. 2016.

[11] S. Zhu, Z. Yu, S. Cui, Z. Yu, and X. Zeng, “H.264 video parallel decoder
on a 24-core processor,” in Proc. IEEE 10th Int. Conf. ASIC, Shenzhen,
China, 2013, pp. 1–4.

[12] W. Hamidouche, M. Raulet, and O. Déforges, “4K real-time and parallel
software video decoder for multilayer HEVC extensions,” IEEE Trans.
Circuits Syst. Video Technol., vol. 26, no. 1, pp. 169–180, Jan. 2016.

[13] S. Wu and B. M. Baas, “A low-cost slice interleaving DSC decoder
architecture for real-time 8K video decoding,” in Proc. IEEE 61st
Int. Midwest Symp. Circuits Syst. (MWCAS), Windsor, ON, Canada,
Aug. 2018, pp. 364–367.

[14] S. Wu, S. Gutgutia, M. Alioto, and B. Baas, “Display stream compres-
sion encoder architectures for real-time 4K and 8K video encoding,”
in Proc. 52nd Asilomar Conf. Signals Syst., Comput. (ACSSC), Pacific
Grove, CA, USA, Oct. 2018, pp. 251–255.

[15] S. W. Kim, S. Park, J. Jun, and Y. Han, “Design and implementation
of display stream compression decoder with line buffer optimization,”
IEEE Trans. Consum. Electron., vol. 65, no. 3, pp. 322–328, Aug. 2019.

[16] B. Bohnenstiehl et al., “KiloCore: A 32-nm 1000-processor computa-
tional array,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 891–902,
Apr. 2017.

[17] S. Wu and B. M. Baas, “Indexed color history many-core engines for
display stream compression decoders,” in Proc. 27th IEEE Int. Conf.
Electron. Circuits Syst. (ICECS), Glasgow, U.K., Nov. 2020, pp. 1–4.

[18] A. Wieckowski et al., “Towards a live software decoder implementa-
tion for the upcoming versatile video coding (VVC) codec,” in Proc.
IEEE Int. Conf. Image Process. (ICIP), Abu Dhabi, UAE, Oct. 2020,
pp. 3124–3128.

[19] W. M. Holt, “Moore’s law: A path going forward,” in IEEE Int. Solid-
State Circuits Conf. Dig. Tech. Papers, San Francisco, CA, USA, 2016,
pp. 8–13.

[20] M. Butler, “‘Bulldozer’ a new approach to multithreaded compute
performance,” in Proc. HotChips Symp. High-Perform. Chips, Stanford,
CA, USA, 2010, pp. 1–17.

[21] B. Bohnenstiehl et al., “KiloCore: A fine-grained 1,000-processor array
for task-parallel applications,” IEEE Micro, vol. 37, no. 2, pp. 63–69,
Mar./Apr. 2017.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 04,2021 at 00:28:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

