
ALGORITHMS AND SOFTWARE TOOLS FOR
MAPPING ARBITRARILY CONNECTED TASKS ONTO

AN ASYNCHRONOUS ARRAY OF SIMPLE
PROCESSORS

By

ERIC WESLEY WORK
B.S.E.E. (University of Washington) March, 2004

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTERS OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Chair, Dr. Bevan M. Baas

Member, Dr. Soheil Ghiasi

Member, Dr. John D. Owens

Committee in charge
2007

– i –

c© Copyright by ERIC WESLEY WORK 2007
All Rights Reserved

Abstract

Due to advances in VLSI technology large scale parallel arrays are being

developed at a rapid rate and growing larger in size with each new chip fabricated.

Programming these large scale parallel arrays using fully manual techniques is very

difficult as the array size grows larger. In this work we present a framework for

mapping arbitrarily connected task graphs onto nearest neighbor dominated 2D-mesh

parallel arrays. The contributions are an automated mapping algorithm, for placing

and routing applications onto parallel arrays, and an intuitive graphical user interface,

for creating applications based on their dataflow. In this work we demonstrate how

an automated mapping algorithm is essential for efficiently programming large scale

parallel arrays. The Asynchronous Array of Simple Processors (AsAP) architecture

is used as a test platform for the mapping algorithm, but the mapping algorithm can

easily be adapted to other parallel array architectures. The mapping algorithm is

time efficient, scalable up to thousands of processors, tolerant of fabrication errors,

and can even optimize applications using processor characteristics. Other features

include, configurable architectural parameters, customizable user cost functions, and

dynamically inserted routing processors which handle intersecting datastreams.

– iii –

Acknowledgments

This research never would have been possible without the support of many other knowl-

edgeable, talented, and loving people. Very few things in life are done in solitude.

First and foremost I’d like to thank my adviser Professor Bevan M. Baas for his invaluable

wisdom and constant encouragement. You have advised me on a variety of academic and personal

projects that have taught me practical industry skills that greatly compliment my education. I’m

also very grateful for the funding you’ve been able to offer me for the past two years.

I’d of course like to thank my committee members, Professor Soheil Ghiasi Professor and

John D. Owens. Professor Ghiasi, without you I wouldn’t have had the solid foundation I needed

for my mapping algorithm. Professor Owens, the mapping algorithm never would have been able to

handle the large and complex applications that it handles now if it wasn’t for your high expectations

and positive criticism.

I’d like to thank everyone in the VLSI Computation Laboratory for their support during

those rough times both inside and outside the lab. Toney and Wayne, thanks for the great games

of Starcraft when we should have been working. Zhiyi, Tinoosh, and Dean, thanks for teaching me

about AsAP and helping me put all those CAD tools to good use. Jeremy, thanks for the tips on

how to improve the graphical user interface and teaching me about FPGAs.

I’m eternally grateful for the endless support from my wife Lauren. There were many times

when my research led to immense frustration and thoughts of giving up. You helped me remain

focused and optimistic when I thought I had lost hope.

I’d like to thank my parents for the past 24 years. You have always been there for me and

done everything in your power to keep my spirits up and help me pursue my dreams. Mom, I can’t

thank you enough for allowing me to work on my research full-time until when I was supposed to

be working with you.

Finally I’d like to thank Jake, Karl, Nadine, and all of my other close friends for the

wonderful memories that I have. We must remember to never lose touch.

This work was supported in part by Intel Corporation, UC MICRO, the National Science

Foundation under Grant No. 0430090 and CAREER Award 0546907, SRC, Intellasys Corporation,

ST Microelectronics, SEM, MOSIS, Artisan, and a University of California, Davis, Faculty Research

Grant.

It now ends the same way it began, with a single key stroke!

– iv –

Contents

Abstract iii

Acknowledgments iv

List of Figures viii

List of Tables xii

1 Introduction 1
1.1 Project Goals . 2
1.2 Organization . 2

2 Target Platform 5
2.1 AsAP Architecture . 5

2.1.1 Input/Output Limitations . 6
2.1.2 Programming . 7

2.2 AsAP Version 2.0 . 8
2.3 Conclusion . 9

3 Mapping Algorithm 11
3.1 Overview . 11

3.1.1 Inputs and Outputs . 12
3.2 Placement Phase . 15

3.2.1 Simulated Annealing . 16
3.2.2 Algorithm Details . 17
3.2.3 Modifications . 39
3.2.4 Summary . 40

3.3 Routing Phase . 40
3.3.1 Maze Routing . 41
3.3.2 Algorithm Details . 41
3.3.3 Modifications . 59
3.3.4 Summary . 59

3.4 Top-Level . 60
3.5 Conclusion . 62

4 Implementation 63
4.1 Back-end . 63
4.2 Front-end . 64

4.2.1 Procedure . 65
4.2.2 Interface . 67

4.3 XML File Formats . 75
4.3.1 Module Files . 75

– v –

4.3.2 Project Files . 77

4.4 Conclusion . 78

5 Evaluation Methods 79

5.1 Quality Metrics . 79

5.1.1 Communication . 80

5.1.2 Area . 80

5.1.3 Utilization . 82

5.1.4 Runtime . 82

5.1.5 Summary . 84

5.2 Applications . 84

5.2.1 Building Blocks . 84

5.2.2 802.11a Wireless Transmitter . 85

5.2.3 Viterbi Decoder . 86

5.2.4 Fast Fourier Transform . 87

5.2.5 Clos Networks . 87

5.2.6 Random Graphs . 88

5.2.7 Multi-App Application . 89

5.3 Conclusion . 92

6 Results 93

6.1 Procedure . 93

6.2 Efficiency . 94

6.2.1 802.11a Wireless Transmitter . 95

6.2.2 Viterbi Decoder . 96

6.2.3 Fast Fourier Transform . 97

6.2.4 Small Clos Network . 101

6.2.5 Large Clos Network . 102

6.2.6 Summary . 107

6.3 Scalability . 108

6.3.1 100 Random Nodes . 109

6.3.2 250 Random Nodes . 109

6.3.3 500 Random Nodes . 110

6.3.4 1000 Random Nodes . 111

6.3.5 Summary . 114

6.4 Fault Tolerance . 116

6.4.1 Multi-App Application . 117

6.4.2 100 Random Nodes . 134

6.4.3 802.11a Wireless Transmitter . 150

6.4.4 Multiple Exclusions . 154

6.4.5 Summary . 157

6.5 Fabrication Differences . 158

6.5.1 Value Annotations . 159

6.5.2 Custom User Function . 165

6.5.3 Numerical Evaluation . 166

6.5.4 802.11a Wireless Transmitter . 166

6.5.5 Viterbi Decoder . 171

6.5.6 Summary . 176

6.6 Conclusion . 179

– vi –

7 Related Work 181
7.1 Parallel Processor Arrays . 181

7.1.1 RAW . 181
7.1.2 Smart Memories . 182
7.1.3 iWarp . 183
7.1.4 Imagine Stream Processor . 184
7.1.5 Explicit Data Graph Execution (TRIPS) . 185

7.2 Parallel Programming Tools . 185
7.2.1 StreamIt . 186
7.2.2 OREGAMI . 187
7.2.3 CASCH . 188
7.2.4 PYRROS . 189
7.2.5 HyperTool . 189
7.2.6 Energy-Aware Mapping Algorithm . 190

8 Conclusion 193
8.1 Lessons Learned . 194
8.2 Future Work . 195

A Readme - Mapping Library 197

B Readme - AsAP Mapping Tool 209

Glossary 217

Bibliography 223

– vii –

List of Figures

2.1 Block level overview for the first version of AsAP . 6
2.2 Block level overview for the second version of AsAP 9

3.1 Flowchart for the mapping algorithm . 13
3.2 Visual representation of the various properties for the Graph, Vertex, and Edge variables 15
3.3 Depiction of how path intersections are determined using rectangular bounding boxes 26
3.4 Depiction of the five possible targets for the primary input and the primary output . 27
3.5 Improvements in minimum configuration cost over three iterations of the temperature

schedule . 35
3.6 The basics of the maze routing algorithm shown visually 43
3.7 Depiction of the two possible column dependencies and the two possible row depen-

dencies . 46

4.1 The main window of the AsAP mapping tool . 69
4.2 The array window of the AsAP mapping tool . 70
4.3 The code window of the AsAP mapping tool . 71
4.4 The array settings tab of the mapping dialog for the AsAP mapping tool 72
4.5 The algorithm settings tab of the mapping dialog for the AsAP mapping tool 73
4.6 The other settings tab of the mapping dialog for the AsAP mapping tool 74
4.7 The Document Object Model hierarchy for XML module files 76
4.8 The Document Object Model hierarchy for XML project files 77

5.1 Visual depiction of the difference between rectangular array area and enclosed array
area . 81

5.2 The basic building blocks used for creating applications 85
5.3 The dataflow graph entered into the mapping tool for the 802.11a wireless transmitter 85
5.4 The dataflow graph entered into the mapping tool for the Viterbi decoder 86
5.5 The dataflow graph entered into the mapping tool for the Fast Fourier Transform . . 87
5.6 The dataflow graph entered into the mapping tool for the small Clos network 88
5.7 The dataflow graph entered into the mapping tool for the large Clos network 88
5.8 Basic constructs used to build the random node applications 89
5.9 Examples of randomly generated graphs that are used for the random node applications 90
5.10 Applications used for constructing the multi-app application 90
5.11 The dataflow graph entered into the mapping tool for the multi-app application . . . 91

6.1 Side-by-side comparison of the hand mapping and the automatic mapping for the
802.11a wireless transmitter . 96

6.2 Reduction in optimization cost over time for the 802.11a wireless transmitter using
1000 trials . 97

6.3 Side-by-side comparison of the hand mapping and the automatic mapping for the
Viterbi decoder . 98

– viii –

6.4 Reduction in optimization cost over time for the Viterbi decoder using 1000 trials . . 98

6.5 Side-by-side comparison of the hand mapping and the automatic mapping for the Fast
Fourier Transform . 99

6.6 Reduction in optimization cost over time for the Fast Fourier Transform using 1000
trials . 100

6.7 Automatic mapping for the Fast Fourier Transform when targeting the second version
of AsAP . 100

6.8 Side-by-side comparison of the hand mapping and the automatic mapping for the
small Clos network . 101

6.9 Reduction in optimization cost over time for the small Clos network using 1000 trials 102

6.10 Automatic mapping for the small Clos network when targeting the second version of
AsAP . 103

6.11 Side-by-side comparison of the hand mapping and the automatic mapping for the
large Clos network . 105

6.12 Reduction in optimization cost over time for the large Clos network using 1000 trials 106

6.13 Automatic mapping for the large Clos network when targeting the second version of
AsAP . 106

6.14 Reduction in optimization cost over time for the 100 random node application using
100 trials . 110

6.15 Reduction in optimization cost over time for the 250 random node application using
100 trials . 111

6.16 Reduction in optimization cost over time for the 500 random node application using
100 trials . 112

6.17 Reduction in optimization cost over time for the 1000 random node application using
100 trials . 113

6.18 Plot of the application runtime with respect to problem size for the random nodes
applications . 115

6.19 Plot of the increase in metric quality, relative to the minimum number of nodes, with
respect to problem size for the random nodes applications 115

6.20 2D-plot of the minimum rectangular array area when excluding each processor indi-
vidually for the multi-app application and targeting the first version of AsAP 119

6.21 Histogram of the minimum rectangular array area when excluding each processor
individually for the multi-app application and targeting the first version of AsAP . . 120

6.22 Cumulative Distribution Function for the minimum rectangular array area when ex-
cluding each processor individually for the multi-app application and targeting the
first version of AsAP . 121

6.23 2D-plot of the minimum number of routing processors when excluding each processor
individually for the multi-app application and targeting the first version of AsAP . . 122

6.24 Histogram of the minimum number of routing processors when excluding each pro-
cessor individually for the multi-app application and targeting the first version of
AsAP . 123

6.25 Cumulative Distribution Function for the minimum number of routing processors
when excluding each processor individually for the multi-app application and targeting
the first version of AsAP . 124

6.26 Best automatic mapping for the multi-app application after excluding each processor
individually while targeting the first version of AsAP 125

6.27 2D-plot of the minimum rectangular array area when excluding each processor indi-
vidually for the multi-app application and targeting the second version of AsAP . . 127

6.28 Histogram of the minimum rectangular array area when excluding each processor
individually for the multi-app application and targeting the second version of AsAP 128

6.29 Cumulative Distribution Function for the minimum rectangular array area when ex-
cluding each processor individually for the multi-app application and targeting the
second version of AsAP . 129

– ix –

6.30 2D-plot of the minimum number of long-distance interconnects when excluding each
processor individually for the multi-app application and targeting the second version
of AsAP . 130

6.31 Histogram of the minimum number of long-distance interconnects when excluding
each processor individually for the multi-app application and targeting the second
version of AsAP . 131

6.32 Cumulative Distribution Function for the minimum number of long-distance intercon-
nects when excluding each processor individually for the multi-app application and
targeting the second version of AsAP . 132

6.33 Best automatic mapping for the multi-app application after excluding each processor
individually while targeting the second version of AsAP 133

6.34 2D-plot of the minimum rectangular array area when excluding each processor in-
dividually for the 100 random nodes application and targeting the first version of
AsAP . 135

6.35 Histogram of the minimum rectangular array area when excluding each processor
individually for the 100 random nodes application and targeting the first version of
AsAP . 136

6.36 Cumulative Distribution Function for the minimum rectangular array area when ex-
cluding each processor individually for the 100 random nodes application and target-
ing the first version of AsAP . 137

6.37 2D-plot of the minimum number of routing processors when excluding each processor
individually for the 100 random nodes application and targeting the first version of
AsAP . 138

6.38 Histogram of the minimum number of routing processors when excluding each proces-
sor individually for the 100 random nodes application and targeting the first version
of AsAP . 139

6.39 Cumulative Distribution Function for the minimum number of routing processors
when excluding each processor individually for the 100 random nodes application and
targeting the first version of AsAP . 140

6.40 Best automatic mapping for the 100 random nodes application after excluding each
processor individually while targeting the first version of AsAP 141

6.41 2D-plot of the minimum rectangular array area when excluding each processor indi-
vidually for the 100 random nodes application and targeting the second version of
AsAP . 143

6.42 Histogram of the minimum rectangular array area when excluding each processor
individually for the 100 random nodes application and targeting the second version
of AsAP . 144

6.43 Cumulative Distribution Function for the minimum rectangular array area when ex-
cluding each processor individually for the 100 random nodes application and target-
ing the second version of AsAP . 145

6.44 2D-plot of the minimum number of long-distance interconnects when excluding each
processor individually for the 100 random nodes application and targeting the second
version of AsAP . 146

6.45 Histogram of the minimum number of long-distance interconnects when excluding
each processor individually for the 100 random nodes application and targeting the
second version of AsAP . 147

6.46 Cumulative Distribution Function for the minimum number of long-distance intercon-
nects when excluding each processor individually for the 100 random nodes application
and targeting the second version of AsAP . 148

6.47 Best automatic mapping for the 100 random nodes application after excluding each
processor individually while targeting the second version of AsAP 149

6.48 2D-plot of the minimum rectangular array area when excluding each processor indi-
vidually for the 802.11a wireless transmitter application and targeting the first version
of AsAP . 151

– x –

6.49 Histogram of the minimum rectangular array area when excluding each processor
individually for the 802.11a wireless transmitter application and targeting the first
version of AsAP . 152

6.50 Cumulative Distribution Function for the minimum rectangular array area when ex-
cluding each processor individually for the 802.11a wireless transmitter application
and targeting the first version of AsAP . 153

6.51 Best automatic mapping for the 802.11a wireless transmitter application after exclud-
ing each processor individually while targeting the first version of AsAP 154

6.52 Plot of the minimum rectangular array area with sets of 10 excluded processors for
the 802.11a wireless transmitter application while targeting the first version of AsAP 155

6.53 Plot of the minimum rectangular array area with sets of 20 excluded processors for
the 802.11a wireless transmitter application while targeting the first version of AsAP 156

6.54 Plot of the minimum rectangular array area with sets of 30 excluded processors for
the 802.11a wireless transmitter application while targeting the first version of AsAP 156

6.55 Plot of the minimum rectangular array area with respect to the number of excluded
processors for the 802.11a wireless transmitter . 158

6.56 Maximum frequency value for each processor in the target 10x10 array 161
6.57 Leakage current value for each processor in the target 10x10 array 162
6.58 Load average and activity level for each task in the 802.11a wireless transmitter

application . 163
6.59 Load average and activity level for each task in the Viterbi decoder application . . . 164
6.60 Automatic mapping without using any annotations for the 802.11a wireless transmitter167
6.61 Automatic mapping using just speed related annotations for the 802.11a wireless

transmitter . 168
6.62 Automatic mapping using just power related annotations for the 802.11a wireless

transmitter . 169
6.63 Automatic mapping using both speed and power related annotations for the 802.11a

wireless transmitter . 170
6.64 Automatic mapping without using any annotations for the Viterbi decoder 171
6.65 Automatic mapping using just speed related annotations for the Viterbi decoder . . 173
6.66 Automatic mapping using just power related annotations for the Viterbi decoder . . 174
6.67 Automatic mapping using both speed and power related annotations for the Viterbi

decoder . 175
6.68 Visual comparison between the three annotated mappings for the 802.11a wireless

transmitter application . 177
6.69 Visual comparison between the three annotated mappings for the Viterbi decoder

application . 178

– xi –

List of Tables

3.1 Typefaces and notations used by the pseudo-code listings. 12
3.2 List of properties for the Graph, Vertex, and Edge variables. 14
3.3 List of properties for the Config variable. 14
3.4 List of properties for the Perturb variable. 33
3.5 List of properties for the Gridmap variable. 51

5.1 A breakdown of the runtime for the mapping algorithm while mapping the 802.11a
wireless transmitter using the default settings. 83

6.1 Relevant default batch mode configuration parameters 94
6.2 The rectangular array area for the hand mappings and the automatic mappings, when

targeting the first version of AsAP . 107
6.3 The enclosed array area for the hand mappings and the automatic mappings, when

targeting the first version of AsAP . 108
6.4 The rectangular array area for the hand mappings and the automatic mappings, when

targeting the second version of AsAP . 108
6.5 The enclosed array area for the hand mappings and the automatic mappings, when

targeting the second version of AsAP . 108
6.6 Runtime and increase in metric quality, relative to the minimum number of nodes,

with respect to problem size for the random node applications. 114
6.7 The estimated sample latency and the estimated leakage power for automatic map-

pings both with and without annotations for the 802.11a wireless transmitter application176
6.8 The estimated sample latency and the estimated leakage power for automatic map-

pings both with and without annotations for the Viterbi decoder application 176

– xii –

List of Algorithms

3.1 Placement Phase - PlacementMain . 19

3.2 Placement Phase - InitPlacement . 21

3.3 Placement Phase - NextCoord . 22

3.4 Placement Phase - ConfigCost . 24

3.5 Placement Phase - PathRoutable . 25

3.6 Placement Phase - InputCost . 28

3.7 Placement Phase - OutputCost . 29

3.8 Placement Phase - ArrayCost . 29

3.9 Placement Phase - InitialTemp . 31

3.10 Placement Phase - FinalTemp . 32

3.11 Placement Phase - PerturbGraph . 35

3.12 Placement Phase - PerturbSetup . 36

3.13 Placement Phase - RandVertex . 37

3.14 Placement Phase - PerturbApply . 38

3.15 Placement Phase - PerturbUndo . 39

3.16 Routing Phase - RoutingMain . 43

3.17 Routing Phase - InsertSpacing . 45

3.18 Routing Phase - EdgeDepends . 47

3.19 Routing Phase - ColSplits . 48

3.20 Routing Phase - RowSplits . 49

3.21 Routing Phase - ShiftArray . 50

3.22 Routing Phase - InitGridmap . 52

3.23 Routing Phase - Propagate . 54

3.24 Routing Phase - QueueNeighbors . 55

– xiii –

3.25 Routing Phase - Traceback . 56

3.26 Routing Phase - NextNeighbor . 57

3.27 Routing Phase - InsertRouter . 58

3.28 Routing Phase - Cleanup . 59

3.29 AlgorithmMain . 62

6.1 UserCost . 165

– xiv –

1

Chapter 1

Introduction

An automated mapping algorithm is essential to efficiently program large scale parallel

arrays. An automated mapping algorithm can take into account over a dozen optimization factors

at one time. Without an automated mapping algorithm programming large scale parallel arrays

is nearly impossible when applications are divided across thousands of processing elements. This

work shows the applications for a mapping algorithm using the Asynchronous Array of Simple

Processors (AsAP) architecture as the test platform [37]. This thesis demonstrates quantitatively

through mapped complex applications the benefits of using an automated mapping tool over hand

mappings. Some of these benefits are time efficiency, scalability up to thousands of processors,

tolerance to fabrication errors, and optimizations using processor characteristics to name a few.

Programming large scale parallel arrays is not quite as straight forward as programming

general purpose processors. There are a number of additional steps involved. The first step is

to partition an application into a number of parallel or cascaded tasks. For some applications

this may be extremely difficult. The next step is to place tasks onto processors. The technique

used when placing tasks onto processors depends upon how the application is being optimized and

the constraints imposed by the target architecture. Communication channels must also be created

to satisfy data dependencies when maximizing nearest neighbor communication. The final step

is to schedule the code inside each processor to avoid deadlocks and optimize throughput. The

mapping algorithm presented in this work only focuses on assigning tasks to processors and creating

communication channels between tasks. Partitioning an application and scheduling code are beyond

the scope of this work.

This work is intended to be more than just a mapping algorithm for 2D-mesh nearest

2 CHAPTER 1. INTRODUCTION

neighbor dominated parallel arrays. It’s a framework for mapping applications to large scale parallel

arrays in general. The framework consists of two parts, an automated mapping algorithm and an

intuitive graphical user interface. The majority of this paper is focused on the mapping algorithm

since it contains most of the intellectual contributions. The mapping algorithm primarily targets

the AsAP architecture, but it can easily be modified to target other architectures. Even though the

focus of this paper is on the mapping algorithm the graphical user interface contains some important

contributions. The graphical user interface explores a new technique for programming parallel arrays

by allowing applications to be created primarily using their dataflow. I welcome other researchers

who wish to improve or extended this framework to other parallel arrays.

1.1 Project Goals

• Map an arbitrary dataflow graph to a 2D-array of processors

• Maximize the use of nearest neighbor connections

• Minimize the area and if possible the perimeter

• Dynamically insert routing processors

• Minimize the use of routing processors

• Allow processors to be excluded from the mapping

• Allow tasks to be assigned to fixed locations

• Handle very small and very large problem sizes

• Optimize mappings using the physical properties of a processor

• Allow a customizable user cost function and user datafile

1.2 Organization

The remainder of this paper is divided into 7 additional chapters. Chapter 2 talks about

the AsAP architecture, which is the test platform for the mapping algorithm. Chapter 3 talks about

the two phases of the mapping algorithm. Chapter 4 talks about the implementation of the mapping

algorithm and the AsAP mapping tool. Chapter 5 talks about the metrics and applications used

to evaluate the mapping algorithm. Chapter 6 talks about the results obtained from evaluating the

1.2. ORGANIZATION 3

mapping algorithm using a variety of optimizations. Chapter 7 talks about work related to AsAP

and the mapping algorithm. Finally Chapter 8 summarizes this work and discusses future directions

for the framework.

4 CHAPTER 1. INTRODUCTION

5

Chapter 2

Target Platform

The target platform for this work is the Asynchronous Array of Simple Processors (AsAP)

architecture. AsAP is a highly parallel chip-multiprocessor architecture designed for efficiently

executing DSP applications. Each processing element is a low power, high clock rate, RISC-style

processor core, which achieves high energy efficiency while executing computationally intensive DSP

kernels. This chapter discusses the details of the AsAP architecture that are most relevant to

the mapping problem, mainly the communication infrastructure. The instruction set and general

architectural design are not discussed as they are not applicable to the mapping problem.

2.1 AsAP Architecture

The AsAP architecture is able to attain high performance while maintaining high energy ef-

ficiency. This is accomplished by using simple processors with reduced area and power requirements.

Relative to typical DSP processors, a smaller proportion of AsAP’s area is dedicated to memory

with most of the area used for the processor core [37]. Each processor is clocked synchronously by

an independent local oscillator. Communication between processors is performed asynchronously.

By using a Globally Asynchronous Locally Synchronous (GALS) clocking style, AsAP is well suited

for future technologies because of shorter wire lengths and a simplified clock tree. The first in-depth

investigation on using GALS architectures was done by Chapiro [10]. By using independent clock

domains for each processor, power can be reduced by turning off processors that are waiting for data

or have no work to do [7].

Processors in the first version of AsAP are arranged in a 6x6 array, as seen in Figure 2.1,

for a total of 36 processing elements. Each processing element contains a nine stage pipeline with

6 CHAPTER 2. TARGET PLATFORM

Figure 2.1: Block level overview for the first version of AsAP, which contains 36 processors arranged
in a 6x6 array connected using a nearest neighbor 2D-mesh

a 16-bit fixed-point datapath and a 40-bit multiply accumulator. The instruction set consists of

54 32-bit instructions with only one instruction that is algorithm specific, bit-reverse. The array

has one input, connected to the top-left processor, and one output, connected to any one of the

right edge processors. Each processor has two inputs and four outputs connected in a nearest

neighbor 2D-mesh. This version of AsAP allows only nearest neighbor communication, which can

be restrictive for some applications, but highly efficient for other applications that map well to the

2D-mesh array [37].

2.1.1 Input/Output Limitations

Communication between processors is performed using dual-clock FIFOs due to AsAP’s

asynchronous nature. The dual-clock FIFO was designed by Ryan Apperson for his master’s thesis

titled A Dual-Clock FIFO for the Reliable Transfer of High-Throughput Data Between Unrelated

Clock Domains [6]. The two processors connected to a dual-clock FIFO operate in entirely unrelated

clock domains. Each dual-clock FIFO contains a 32-word SRAM with a configurable amount of

reserve space to avoid overflow. During extensive testing no meta-stability problems occurred.

Read and write pointers are exchanged between clock domains to check whether or not the

FIFO is full or empty. When sending data the sending processor first increments its write pointer

then sends a handshake signal to the receiving processor to increment its write pointer. Similarly

when receiving data the receiving processor first increments its read pointer then sends a handshake

signal to the sending processor to increment its read pointer. The read and write pointers are gray

coded before being sent across the clock boundary to increase reliability. Gray coding is used to

2.1. ASAP ARCHITECTURE 7

avoid race conditions caused by changing multiple signals simultaneously. The FIFO compares the

read and write pointers in each respective clock domain to determine if it’s full or empty. This

information is sent back to the processor, stalling the local oscillator when a full or empty condition

occurs. By generating these condition flags the FIFO automatically performs flow control based on

the production and consumption rates of neighboring processors.

There are three possibilities when deciding where to place the FIFO logic. The first possi-

bility is to place half the logic in the sender and half the logic in the receiver. The second possibility

is to place all the logic in the sender and just run wires to the receiver. The third possibility is to

place all the logic in the receiver and just run wires from the sender. For AsAP the FIFO logic is

placed in the receiving side of each connection. This makes the output ports more flexible than the

input ports.

The downside to putting the FIFO logic in the receiving processor is that it limits the

number of inputs ports. Since area efficiency is a primary concern for AsAP, only two FIFOs were

included in each processor. With only two FIFOs each processor can only receive data from two of

its four nearest neighbors at a given time. The two FIFOs can operate independently since they

are addressed using different instruction sources. This allows both FIFOs to be read with a single

instruction. The input direction for each FIFO is set during the configuration phase before the

application is executed. The array must be reconfigured or given explicit commands from the host

computer in order to change the input ports.

The upside to putting the FIFO logic in the receiving processor is that the output ports

are more flexible. The output ports can be changed dynamically during runtime. Each processor

can talk to any combination of its four nearest neighbors simultaneously using an output mask. The

output mask is 4-bits long with one bit representing each neighbor: north, south, east, and west.

Data is broadcast to each processor whose bit is set in the output mask. Multiple destination routing

schemes other than broadcasting, such as round-robin, must be done in software using combinations

of output masks.

2.1.2 Programming

There are primarily two programming languages available for programming the AsAP array.

The first is AsAP-ASM (or AsAP assembly) and the second is AsAP-C, which includes a subset of

the C programming language. The current implementation of the AsAP-C compiler lacks the ability

to automatically partition code. Therefore code must be manually partitioned into independent

8 CHAPTER 2. TARGET PLATFORM

parallel tasks. After code partitioning the application is represented by a set of AsAP-C or AsAP-

ASM program kernels, one for each processor. Due to the lack of an automatic partitioner data

dependencies between program kernels must also be specified manually by the user. This work helps

with the final step of programming AsAP, which is placing tasks onto processors. Before this tool

was created the entire process was done manually.

Once the user is satisfied with the simulation results the next step is to run the application

on the physical chip to obtain measurements. To program the physical chip the complete application

is packed into a binary bitstream consisting of address/data pairs. A utility I wrote called the AsAP

Programmer (or aprog) creates this binary bitstream directly from AsAP-ASM code. The AsAP

Programmer, running on the host computer, loads the binary bitstream into the array’s configuration

and instruction memories through an intermediate FPGA. The AsAP Programmer can control each

individual processor. This utility can either halt a single processor or the entire array then change

the frequency, the input ports, the instruction memory, or other aspects of any processor. With this

level of control the array can be remapped and reprogrammed dynamically.

2.2 AsAP Version 2.0

The second version of the AsAP array processor is still in development but its features are

worth discussing since it pertains to this work. The most noticeable change is the array size. The

second version of AsAP has an array of size 13x13 with a few of the lower processors replaced by

hardware-based accelerators. For the sake of this work the array is assumed to be homogeneous

with an array of size 16x16 (similar to the original design) for a total of 256 processing elements.

There have also been a number of general architectural improvements such as, new min and max

instructions, and conditional execution, but these changes do not affect this work. Another pertinent

change is the addition of a long-distance point-to-point routing overlay network. With this new

routing overlay network some applications can be mapped more efficiently.

Since details for the second version of AsAP have not been finalized I will discuss the

implementation that is supported by this work. Figure 2.2 shows the communication infrastructure

that is currently planned for the second version of AsAP. Each processor now has 8 output ports.

The original 4 ports remain the same and an additional 4 ports have been added, one for each

direction. To support the routing overlay network each processor contains a number of switches.

These switches can be configured to either consume the data or send the data to another switch inside

a neighboring processor. Consuming the data involves routing the data to one of the processor’s

2.3. CONCLUSION 9

Figure 2.2: Block level overview for the second version of AsAP, which contains 256 processors
arranged in a 16x16 array connected using both a nearest neighbor 2D-mesh and a long-distance
routing overlay network

two local FIFOs. By configuring a series of switches along a path a long-distance interconnect is

created. Details on how these switches are configured in hardware has not yet been determined so

it’s handed-off to a post-processing tool. Implementing this post-processing tool is left for future

work. In addition to the routing overlay network, and the additional output ports, the array can

now redirect the input data to any processor along the left edge.

2.3 Conclusion

There are many aspects of the AsAP architecture that present challenges to the mapping

problem. The first version of AsAP uses nearest neighbor communication exclusively, which for

some applications make inefficient use of the array. For applications that are mostly feed-forward

and resemble segmented pipelines this is not much of a problem. For more complex applications

routing processors are required. Routing processors are processors whole sole purpose is to for-

10 CHAPTER 2. TARGET PLATFORM

ward data between computation processors. Routing processors can often be avoided in the second

version of AsAP using the routing overlay network, which leads to some interesting comparisons.

Scalability becomes an issue as the number of processors in AsAP approaches several hundred and

manually mapping tasks to processors becomes less feasible. Each processor is also somewhat unique

due to physical differences, which are created during fabrication. By taking these differences into

consideration mappings can be better suited for the target chip not just the target architecture.

11

Chapter 3

Mapping Algorithm

This chapter discusses the details of the mapping algorithm, which places tasks onto phys-

ical processors. The mapping algorithm operates in two phases. The first phase is the placement

phase, which assigns tasks to processors while trying to minimize area and maximize nearest neigh-

bor communication. The second phase is the routing phase, which inserts routing processors to

complete non-nearest neighbor connections. The primary focus of the mapping algorithm is map-

ping applications onto the first version of AsAP. The algorithm contains a number of configurable

parameters, which allow it to map applications onto the second version of AsAP (and other parallel

array architectures), and also improve the mapping quality for difficult applications.

3.1 Overview

Since the mapping algorithm is rather long and complex the pseudo-code has been broken

down into a number of listings that resemble functions in a normal programming language. As

a result this chapter contains a large number of these pseudo-code listings each documenting a

specific part of the mapping algorithm. The listings are grouped into three sections, placement (3.2),

routing (3.3), and top-level (3.4). The first two sections discuss in detail the functions required by

each phase, the goals, and how optimization parameters were chosen. The final section discusses

how the two phases interact and any post-processing that occurs. The typefaces and notations used

throughout the pseudo-code listings are shown in Table 3.1. These typefaces and notations help

differentiate code elements for easier reading.

The two phases of the mapping algorithm, the placement phase and the routing phase, have

been divided into a number of major components. Whether or not these components are enabled

12 CHAPTER 3. MAPPING ALGORITHM

Notation Description
Keyword Reserved word
Variable Variable name
Variable.Property Variable property
CONSTANT Constant variable
Variable ← Value Variable assignment
Array [Index] Array indexing
Function Function name
Function(Argument) Function call
Coordinate (X, Y) Coordinate object

Table 3.1: Typefaces and notations used by the pseudo-code listings.

depends upon the configuration parameters. Which components get executed and how often they

are executed depends upon the application dataflow. The flowchart in Figure 3.1 shows how these

components interact and a few of the higher-level decisions that must be made. The mapping

algorithm begins its execution at Start, accepting two input data structures, and terminates its

execution when Finish is reached, producing one output data structure. The various pseudo-code

listings throughout this chapter have been grouped into categories that correspond to the major

components in the flowchart.

3.1.1 Inputs and Outputs

The mapping algorithm requires two input data structures or arguments. The first data

structure is the application’s dataflow graph and the second data structure contains the configuration

parameters for the mapping algorithm. These two data structures are stored globally and are

available for the lifetime of the algorithm. The application’s dataflow graph is accessed throughout

the algorithm using the Graph variable, which holds information about task inter-dependencies using

a series of edges and vertices. Each edge and each vertex contain a number of properties as well

as the graph itself. These properties are listed in Table 3.2 as well as shown visually in Figure 3.2.

The algorithm configuration parameters are accessed throughout the algorithm using the Config

variable, which determines the optimizations that are performed and the general structure for the

final mapping. The properties for this variable are listed in Table 3.3. The way each configuration

parameter affects the mapping algorithm is deferred until it’s used within the pseudo-code listings.

The common defaults used for each configuration parameter and each compile-time constant are

based on mapping the applications detailed in Chapter 5, executing on Intel Xeon 2.0 GHz processors.

The output from the mapping algorithm is a new data structure similar to the input data

structure which contained the application’s dataflow graph. The primary difference between the

3.1. OVERVIEW 13

Placement Main

Routing Main

IN: Graph IN: Parameters

Init ial Configuration

Configuration Cost

Temperature Schedule

Perturb Configuration

Cost = 0? OR
Remaining

Iterations = 0?

UseRouting?

Y

Finish

OUT: Annotated Graph

N

Y

Cost = 0? OR
Temp = Final?

Configuration Cost

N

Start

Wave Propagate

Path Traceback

Gridmap Cleanup

Edge Queue
Empty?

Init ial ize Gridmap

AddSpacing?

Space Insertion

Y

N

N

Y

YN

Figure 3.1: Flowchart for the mapping algorithm showing the relationship between major compo-
nents. The placement phase is colored with solid blue and the routing phase is colored with dotted
red.

14 CHAPTER 3. MAPPING ALGORITHM

Property Description
Graph.Size The dimensions of the annotated dataflow graph, Graph
Vertex.Category The type of task object that Vertex represents
Vertex.Coordinate The processor coordinate assigned to Vertex
Vertex.NoTouch Flag that determines if Vertex is movable
Vertex.Cost Temporary cost for prioritizing Vertex during random selections
Edge.Source Vertex located at the tail-side of the directed edge, Edge
Edge.Target Vertex located at the head-side of the directed edge, Edge

Table 3.2: List of properties for the Graph, Vertex, and Edge variables.

Property Description
Config.Input The input Vertex for the application
Config.InputType The target edge for the input Vertex
Config.Output The output Vertex for the application
Config.OutputType The target edge for the output Vertex
Config.Size The desired dimensions for the final mapping
Config.QuickPlace Flag that shortens the placement phase runtime
Config.UseRouting Flag that enables the routing phase
Config.AddSpacing Flag that inserts additional space before routing
Config.ExpandType Expansion sequence type for the initial placement
Config.NumIters Number of placement phase iterations
Config.MaxRoutes Maximum number of intersections / router
Config.RandSeed Initial seed for random number generation
Config.SpaceThreshold Edge to node percentage ratio for inserting space
Config.CostExcludeMatch Cost for assigning tasks to excluded locations
Config.CostChannelLength Cost for using non-nearest neighbor connections
Config.CostInputOutput Cost for having I/O not along the target edge
Config.CostArraySize Cost for exceeding the desired dimensions
Config.ExcludeList List of locations not to assign to tasks
Config.FixedList List of vertices and their desired locations

Table 3.3: List of properties for the Config variable.

input dataflow graph and the output dataflow graph is that the output dataflow graph is annotated

with processor locations for each vertex. This means that the coordinate field for each vertex has

been assigned a unique processor location. In addition to the annotations new routing vertices have

been added to the dataflow graph (if the routing phase was enabled). These new routing vertices

are also assigned unique processor locations. It’s also worth mentioning that the edges and vertices

contain data pointers, which are not listed in Table 3.2 and help programmers synchronize their

custom data structures to the dataflow graph object.

3.2. PLACEMENT PHASE 15

Vertex.NoTouch=True

Vertex.Category=Compute
Vertex.Coordinate=0,0

Vertex.NoTouch=False

Vertex.Category=Router
Vertex.Coordinate=1,0

Vertex.NoTouch=False

Vertex.Category=Compute

Vertex.Coordinate=2,0

Edge.Source Edge.Target

Edge

Graph.Size=3x2

Vertex Vertex Vertex

Figure 3.2: Visual representation of the various properties for the Graph, Vertex, and Edge variables.
The lock in the bottom-right corner indicates whether or not the vertex is movable. A red closed
lock indicates that the vertex is unmovable, while a green open lock indicates that the vertex is
movable. The color of the vertex indicates the type of processor represented by the vertex. A vertex
colored in white represents a computation processor. A vertex shaded in red represents a routing
processor. Arrow heads indicate the direction data is transmitted across an edge, or connection.

3.2 Placement Phase

The placement phase of the mapping algorithm performs the bulk of the work. Much of the

basic structure used in the implementation of the placement phase came from the book Algorithms

for VLSI Design Automation by Gerez [13]. This phase is not only responsible for assigning tasks

to processors but it also contains a majority of the optimizations. The placement phase is even

responsible for recognizing free processors in key locations to simplify the routing phase. Simulated

annealing was chosen as the best candidate for the base algorithm because of its flexibility and

performance. This section will discuss the simulated annealing algorithm and the modifications

made to solve the mapping problem for nearest neighbor dominated parallel arrays.

Simulated annealing is just one of many possible placement algorithms used by researchers

to solve these types of problems. One of these algorithms is the genetic algorithm, which is similar to

simulated annealing in that it emulates a physical process, evolution. New configurations are created

from parent configurations by producing so called offspring configurations. Only the strongest

configurations survive between generations. The genetic algorithm is generally more complex than

16 CHAPTER 3. MAPPING ALGORITHM

simulated annealing and results are often equal in terms of quality. Another possible algorithm is

force-directed placement, based on Hook’s law (F = −kx), where node positions are determined

by edge weights. It would have been extremely difficult to implement the various optimizations

required by this work if force-directed placement was used. Numerical optimization techniques, such

as integer linear programming (ILP), are popular for smaller problem sizes. For these algorithms the

problem is described as a set of linear equations then an advanced solver is used to find an optimal

solution. Numerical optimization techniques unfortunately aren’t scalable. The above mentioned

algorithms and other lesser known algorithms have been summarized by Shahookar and Mazumder

in their paper VLSI Cell Placement Techniques [31].

3.2.1 Simulated Annealing

A number of problems in computer science are classified as NP-complete meaning that

the time required to find an optimal solution increases exponentially as the problem size increases.

The mapping problem discussed here is classified as NP-complete. To solve these types of problems

heuristics are needed to find near-optimal solutions in an acceptable amount of time which does not

increase exponentially with the problem size. There are a number of strategies for solving these

types of problems but one of the more popular approaches, especially in VLSI, is using iterative

improvement [31]. Iterative improvement is a framework more than an algorithm, which can be

tailored to solve some NP-complete problems.

Simulated annealing is one form of iterative improvement, modeled after the physical phe-

nomenon of annealing. Kirkpatrick noticed, while exploring statistical mechanics, that as the tem-

perature of a material cooled the most probable atomic configuration was the one with the lowest

energy state [19]. Materials that crystallize close to the zero energy state are stronger since the

bonds between elements are less likely to break, in other words a near-optimal state. If the pseudo

energy state of a configuration can be quantified accurately and the right cooling schedule is used

a near-optimal solution can be found. This energy state is typically referred to as the configuration

cost, which is a numerical value that can easily be compared. This method has been demonstrated

on the traveling salesman problem and many other placement and routing problems from VLSI with

good results [19].

The basic principle behind simulated annealing is to perturb a configuration, determine the

new configuration’s cost, make a decision whether or not to accept the new configuration, and do this

iteratively until the configuration converges to a low cost point. To get the algorithm started an initial

3.2. PLACEMENT PHASE 17

configuration is constructed. A new configuration is then created by performing a perturbation on

the initial configuration. These two configurations are then compared to see whether or not the new

configuration is acceptable. The new configuration is accepted if the configuration cost decreases.

A problem that typically occurs when blindly accepting only lower cost configurations is that the

algorithm could quickly converge to a local minimum. To overcome this problem simulated annealing

will occasionally accept configurations with a higher cost given some probability. The probability of

acceptance is determined by the cost difference and the temperature. The smaller the cost difference

the more likely the new configuration is accepted. Also the higher the temperature the more likely the

new configuration is accepted. The temperature starts out very high where acceptance is likely and

the configuration continues to be perturbed until the ground state is reached (zero cost configuration)

or the temperature has cooled to a cut-off point.

3.2.2 Algorithm Details

To simulate the annealing process each physical property is represented by a function.

Some examples are the perturbation function, which simulates molecular movements, and the cost

function, which simulates the energy contained within the molecular bonds. Every function in

the simulated annealing algorithm must be tailored to the problem being solved, some more than

others. The perturbation and cost functions are examples of highly customized functions while the

temperature schedule is an example of a function that remains mostly unchanged. The remainder of

this section will discuss how these different functions are combined and optimized for placing tasks

onto processors.

Framework

The PlacementMain function listed in Algorithm 3.1 contains the basic simulated annealing

framework and hence acts as an entry point for the placement phase. This function does very little

work in itself and relies on other subfunctions to do the heavy lifting. The main purpose of this

function is to setup the mapping, monitor its progress, and terminate the mapping when certain

criteria are met. Nevertheless a few optimizations are applied in this function.

This function starts by calling InitPlacement to create the initial configuration. After

creating the initial configuration all vertices are checked to ensure that the user has not fixed the

location of every vertex. Since the initial configuration is the starting point it is also initially

the lowest cost configuration. The function then prepares the temperature schedule by calling

18 CHAPTER 3. MAPPING ALGORITHM

InitialTemp and FinalTemp, which adjusts the schedule based on the difficulty of the problem.

The outer loop is then started, which performs the complete annealing process numerous times.

Each iteration of the outer loop uses the lowest cost configuration from the previous iteration as

a starting point, except the first iteration which uses the initial configuration. Entering the inner

loop, the temperature starts at its initial value and PerturbGraph is continuously called until the

cost becomes zero or the temperature decreases below its final value. The number of times the

configuration is perturbed at each temperature step is based on the number of vertices in the graph.

Larger problems naturally require more moves to shift around all the vertices.

This function uses two configuration parameters. The first parameter is Config.QuickPlace,

which decreases the runtime of the placement phase to obtain area and routing estimates. Enabling

this parameter decreases the number of perturbs at each temperature step by half. This parameter

also enables stall detection, which breaks the inner loop when no improvements are detected for a

number of iterations. The second parameter is Config.NumIters, which controls how many times

the simulated annealing process is executed. This parameter has a significant impact on both the

mapping quality and the runtime of the algorithm. By using a higher number for this parameter

more of the solution space is explored, which increases the quality but also increases the runtime.

After some trial and error the quality shows almost no improvement after the 3rd iteration and

sometimes the quality peaks after the 1st iteration.

There are a few constants used by this function. The constant PERTURB ITER BASE

determines the number of perturbs to perform at each temperature step. If this value is too low

then the mapping quality will be very poor. If this value is too high then the runtime will be

very long. Through trial and error a value of 10 to 20 works best with 15 being the value chosen.

Values above 20 could be beneficial for CPUs faster than a 2.0 GHz Xeon processor. The constant

TEMP DECAY RATE determines how quickly the temperature cools which in turn determines the

number of temperature steps. The cooling rate can sometimes be a complex function involving

changing decay rates but typically a value of around 0.90 is used [31], with a value of 0.85 being

used for this work. The cooling rate must be less than 1.0 but also close to 1.0 so that most of the

time is spent in the lower temperature range where the majority of the improvements occur. The

constant STALL CUTOFF FACTOR determines how quickly stalls are detected. If this value is too

high then the estimation will be very poor since not enough perturbations are performed. If this

value is too low then the amount of time saved will be almost nothing. A value of 5 was chosen so

that at least 1/5th of the inner loop is executed but time is still saved. A value of 4 would also be

3.2. PLACEMENT PHASE 19

Algorithm 3.1 Placement Phase - PlacementMain

PlacementMain() : assigns vertices in Graph to processors in the target array

InitPlacement()
if Vertex.NoTouch = true for every Vertex in Graph then
return

end if
let Costmin ← ConfigCost(Graph)
let Tempinitial ← InitialTemp(Costmin)
let Tempfinal ← FinalTemp(Costmin)
let TempSteps ←

⌈

log(Tempfinal / Tempinitial) / log(TEMP DECAY RATE)
⌉

let StallMax ← TempSteps / STALL CUTOFF FACTOR

let NumPerturbs ← number of vertices in Graph × PERTURB ITER BASE

if Config.QuickPlace = true then
let NumPerturbs ← NumPerturbs / 2

end if
for Iter ← 1 to Config.NumIters do
if Costmin = 0 then
return

end if
let NewGraph ← Graph

let NewCost ← Costmin
let StallCount ← 0
let StallCost ← Costmin
let Temp ← Tempinitial
while Temp > Tempfinal and Costmin > 0 do
PerturbGraph(NewGraph, NewCost, Temp, NumPerturbs, Costmin)
if Config.QuickPlace = true then
if Costmin < StallCost then
let StallCount ← 0
let StallCost ← Costmin

end if
increment StallCount
if StallCount ≥ StallMax then
break loop

end if
end if
let Temp ← Temp × TEMP DECAY RATE

end while
end for

20 CHAPTER 3. MAPPING ALGORITHM

acceptable if the estimate needed to be a little more accurate.

Initial Configuration

The InitPlacement and NextCoord functions, listed in Algorithm 3.2 and Algorithm 3.3

respectively, are responsible for creating the initial configuration. The InitPlacement function

returns a configuration with every task in the application assigned to a unique processor location.

There are a couple of ways to implement an initial configuration function. A very simple approach is

to randomly initialize every element [31]. The method used in this work to initialize the configuration

is to sequentially initialize the elements starting from the input vertex, which is beneficial when

placing long-chains of connected tasks that form software pipelines. Given more time, I would have

liked to try an initial placement routine based on graph planarization. I believe using a form of

graph planarization would noticeably improve the mapping quality.

The InitPlacement function begins by clearing the graph dimensions and vertex properties

so that the target array appears empty. Next a 2D-array, called the marker array, is created to

indicate which processors in the target array are allocated. The function starts the allocation process

with the fixed location list so that each vertex in this list is assigned its desired location. Next each

vertex in this list is tagged as unmovable and its assigned location is marked as unavailable in the

marker array. Next each location in the excluded list is set as unavailable in the marker array. The

remaining vertices are then sorted using Depth First Search (DFS) where the root of the tree is

the primary input vertex. By using DFS long chains are placed consecutively in the target array.

Vertices are then sequentially assigned to locations starting at location (0, 0) skipping any unavailable

locations in the marker array. As tasks are being assigned locations the size of the target array is

updated so that the graph dimensions will be correct when the function returns.

The NextCoord function, called by InitPlacement, determines the sequence of locations

assigned to vertices. There are two possible sequences that can be used. The first sequence starts by

traveling down the first column until the bottom edge is reached, then moving to the next column

and traveling up the column until the top edge is reached. This snake-like pattern is continued until

all tasks are assigned locations. The second sequence starts by traveling right across the first row

until the right edge is reached, then moving to the next row and traveling left across the row until

the left edge is reached. This snake-like pattern again continues until all tasks are assigned locations.

The sequence type used is configurable.

These two functions respond to a few configuration parameters. The Config.Size parameter

3.2. PLACEMENT PHASE 21

Algorithm 3.2 Placement Phase - InitPlacement

InitPlacement() : assigns coordinates to the vertices in Graph using a sequential pattern

let Graph.Size ← Coordinate (−1, −1)
for each Vertex in Graph do
let Vertex.Category ← PROCESSOR

let Vertex.Coordinate ← Coordinate (−1, −1)
let Vertex.NoTouch ← false

end for
let Marker ← 2D-array of size Config.Size.X × Config.Size.Y containing Boolean values
for each Vertex, Coord in Config.FixedList do
let Vertex.Coordinate ← Coord

let Vertex.NoTouch ← true
let Marker [Coord] ← true
let Graph.Size ← updated bounding box

end for
for each Coord in Config.ExcludeList do
let Marker [Coord] ← true

end for
let Order ← unassigned vertices in Graph sorted using DFS, starting at Config.Input
let Coord ← Coordinate (0, 0)
while Order is not empty do
if Marker [Coord] = false then
let Vertex ← next vertex from Order

let Vertex.Coordinate ← Coord

let Graph.Size ← updated bounding box
end if
NextCoord(Coord)

end while

determines the desired size for the final array assuming no routing processors are needed. This

parameter is used to create the marker array and also determines where the two location sequences

wrap. The Config.ExpandType parameter determines which location sequence type is used, either

vertical expansion or horizontal expansion. For most applications the sequence type doesn’t really

matter. Vertical expansion is helpful for long chains where the output is on the right edge. Horizontal

expansion is helpful for problems that are much smaller than the target array but the output is on

the right. The Config.FixedList parameter is a list of vertex and coordinate pairs. This listed is used

to ensure that tasks are placed in their desired location before another task has a chance to occupy

it. The Config.ExcludeList parameter is a list of locations within the target array that should never

have tasks assigned to them. This list is used to ensure that the marker array blocks the locations in

this list correctly. The final parameter Config.Input determines which vertex in the dataflow graph

is the input.

The constants PROCESSOR, VERTICAL, and HORIZONTAL are simply enumerations

used to distinguish the type of an object or operation.

22 CHAPTER 3. MAPPING ALGORITHM

Algorithm 3.3 Placement Phase - NextCoord

NextCoord(Coord) : calculates the next coordinate after Coord in the expansion sequence

if Config.ExpandType = VERTICAL then
if Coord.X is even then
let Coord.Y ← Coord.Y + 1

else
let Coord.Y ← Coord.Y - 1

end if
if Coord.Y < 0 then
let Coord.Y ← 0
let Coord.X ← Coord.X + 1

end if
if Coord.Y > Config.Size.Y - 1 then
let Coord.Y ← Config.Size.Y - 1
let Coord.X ← Coord.X + 1

end if
else
if Coord.Y is even then
let Coord.X ← Coord.X + 1

else
let Coord.X ← Coord.X - 1

end if
if Coord.X < 0 then
let Coord.X ← 0
let Coord.Y ← Coord.Y + 1

end if
if Coord.X > Config.Size.X - 1 then
let Coord.X ← Config.Size.X - 1
let Coord.Y ← Coord.Y + 1

end if
end if

Configuration Cost

The functions ConfigCost, PathRoutable, InputCost, OutputCost, and ArrayCost, listed

in Algorithm 3.4, Algorithm 3.5, Algorithm 3.6, Algorithm 3.7, and Algorithm 3.8 respectively, calcu-

late the configuration cost. This operation is the most complex operation in the mapping algorithm.

These functions must evaluate the configuration and return some numerical value that rates the

goodness of the configuration. Since estimating the configuration cost is a complex operation, the

process is broken down into several parts. Each part evaluates one attribute of the configuration.

The results from each part are summed together to make up the configuration cost. If these functions

are not properly tuned it will be difficult to determine if a perturbation improves or deteriorates the

configuration. What makes this process so difficult to tune properly is deciding the correct weights

to apply to each attribute to ensure they are prioritized correctly.

3.2. PLACEMENT PHASE 23

The ConfigCost function is responsible for combining the various costs as well as calcu-

lating communication related costs. To start a 2D-array is created, called the marker array, that

indicates which processors already have tasks assigned to them. Next the location for each vertex in

the graph is marked as unavailable in the marker array. Then each location in the excluded location

list is marked as unavailable. If any location in the excluded location list was previously marked as

unavailable a constant is added to the total cost since these locations should not have tasks assigned

to them. Next communication related costs are calculated. Nearest neighbor connections are ideal so

they can be skipped since their cost contribution would be zero. The cost for using a long-distance

connection is linearly related to the Manhattan distance between the source and target vertices.

Although if a simple route is found between the source and target, after calling PathRoutable, then

this cost increase is reduced. Costs associated with the other attributes of the configuration are

calculated by the functions InputCost, OutputCost, and ArrayCost. The configuration cost can

also be augmented by an user cost function if implemented. The final cost returned by this function

accounts for all the attributes of the configuration.

In a previous version of the mapping algorithm there was a path intersection detection

feature. The communication cost was increased if the rectangular bounding boxes for two edges

intersected. Figure 3.3 depicts how path intersections are determined. After testing this feature

on a few applications the mapping quality didn’t improve and the runtime took a big hit so this

feature was removed. Another attempt was made using a more accurate line intersection algorithm,

using basic algebra, but this method actually decreased the mapping quality. Intersecting lines were

removed as expected, but the lines instead started becoming parallel making it difficult to route

since many connections traveled along the same row or column.

The PathRoutable function checks the coordinates along a path against the marker array

(from the ConfigCost function) to see if simple routes can be formed without any obstructions.

There are three types of routable paths. The first type requires that the source and target coordinates

share the same column number. If so the coordinates of intermediate rows along the shared column

are inserted into the path queue. The second type requires that the source and target coordinates

share the same row number. If so the coordinates of intermediate columns along the shared row

are inserted into the path queue. The third type requires that the source and target coordinates

are diagonal and that the X and Y coordinates both have a difference of 1 (also called diagonal

nearest neighbor). If so the two coordinates that are adjacent to both the source and target are

inserted into the path queue. After a possible path has been determined, and its coordinates have

24 CHAPTER 3. MAPPING ALGORITHM

Algorithm 3.4 Placement Phase - ConfigCost

ConfigCost(NewGraph) = Cost : evaluates the configuration NewGraph and returns the
configuration cost in Cost

let Cost ← 0
let Marker ← 2D-array of size NewGraph.Size.X × NewGraph.Size.Y containing Boolean values
for each Vertex in NewGraph do
let Coord ← Vertex.Coordinate

let Marker [Coord] ← true
end for
for each Coord in Config.ExcludeList do
if Marker [Coord] = true then
let Cost ← Cost + Config.CostExcludeMatch

end if
let Marker [Coord] ← true

end for
for each Edge in NewGraph do
if Edge.Source and Edge.Target are nearest neighbors then
next iteration

end if
let Length ← (distance from Edge.Source to Edge.Target) - 1
let Costadd ← Config.CostChannelLength

let Costadd ← Costadd × Length

if Config.UseRouting = true then
if PathRoutable(Marker, Edge) = true then
let Costadd ← Costadd / PATH ROUTABLE FACTOR

end if
end if
let Cost ← Cost + Costadd

end for
let Cost ← Cost + InputCost(NewGraph)
let Cost ← Cost + OutputCost(NewGraph)
let Cost ← Cost + ArrayCost(NewGraph)
if UserCost is defined then
let Cost ← Cost + UserCost(NewGraph)

end if

been inserted into the path queue, each coordinate along the path is checked to see if it is available

in the marker array. For paths that traverse a single column or row, a single match will make the

path unroutable. For diagonal paths there are two possibilities so both coordinates must match for

the path to be unroutable. Even though a simple path can be found it doesn’t necessarily mean the

path is routable since there could a conflict with another route. Also, if a simple path can not be

found this doesn’t necessarily mean the path is unroutable.

The InputCost and OutputCost functions, which are closely related, calculate costs asso-

ciated with the primary input and primary output, respectively. There are five possible targets for

these two vertices. The first possibility is along the left edge (which is typically used by the input)

3.2. PLACEMENT PHASE 25

Algorithm 3.5 Placement Phase - PathRoutable

PathRoutable(Marker, Edge) = Routable : checks coordinates in Marker that are along
Edge and sets Routable to true if the coordinates are unblocked

let SingleMatch ← true
let Source ← Edge.Source

let Target ← Edge.Target

let Path ← queue that contains coordinates
if Source.X = Target.X then
if Target.Y > Source.Y then
let Step ← +1

else
let Step ← -1

end if
for Y ← (Source.Y + Step) to (Target.Y - Step) do
insert Coordinate (Source.X, Y) into queue Path

end for
else if Source.Y = Target.Y then
if Target.X > Source.X then
let Step ← +1

else
let Step ← -1

end if
for X ← (Source.X + Step) to (Target.X - Step) do
insert Coordinate (X, Source.Y) into queue Path

end for
else if Source is diagonal nearest neighbor to Target then
insert Coordinate (Target.X, Source.Y) into queue Path
insert Coordinate (Source.X, Target.Y) into queue Path
let SingleMatch ← false

else
return false

end if
let NumMatches ← 0
for each Coord in Path do
if Marker [Coord] = true then
increment NumMatches

end if
end for
if SingleMatch = true then
return (NumMatches = 0)

end if
return (NumMatches < length of queue Path)

26 CHAPTER 3. MAPPING ALGORITHM

Figure 3.3: Depiction of how path intersections are determined using rectangular bounding boxes.
In this example the red lines would be considered intersecting within the shaded yellow region.

where the cost is dependent upon the distance the X coordinate is from 0. The second possibility

is along the right edge (which is typically used by the output) where the cost is dependent upon

the distance the X coordinate is from the desired right edge. The desired right edge is either the

current array width or the desired array width, whichever is larger. The third possibility is along

the top edge where the cost is dependent upon the distance the Y coordinate is from 0. The fourth

possibility is along the bottom edge where the cost is dependent upon the distance the Y coordinate

is from the desired bottom edge. The desired bottom edge is either the current array height or the

desired array height, whichever is larger. The fifth possibility is to completely ignore the vertex,

which means the cost increase is zero no matter where the vertex is positioned. The five possible

targets are depicted in Figure 3.4. Whatever cost increase is decided upon is multiplied by a constant

and squared before being returned where it is combined with the total configuration cost.

The ArrayCost function calculates the cost associated with the size of the array. There

are two components to this cost. The array size in the X dimension and the array size in the Y

dimension. First the current array size in the X dimension is compared to the desired array size in

the X dimension. If the current X dimension is larger than the desired X dimension then the cost is

increased. The cost increase is exponential where the base is a small constant and the power is the

difference between the X dimensions. Next the current array size in the Y dimension is compared

to the desired array size in the Y dimension. If the current Y dimension is larger than the desired

Y dimension then the cost is increased. The cost increase is again exponential where the base is a

small constant and the power is the difference between the Y dimensions. When the current array

3.2. PLACEMENT PHASE 27

Left

Left

Right

Right

Top

Bottom

Top

Bottom

Ignore

Figure 3.4: Depiction of the five possible targets for the primary input and the primary output. The
current mapping for this application is shown in gray and unassigned processors in the target array
are shown in white. In this example the desired array height is larger than the current array height,
but the desired array width is less than the current array width.

size is smaller than the desired array size the cost increase is zero.

A large number of parameters are used in determining the configuration cost. The Con-

fig.ExcludeList parameter is a list of locations within the target array that should never have tasks

assigned to them. Tasks can temporarily be assigned to these excluded locations, to help move

tasks around the array, but there is a large penalty for using these excluded locations. This list

is also used to properly initialize the marker array, which is used for routable path calculations.

The Config.UseRouting parameter is used to enable or disable routable path calculations, which

can impact the runtime. If there are no plans to insert routing processors then there is no need

to distinguish between routable and unroutable paths. The Config.Size parameter contains the de-

sired size for the target array. This parameter is primarily used for calculating array size related

costs, but it is also used for finding the desired right and bottom edges for primary input and pri-

mary output related costs. The Config.Input parameter determines which vertex is the primary

input. The Config.InputType parameter determines the desired edge for the primary input. The

Config.Output parameter determines which vertex is the primary output. The Config.OutputType

parameter determines the desired edge for the primary output.

28 CHAPTER 3. MAPPING ALGORITHM

Algorithm 3.6 Placement Phase - InputCost

InputCost(NewGraph) = Cost : calculates the cost associated with the input vertex for
NewGraph and returns the cost in Cost

let Costadd ← 0
let RightEdge ← max (NewGraph.Size.X - 1, Config.Size.X - 1)
let BottomEdge ← max (NewGraph.Size.Y - 1, Config.Size.Y - 1)
let Coord ← coordinate for vertex Config.Input of NewGraph
if Config.InputType = LEFT then
if Coord.X > 0 then
let Costadd ← Config.CostInputOutput

let Costadd ← Costadd × Coord.X

end if
else if Config.InputType = RIGHT then
if Coord.X < RightEdge then
let Costadd ← Config.CostInputOutput

let Costadd ← Costadd × (RightEdge - Coord.X)
end if

else if Config.InputType = TOP then
if Coord.Y > 0 then
let Costadd ← Config.CostInputOutput

let Costadd ← Costadd × Coord.Y

end if
else if Config.InputType = BOTTOM then
if Coord.Y < BottomEdge then
let Costadd ← Config.CostInputOutput

let Costadd ← Costadd × (BottomEdge - Coord.Y)
end if

end if
return (Costadd × Costadd)

There are four additional parameters which serve a different purpose than the previously

listed parameters. These four parameters assign weights to the different cost attributes. This is

where most of the fine tuning takes place. The first parameter is Config.CostChannelLength, which

accounts for the presence of non-nearest neighbor connections. Longer connections are less ideal so

the cost for using them increases linearly with the connection length. This cost weight serves as

somewhat of a basis for the other cost weights. A value of 20 was chosen, which is small enough

to avoid frequent overflows, but large enough that a number of integer fractions can be created.

The second parameter is Config.CostExcludeMatch, which accounts for tasks assigned to excluded

locations. For each matching location the cost is increased by a constant amount since a match is

either a true of false event. Since using excluded locations is allowed but highly undesirable this

cost weight is very large relative to other cost weights. After some trial and error this value needs

to be at least 5 times larger than the basis with a value of 100 being chosen. The third parameter

is Config.CostInputOutput, which accounts for the distance the input and output vertices are from

3.2. PLACEMENT PHASE 29

Algorithm 3.7 Placement Phase - OutputCost

OutputCost(NewGraph) = Cost : calculates the cost associated with the output vertex for
NewGraph and returns the cost in Cost

let Costadd ← 0
let RightEdge ← max (NewGraph.Size.X - 1, Config.Size.X - 1)
let BottomEdge ← max (NewGraph.Size.Y - 1, Config.Size.Y - 1)
let Coord ← coordinate for vertex Config.Output of NewGraph
if Config.OutputType = LEFT then
if Coord.X > 0 then
let Costadd ← Config.CostInputOutput

let Costadd ← Costadd × Coord.X

end if
else if Config.OutputType = RIGHT then
if Coord.X < RightEdge then
let Costadd ← Config.CostInputOutput

let Costadd ← Costadd × (RightEdge - Coord.X)
end if

else if Config.OutputType = TOP then
if Coord.Y > 0 then
let Costadd ← Config.CostInputOutput

let Costadd ← Costadd × Coord.Y

end if
else if Config.OutputType = BOTTOM then
if Coord.Y < BottomEdge then
let Costadd ← Config.CostInputOutput

let Costadd ← Costadd × (BottomEdge - Coord.Y)
end if

end if
return (Costadd × Costadd)

Algorithm 3.8 Placement Phase - ArrayCost

ArrayCost(NewGraph) = Cost : calculates the cost associated with the array size for
NewGraph and returns the cost in Cost

let CostaddX ← 0
let CostaddY ← 0
if NewGraph.Size.X > Config.Size.X then
let Costbase ← Config.CostArraySize

let Costexp ← NewGraph.Size.X - Config.Size.X
let CostaddX ← pow(Costbase, Costexp)

end if
if NewGraph.Size.Y > Config.Size.Y then
let Costbase ← Config.CostArraySize

let Costexp ← NewGraph.Size.Y - Config.Size.Y
let CostaddY ← pow(Costbase, Costexp)

end if
return (CostaddX + CostaddY)

30 CHAPTER 3. MAPPING ALGORITHM

their desired edges. Since the cost for these attributes is only included once the value is squared to

signify its importance. Trial and error has shown that this attribute can grow rather quickly so a

value less than the basis was needed with a value of 10 being chosen. The fourth and final parameter

is Config.CostArraySize, which accounts for the size of the array. It is important that this attribute

(which is often the most important attribute) doesn’t get overwhelmed by other attributes so it

is emphasized using an exponential increase. As expected, this attribute grows very quickly so a

value of 5 was chosen, which is much smaller than the basis. One side effect of using an exponential

increase with a small base is that when the dimensions are over by only a small amount the cost

increase is relatively small compared to other attributes. This makes the array boundaries less rigid

but has been shown to produce better mappings for some applications because of the extra row or

column when positioning the primary input and primary output.

Only a few constants are used in determining the configuration cost since most of the

tuning is done by the configuration parameters. The constant PATH ROUTABLE FACTOR is

used to reduce the communication cost to a fraction of its original value when an easily routable

path can be found. If this value is too high the reduced cost will be very close to zero meaning that

a routable path is nearly identical to being nearest neighbor. If this value is too low the benefit

of finding routable paths would be questionable. This would be similar to what happens when the

Config.UseRouting parameter is set to false, except that when using this parameter the runtime is

also reduced. After some trial and error a value of 4 to 5 prioritizes routable paths best, with 5 being

the value chosen. The constants LEFT, RIGHT, TOP, and BOTTOM are simply enumerations used

to distinguish the type of operation being performed.

Temperature Schedule

The temperature schedule is broken down into three parts, the initial temperature, the final

temperature, and the cooling rate. The cooling rate has already been discussed in the PlacementMain

function on page 18. The initial and final temperature points can be determined in a number of

ways. One method is to use constant temperature points [19]. Another method is to calculate these

temperature points [14]. For this work the initial and final temperature points are calculated. The

advantage to using calculated temperature points is that the temperature schedule is aware of the

problem’s difficulty level. The initial and final temperature points are calculated by the functions

InitialTemp and FinalTemp, listed in Algorithm 3.9 and Algorithm 3.10 respectively. The way the

temperature schedule is chosen has a significant impact on the runtime of the algorithm. When the

3.2. PLACEMENT PHASE 31

number of temperature steps increases more perturbations are executed and as a result the runtime

increases. When the initial temperature is extremely high the number of temperature steps is very

large. When the final temperature is extremely low the number of temperature steps is again very

large. Also when the temperature cooling rate is very close to 1.0 the temperature cools very slowly

and once again the number of temperature steps is very large. As a result of these trade-offs the

initial and final temperatures must be chose carefully so that the core temperature range is used

more efficiently.

The InitialTemp and FinalTemp functions are very similar. Both functions perform a

series of perturbs, while changing the temperature, until the number of perturbs accepted reaches a

certain level. The point of this procedure is to adjust the temperature schedule to the difficulty of

the problem. To start the temperature is set to an initial value. The configuration is then duplicated

so that tests can be performed on the configuration without disturbing the original configuration.

The main loop then begins executing blocks of perturbs. The temperature increases each iteration

when searching for the initial temperature and decreases each iteration when searching for the final

temperature. For each iteration the configuration is perturbed 100 times and the number of perturbs

that are accepted is called the acceptance level. If the acceptance level satisfies the given condition

the main loop exits and the temperature is returned. For the final temperature this condition is

a minimum acceptance level. For the initial temperature this condition is a maximum acceptance

level.

Algorithm 3.9 Placement Phase - InitialTemp

InitialTemp(Costmin) = Temp : increases the initial temperature Temp until a minimum
number of perturbs are accepted

let Temp ← TEMP INIT MIN

let NewGraph ← Graph

let NewCost ← Costmin
for I ← 1 to TEMP CHANGE COUNT do
let Accepted ← PerturbGraph(NewGraph, NewCost, Temp, 100, Costmin)
if Accepted ≥ TEMP INIT ACCEPT then
break loop

end if
let Temp ← Temp × TEMP CHANGE STEP

end for
return Temp

A number of constants are used when calculating the initial and final temperature points.

The constants TEMP INIT MIN and TEMP INIT ACCEPT are critical in determining the initial

temperature. The first constant determines the lowest possible initial temperature. The second

32 CHAPTER 3. MAPPING ALGORITHM

Algorithm 3.10 Placement Phase - FinalTemp

FinalTemp(Costmin) = Temp : decreases the final temperature Temp until a maximum number
of perturbs are accepted

let Temp ← TEMP FINAL MAX

let NewGraph ← Graph

let NewCost ← Costmin
for I ← 1 to TEMP CHANGE COUNT do
let Accepted ← PerturbGraph(NewGraph, NewCost, Temp, 100, Costmin)
if Accepted ≤ TEMP FINAL ACCEPT then
break loop

end if
let Temp ← Temp / TEMP CHANGE STEP

end for
return Temp

constant determines the minimum number of perturbs that must be accepted in order to accept

the initial temperature. The initial temperature should be high enough to initially accept almost

all perturbations and avoid getting stuck in a local minimum. Though if the initial temperature is

too high then iterations will be wasted simply around bouncing between local minimums. There

is still some uncertainty in what the best values are for these constants, but the values 100 and

95, respectively, seem to work. The constants TEMP FINAL MAX and TEMP FINAL ACCEPT

are critical in determining the final temperature. The first constant determines the highest possible

final temperature. The second constant determines the maximum number of perturbs that must

be accepted in order to accept the final temperature. The final temperature should be low enough

that only improvements in cost are accepted in order to reach the global minimum. Though if the

final temperature is too low then iterations will be wasted since the lowest cost solution has already

been reached at higher temperatures. There is still some uncertainty in what the best values are

for theses constants as well, but the values 0.01 and 10, respectively, seem to work. There could be

some benefit to using a maximum final temperature of 0.001 for CPUs much faster than a 2.0 GHz

Xeon processor. The constants TEMP CHANGE STEP and TEMP CHANGE COUNT determine

the absolute upper and lower limits for the temperature schedule. The first constant determines the

rate that the temperature points increase or decrease in the acceptance loops. The second constant

determines the maximum number of iterations in the acceptance loops. If the temperature changes

too quickly or is allowed to change too many times the initial and final temperatures could reach

extremes, thereby increasing the runtime significantly. If the temperature changes too slowly or

is only allowed to change a few times the temperature schedule will not have the range needed to

obtain the best quality possible. There is still some uncertainty in what the best values are for these

3.2. PLACEMENT PHASE 33

Property Description
Perturb.MinX Minimum X value for the target search range
Perturb.MaxX Maximum X value for the target search range
Perturb.MinY Minimum Y value for the target search range
Perturb.MaxY Maximum Y value for the target search range
Perturb.SrcVertex The source vertex for the Perturb
Perturb.DstVertex The target vertex for the Perturb
Perturb.SrcCoord The source location for the Perturb
Perturb.DstCoord The target location for the Perturb
Perturb.History List of previously tried target locations

Table 3.4: List of properties for the Perturb variable.

constants, but the values 5 and 100, respectively, seem to work well.

Perturb Configuration

Perturbing the configuration is a complex process and it’s where all the work actually

occurs. Like with the configuration cost, the perturb configuration process is broken down into

many functions. These functions are PerturbGraph, PerturbSetup, RandVertex, PerturbApply,

and PerturbUndo, listed in Algorithm 3.11, Algorithm 3.12, Algorithm 3.13, Algorithm 3.14, and

Algorithm 3.15 respectively. The configuration is perturbed using a series of moves with the intention

of lowering the configuration cost. An important requirement when developing moves is that any

configuration can be transformed into any other configuration using a series of these moves. These

moves can be as simple as swapping two elements or moving an element to an unused location.

Choosing which elements to operate on is a complex operation in itself and is what makes the

perturb configuration process so complex.

The global variable Perturb, which is used when perturbing the configuration, tracks task

movements so they can reversed if the modified configuration is not accepted. The properties for

this global variable are listed in Table 3.4. The types of values stored in each field and their uses

are described in further detail in the remainder of this subsection. The lifetime of the Perturb

variable is very limited and only exists when the configuration is in an unaccepted state. Reversing

perturbations is a simple way to save runtime. Alternatively, the entire graph could be duplicated

before each move, which is a costly operation, then restored if the perturbation is rejected. The

runtime required to prepare a perturbation is also costly, which is saved by reversing the perturbation

then applying a variant of the perturbation.

The PerturbGraph function is responsible for executing a block of perturbs while counting

the number of perturbs that are accepted. To begin a new perturb object is created. A series of

34 CHAPTER 3. MAPPING ALGORITHM

attempts are then made to try and improve the configuration. This involves applying variations of

the perturb, based on the perturb object’s data, and evaluating how the configuration cost changes.

If the perturb variation fails to be applied, which can happen if the target for a swap operation is

unmovable, the current attempt is aborted and a new attempt is made. If the new configuration has

a lower cost than the global minimum then the global minimum is replaced by the new configuration.

Doing this ensures that the global minimum is always the lowest cost configuration. The new config-

uration is also compared to the old configuration to determine whether or not the new configuration

should be accepted. The probability of being accepted depends upon the cost difference between

the two configurations and the temperature. The smaller the difference in cost or the higher the

temperature the more likely the configuration is going to be accepted. The new configuration will

be accepted if the new configuration cost is less than or equal to the old configuration cost regard-

less of the temperature value. There are a number of ways to calculate the acceptance probability

whenever the new configuration cost is more than the old configuration cost, but the most common

method is to use Equation 3.1 [14,31]. The result from this equation is then compared to a random

number between 0.0 and 1.0. The new configuration is accepted if the result is greater than the

random number. If the configuration is accepted then the acceptance counter is incremented and a

new perturb object is created. If the configuration is not accepted then the perturb is undone and

another perturb variation is applied. In the end the function returns the number of perturbs that

were accepted.

Acceptance = exp

(

− Costnew − Costold

T

)

(3.1)

As the placement phase progresses and the configuration is perturbed, the global minimum

slowly improves. Figure 3.5 shows a plot of the minimum and current configuration costs over

three iterations of the temperature schedule for the 802.11a wireless transmitter, further described

in Chapter 5. The current configuration cost is the cost of the configuration after returning each

time from the PerturbGraph function. The minimum configuration cost is the cost for the global

minimum configuration, which is updated each time a lower cost configuration is observed during

the PerturbGraph function.

The PerturbSetup function begins by initializing a new perturb object so that perturb

variations can efficiently be constructed. The first step is to randomly choose a vertex to serve as

the source for new perturb variations by calling RandVertex. The source vertex and its current

location, referred to as the source location, are stored inside the new perturb object. Next the

search range is calculated by adding and subtracting a constant from the source location’s X and

3.2. PLACEMENT PHASE 35

Algorithm 3.11 Placement Phase - PerturbGraph

PerturbGraph(NewGraph, NewCost, Temp, Count, Costmin) = Accepted : perturbs the
configuration NewGraph Count times and returns the number of perturbs accepted, also updates
Graph and Costmin if a new absolute minimum is found

let Accepted ← 0
for Iter ← 1 to Count do
PerturbSetup(NewGraph)
for Trial ← 1 to PERTURB TRIAL MAX do
if PerturbApply(NewGraph) = false then
next iteration

end if
let PerturbCost ← ConfigCost(NewGraph)
if PerturbCost < Costmin then
let Graph ← NewGraph

let Costmin ← PerturbCost

end if
let Acceptance ← exp((NewCost - PerturbCost) / Temp)
let Rand ← random number from 0.0 up to 1.0
if PerturbCost ≤ NewCost or Acceptance > Rand then
let NewCost ← PerturbCost

increment Accepted
break loop

end if
PerturbUndo(NewGraph)

end for
end for
return Accepted

 10

 100

 1000

 10000

 0 50 100 150 200 250

C
on

fig
ur

at
io

n
C

os
t

Inner-Loop Iteration Number

Improvements in Configuration Cost

Current Cost
Minimum Cost

Figure 3.5: Improvements in minimum configuration cost along with the current configuration cost
for three iterations of the temperature schedule while mapping the 802.11a wireless transmitter

36 CHAPTER 3. MAPPING ALGORITHM

Y values to obtain lower and upper search boundaries. If the lower boundary for the X dimension

extends beyond the left edge of the array then the boundary is truncated at the left edge. If the

lower boundary for the Y dimension extends beyond the upper edge of the array then the boundary

is truncated at the upper edge. If the upper boundary for the X dimension extends more than one

column beyond the right edge of the array then the boundary is truncated at one column beyond

the right edge. If the upper boundary for the Y dimension extends more than one row beyond the

bottom edge of the array then the boundary is truncated at one row beyond the bottom edge. Once

the search range has been corrected it is stored inside the new perturb object.

Algorithm 3.12 Placement Phase - PerturbSetup

PerturbSetup(NewGraph) : creates and initializes a new Perturb object from NewGraph

create new global object Perturb
let Perturb.History ← queue that contains coordinates
let Perturb.SrcVertex ← RandVertex(NewGraph)
let Perturb.SrcCoord ← Perturb.SrcVertex.Coordinate

let Perturb.MinX ← Perturb.SrcCoord.X - PERTURB RANGE

let Perturb.MaxX ← Perturb.SrcCoord.X + PERTURB RANGE

let Perturb.MinY ← Perturb.SrcCoord.Y - PERTURB RANGE

let Perturb.MaxY ← Perturb.SrcCoord.Y + PERTURB RANGE

if Perturb.MinX < 0 then
let Perturb.MinX ← 0

end if
if Perturb.MinY < 0 then
let Perturb.MinY ← 0

end if
if Perturb.MaxX > NewGraph.Size.X then
let Perturb.MaxX ← NewGraph.Size.X

end if
if Perturb.MaxY > NewGraph.Size.Y then
let Perturb.MaxY ← NewGraph.Size.Y

end if

The RandVertex function is responsible for randomly selecting a vertex which will be a

good candidate for perturbations. To begin each vertex is assigned a cost based on its connectivity.

The connectivity cost for a vertex is calculated by summing the length of every output edge. Any

vertices that are unmovable can not be selected and are skipped. A random number is then generated

between 0 and the largest connectivity cost observed. The cost for each vertex is then compared

to this random number. Vertices with a cost greater than or equal to this random number are

put into a selection queue. From this queue a random element is selected, which then becomes the

perturb object’s source vertex. By using this method vertices with longer connections are more

likely to be selected, but vertices with shorter connections still have the possibility of being selected.

3.2. PLACEMENT PHASE 37

Vertices with shorter connections are usually already nearest neighbor and therefore don’t need to

be perturbed as much.

Algorithm 3.13 Placement Phase - RandVertex

RandVertex(NewGraph) = Vertex : selects a random vertex from NewGraph prioritized by
the total distance to connected vertices and returns this vertex in Vertex

let MaxCost ← 0
for each Vertex in NewGraph do
if Vertex.NoTouch = true then
next iteration

end if
let Cost ← 0
for each output edge OutEdge of Vertex do
let Length ← distance from Vertex to OutEdge.Target
let Cost ← Cost + Length

end for
let Vertex.Cost ← Cost

if Cost > MaxCost then
let MaxCost ← Cost

end if
end for
let RandCost ← random number from 0 to MaxCost

let Select ← queue that contains vertices
for each Vertex in NewGraph do
if Vertex.NoTouch = true then
next iteration

end if
if Vertex.Cost ≥ RandCost then
insert Vertex into queue Select

end if
end for
let Vertex ← random element from queue Select
return Vertex

The PerturbApply function is responsible for actually changing the vertex locations. To

begin a random target location is generated using the search range stored in the perturb object.

This generated target location is then stored in the perturb object. Some simple checks are then

performed to see if the source and target locations match, or if the target location has already been

tried to avoid wasting time. There are two possible moves, one swaps the source and target vertices,

the other relocates the source vertex to the target location. The type of move chosen depends upon

whether or not a vertex is already assigned to the target location. If a vertex was found at the target

location then a swap is performed. For a swap, if the target vertex is movable then the source vertex

is assigned to the target location and the target vertex is assigned to the source location. If a vertex

was not found at the target location then a move is performed. For a move, the source vertex is

38 CHAPTER 3. MAPPING ALGORITHM

assigned to the target location. One advantage to performing swaps is that the graph boundaries

do not need to be recalculated saving some time. Once the perturb is complete the target location

is saved in the perturb object’s history to avoid trying the same operation again if the perturb is

rejected.

Algorithm 3.14 Placement Phase - PerturbApply

PerturbApply(NewGraph) = Success : perturbs the configuration NewGraph by either swap-
ping two vertices or displacing a vertex to a random location

let RandX ← random number from Perturb.MinX to Perturb.MaxX

let RandY ← random number from Perturb.MinY to Perturb.MaxY

let Perturb.DstCoord ← Coordinate (RandX, RandY)
if Perturb.SrcCoord = Perturb.DstCoord then
return false

end if
if Perturb.DstCoord is in Perturb.History then
return false

end if
let Perturb.DstVertex ← invalid vertex
for each Vertex in NewGraph do
if Vertex.Coordinate = Perturb.DstCoord then
let Perturb.DstVertex ← Vertex

break loop
end if

end for
if Perturb.DstVertex is valid then
if Perturb.DstVertex.NoTouch = true then
return false

end if
let Perturb.SrcVertex.Coordinate ← Perturb.DstCoord

let Perturb.DstVertex.Coordinate ← Perturb.SrcCoord

else
let Perturb.SrcVertex.Coordinate ← Perturb.DstCoord

let NewGraph.Size ← updated bounding box
end if
insert Perturb.DstCoord into queue Perturb.History
return true

The PerturbUndo function undoes any changes made to the vertex locations. The advan-

tage of having an undo function is that the graph object doesn’t have to be duplicated each time

a perturb is applied. There are two possible undo operations depending upon whether or not a

target vertex was previously found. If a target vertex was previously found then the source vertex

is assigned to the source location and the target vertex is assigned to the target location. If a target

vertex was not previously found then the source vertex is assigned to the source location and nothing

happens to the target vertex, which should be invalid. When the function returns, the configuration

is restored to its previously accepted state and is ready for a new perturb variation to be applied.

3.2. PLACEMENT PHASE 39

Algorithm 3.15 Placement Phase - PerturbUndo

PerturbUndo(NewGraph) : undoes the last perturb applied to the configuration NewGraph

if Perturb.DstVertex is valid then
let Perturb.SrcVertex.Coordinate ← Perturb.SrcCoord

let Perturb.DstVertex.Coordinate ← Perturb.DstCoord

else
let Perturb.SrcVertex.Coordinate ← Perturb.SrcCoord

let NewGraph.Size ← updated bounding box
end if

Two constants are used when perturbing the configuration. The first constant PER-

TURB TRIAL MAX determines the number of variations to try on each new perturb object. If

this value is too low the percentage of time spent creating perturb objects increases and the per-

centage of time spent applying perturb variations decreases. If this value is too high then time will

be wasted trying variations of a perturb that may never be accepted. After a little trial and error

a value of 5 was chosen, which saves time but doesn’t appear to decrease the mapping quality. For

a few problems a value of 10 slightly improves the mapping quality but also increases the runtime

quite significantly. A value of 10 may be good to use for CPUs much faster than a 2.0 GHz Xeon

processor. The second constant PERTURB RANGE determines the search range used for creating

new perturb variations. This value seems to work best when in the range of 2 to 4. When this value

is set too high tasks spread out further in the beginning of the temperature schedule and don’t seem

to compress as well as lower values. A value of 3 was chosen, which seems to work very well.

3.2.3 Modifications

A few modifications were made to the classic simulated annealing algorithm. Some of these

modification were borrowed from StreamIt, a portable framework for programming stream-based

architectures [14]. The first borrowed modification was executing the simulated annealing algorithm

multiple times, each time starting with the best configuration from the previous iteration. The qual-

ity of the mapping sometimes improved substantially with just a second pass. The second borrowed

modification was sorting nodes using depth first search before initially placing them. This helped

when mapping applications that had long chains of nodes, similar to software pipelines. The third

borrowed modification was determining the initial and final temperature points through a series of

perturbations. This saved a noticeable amount of time when mapping simpler applications. The

complexity of an application was accurately reflected upon by the runtime of the mapping algorithm

due to these correctly defined temperature points. The first modification, not found in other imple-

40 CHAPTER 3. MAPPING ALGORITHM

mentations, was flagging locations that could later be used to simplify the routing. The probability

of successfully completing a route between two distant nodes was greatly increased by leaving these

flagged locations unoccupied. The second modification, not found in other implementations, was

saving the state of a perturbation so it could be reversed and other variations could be applied.

This modification increased the time spent trying a perturb and reduced the time spent preparing

a perturb. Each of these modifications attempt to either reduce the runtime, increase the mapping

quality, or do both.

3.2.4 Summary

Simulated annealing has been a good fit for the placement phase of the mapping algorithm

due to its flexibility and excellent performance as a heuristic. For the mapping problem discussed

in this work, only a few modifications had to be made to the simulated annealing framework.

However, components such as the configuration cost functions and the perturb graph functions had

to be highly customized. A number of customizable parameters and finely tuning constants were

introduced, which where determined through trial and error. There’s no doubt that more work

could be done to further tune parameters and implement additional optimizations but this is left

for future work. Overall the current implementation has been very successful in placing tasks from

a wide variety of applications onto the AsAP architecture.

3.3 Routing Phase

The routing phase is fairly straight forward. Like the placement phase, much of the basic

structure used in the implementation of the routing phase came from the book Algorithms for VLSI

Design Automation by Gerez [13]. For this phase the primary goal is to insert routing processors

into the graph in order to connect non-nearest neighbor processors. An important requirement for

the routing phase algorithm is that it find the shortest path available in a relatively short period of

time. Maze routing was chosen as the base algorithm for this phase because the algorithm is easy

to implement and guaranteed to find the shortest path if one exists. The maze routing algorithm

also has the flexibility required to handle intersecting routing processors and excluded processors.

Maze routing is just one of a few different routing algorithms to choose from. Some routing

algorithms target specific applications, such as routing wire segments in FPGAs [22]. Even the maze

routing algorithm itself (also called the Lee path connection algorithm [21]) has many derivations

for targeting specific applications. It appears that most routing algorithms are derived from maze

3.3. ROUTING PHASE 41

routing or are somehow related. Some derivations include multi-layer routing and routing to multiple

end-points for a single net simultaneously. Maze routing has been used successfully for years for PC-

board design. One appealing aspect of maze routing, which contributes to its ease of implementation,

is that it operates on a 2D-grid. This makes the algorithm a perfect fit for the AsAP architecture.

Excluded processors are also trivial to implement since the algorithm was originally designed to

route around obstacles.

3.3.1 Maze Routing

The basic principle behind the maze routing algorithm is, first choose a source and target

location, next search for the shortest path, next assign tasks to grid locations while tracing back

along the shortest path, finally clean-up any unused grid locations. The search for the shortest path

is performed using propagation waves, which bubble around obstacles, while marking grid locations

with their distance from the source. Propagation continues until the wavefront encounters the target

which is then marked with the length of the shortest path back to the source (plus one actually).

The algorithm is guaranteed to find the shortest path if one exists because the wave propagates in

every direction that’s not obstructed one hop at a time. When the target is reached a path is traced

back to the source decreasing the distance one step at a time until one is reached. Grid locations

used by the shortest path are blocked off and the remaining grid locations are cleaned-up so they

can be used for the next route.

3.3.2 Algorithm Details

The routing phase has two major components. The first component, which is optional,

adds empty space to the array to help with routing. This component is primarily used to decrease

the likelihood of routing conflicts for applications that are very congested. The second component

is the maze routing algorithm, which iterates over every long distance connection in the array and

inserts a chain of routing processors (if possible) in order to convert routes to nearest neighbor

only. The remainder of this section will discuss how these two components work in detail along with

modifications made to the maze routing algorithm to handle intersecting routing processors.

Framework

The RoutingMain function, listed in Algorithm 3.16, contains the basic maze routing frame-

work with the additional space insertion component. This function serves as the starting point for the

42 CHAPTER 3. MAPPING ALGORITHM

routing phase. This function doesn’t do any work itself and instead relies on the other subfunctions

to do all the heavy lifting. The main purpose of this function is to orchestrate the process of adding

space to the array, setting up the gridmap, and passing each edge in sequence to the maze router. No

optimizations are really performed by this function with the exception of enabling/disabling space

insertion.

Before routing can actually begin the function must first check whether or not additional

space is needed and has been requested. It’s important to note that the array size can change if space

is inserted into the array. Therefore space has to be inserted before creating the gridmap object.

Empty space is only added to the array when the space insertion component is enabled and the edge

to node ratio is large enough. When additional space is requested the InsertSpacing function is

called to selectively add empty columns and rows into the array in an intelligent fashion. Once space

insertion has been completed the InitGridmap function can be called to create and initialize a new

gridmap object. The new gridmap object will be identical in size to the target array which is why

it was important to make any changes to the target array’s size before initializing the gridmap. The

last preparation step is to put all non-nearest neighbor edges into a list. Now to route the edges

the source and target coordinates for each edge in the list are passed through three routing stages.

The first stage is wave propagation. In this stage the Propagate function is called to search for the

shortest path between the source and the target. The second stage is path traceback. This stage

only occurs if there were no conflicts during the wave propagation stage. In this stage the Traceback

function is called to trace back along the shortest path and insert routing processors. The final stage

is gridmap cleanup. In this stage the Cleanup function is called to undo all the changes made to

the gridmap object during the wave propagation stage, excluding the changes made during the path

traceback stage. This basic procedure is shown visually in Figure 3.6. Once the edge list has been

exhausted the function returns.

This function uses two configuration parameters. The Config.AddSpacing parameter deter-

mines whether or not additional space is added to the array. With additional space the number of

possible routes between the source and the target increases, thereby reducing routing conflicts. Space

insertion is typically used for applications where the edge to vertex ratio is very high. Applications

with a high ratio are difficult to map because multiple connections will try to route through the

same processor creating conflicts. The second parameter, Config.SpaceThreshold, determines how

high this ratio must be before space is inserted. If this threshold is too low then routing processors

will be inserted when they are not needed. If this value is too high then many of the long-distance

3.3. ROUTING PHASE 43

S

T

23

2

3 2 3

2

3

4 5

6 5 6 7

5 4 5 6

34 4

6

6 7

7

Figure 3.6: The basics of the maze routing algorithm shown visually. The labels S and T represent
the source and target vertices, respectively. The numbers represent the distance to the source vertex,
generated by the propagation stage. The red arrow is the shortest path from the target back to
the source. The black boxes are unroutable locations (which can be due to an excluded location,
a compute processor, or a fully utilized router) and the unlabeled boxes were unused during the
propagation stage.

Algorithm 3.16 Routing Phase - RoutingMain

RoutingMain() : inserts routing processors to connect non-nearest neighbor vertices

if Config.AddSpacing then
let NumEdges ← number of edges in Graph
let NumNodes ← number of nodes in Graph
let Threshold ← (NumEdges × 100) / NumNodes
if Threshold > Config.SpaceThreshold then
InsertSpacing()

end if
end if
InitGridmap()

let Routes ← queue that contains edges
for each Edge in Graph do
if Edge.Source and Edge.Target are not nearest neighbors then
insert Edge into queue Routes

end if
end for
for each Edge in Routes do
let Source ← Edge.Source.Coordinate

let Target ← Edge.Target.Coordinate

if Propagate(Source, Target) = true then
Traceback(Source, Target, Edge)

end if
Cleanup()

end for

44 CHAPTER 3. MAPPING ALGORITHM

connections will remain unrouted for complex applications. This parameter is expressed as an integer

percentage instead of as a ratio. A value of 110 seems to work after some experimentation but there

is still some uncertainty in what the best value is for this parameter. For some of the applications

that were tested space insertion must be disabled in order to obtain a good mapping because the

calculated threshold does not accurately reflect the applications routing complexity. There are likely

better ways to decide whether or not space should be inserted.

Space Insertion

Space insertion is a rather complex process so it has been broken down into numerous func-

tions. These functions are InsertSpacing, EdgeDepends, ColSplits, RowSplits, and ShiftArray,

listed in Algorithm 3.17, Algorithm 3.18, Algorithm 3.19, Algorithm 3.20, and Algorithm 3.21 re-

spectively. The goal of space insertion is to reduce routing conflicts. This is done by selectively

inserting empty columns and rows into the array to increase the number of unassigned processors.

When the number of unassigned processors is increased the number of possible routes between the

source and the target is also increased. This is because these new rows and columns of entirely

unassigned processors can be used to circle around any obstacles that were previously blocking a

routable path. Intelligently choosing where to insert empty rows and columns makes space insertion

complex since poor choices bloat the array. Space insertion is mostly a hack that allows complex

applications (like the large Clos network on page 88) to be mapped successfully using nearest neigh-

bor communication only. For these complex applications space insertion substantially degrades the

mapping quality. In some cases the mapping quality is never even partially restored.

The InsertSpacing function is responsible for shifting parts of the array in order to create

additional routing space. Before the array can be shifted the subfunctions EdgeDepends, ColSplits,

and RowSplits must be called to fill the column position and row position queues. These two queues

contain the column positions and the row positions to use for shifting the array. When the array is

shifted horizontally everything to the right of the column being shifted is moved right one column.

When the array is shifted vertically everything below the row being shifted is moved down one row.

The one exception to these rules is when the shift amount is negative where everything to the right

or below the shift position is moved toward the left or the top of the array. Every time the array is

shifted the column and row numbers for every task below or to the right of the shift position increase

by one. This plays an important role in what order the shifts are applied. To avoid invalidating

pending positions in the two position queues they are first sorted in reverse numerical order. The

3.3. ROUTING PHASE 45

array is shifted once horizontally for each position in the column position queue. If a failure occurs,

which can happen if a task is unmovable or the destination for a move is blocked, then all pending

horizontal shifts in the queue are aborted since they will also fail. Likewise the array is shifted once

vertically for each position in the row position queue. If a failure occurs then all pending vertical

shifts in the queue must again be aborted since they will also fail. If every shift is successful then

the X dimension will have increased by the number of items in the column position queue and the

Y dimension will have increased by the number of items row position queue.

Algorithm 3.17 Routing Phase - InsertSpacing

InsertSpacing() : inserts additional rows and columns of empty space to aid with routing

let DependCol ← array of size Graph.Size.X containing queues that contain edges
let DependRow ← array of size Graph.Size.Y containing queues that contain edges
let SplitCol ← queue that contains column numbers
let SplitRow ← queue that contains row numbers
EdgeDepends(DependCol, DependRow)
ColSplits(DependCol, SplitCol)
RowSplits(DependRow, SplitRow)
sort queue SplitCol in descending order
for each Col in SplitCol do
if ShiftArray(HORIZONTAL, Col, 1) = false then
break loop

end if
end for
sort queue SplitRow in descending order
for each Row in SplitRow do
if ShiftArray(VERTICAL, Row, 1) = false then
break loop

end if
end for

The EdgeDepends function is responsible for calculating edge dependencies. For each edge

there are four possible dependencies, two column dependencies, and two row dependencies. The two

possible column dependencies are the column adjacent to the leftmost vertex, between the source

and the target, and the column containing the rightmost vertex. The number of columns that an

edge depends upon is based on the difference in the X dimension between the source coordinate and

the target coordinate. If the difference is equal to zero then the edge has no column dependencies.

If the difference is equal to one then both column dependencies refer to the same column, so the

edge really only has one column dependency. If the difference is more than one then the edge has

two column dependencies. The edge is inserted into a queue for each column that is a valid column

dependency. The two possible row dependencies are the row adjacent to the topmost vertex, between

the source and the target, and the row containing the bottommost vertex. The number of rows that

46 CHAPTER 3. MAPPING ALGORITHM

Figure 3.7: Depiction of the two possible column dependencies and the two possible row dependen-
cies. In this example the black bars represent array shift locations and the gray regions represent
newly created routing space after shifting the array.

an edge depends upon is based on the difference in the Y dimension between the source coordinate

and target coordinate. If the difference is equal to zero then the edge has no row dependencies. If

the difference is equal to one then both row dependencies refer to the same row, so the edge has only

one row dependency. If the difference is more than one then the edge has two row dependencies.

The edge is inserted into a queue for each row that is a valid row dependency. The two possible

column dependencies and the two possible row dependencies are shown in Figure 3.7. The function

returns once the column and row dependencies have been calculated for every edge in the graph.

Calculating split (or shift) positions from edge dependencies is divided into two functions.

The ColSplits function is responsible for calculating which columns to split based on which columns

have the most edge dependencies. The RowSplits function is responsible for calculating which rows

to split based on which rows have the most edge dependencies. Both of these functions are identical

except that the first function operates on column positions and the second function operates on row

positions. The first step is to find which positions have the most edge dependencies and put these

3.3. ROUTING PHASE 47

Algorithm 3.18 Routing Phase - EdgeDepends

EdgeDepends(DependCol, DependRow) : calculates which columns, stored in DependCol,
and which rows, stored in DependRow, each edge depends upon for splitting

for each Edge in Graph do
if Edge.Source and Edge.Target are nearest neighbors then
next iteration

end if
let MinX ← min(Edge.Source.X, Edge.Target.X)
let MaxX ← max (Edge.Source.X, Edge.Target.X)
let MinY ← min(Edge.Source.Y, Edge.Target.Y)
let MaxY ← max (Edge.Source.Y, Edge.Target.Y)
if difference between Edge.Source.X and Edge.Target.X ≥ 1 then
insert Edge into queue DependCol [MinX + 1]

end if
if difference between Edge.Source.X and Edge.Target.X ≥ 2 then
insert Edge into queue DependCol [MaxX]

end if
if difference between Edge.Source.Y and Edge.Target.Y ≥ 1 then
insert Edge into queue DependRow [MinY + 1]

end if
if difference between Edge.Source.Y and Edge.Target.Y ≥ 2 then
insert Edge into queue DependRow [MaxY]

end if
end for

positions into a selection list. This is done by counting the number of edge dependencies at each

position and comparing this number to a running maximum count. The maximum count is the

highest number of edge dependencies seen so far, which is initially set to one so positions with no

edge dependencies are ignored. If the number of edge dependencies is greater than the maximum

count then the maximum count is updated and a new selection list is created containing only the

corresponding position. If the number of edge dependencies is equal to the maximum count then

the corresponding position is appended to the selection list. If the selection list is empty after every

position has been counted then the function returns since there are no more edge dependencies to

satisfy. If the selection list is not empty then a random position is chosen from the selection list

and put into the split list. The split list is a queue that contains the positions that will actually be

shifted. The final step is to remove any dependencies related to the position that was selected. A

list is first created that contains every edge that depends upon the position that was selected. If

another position has an edge from the list in its queue then the edge is removed from the queue.

The number of edge dependencies in each position queue will decrease as more positions are put

into the split list. When there are no more edge dependencies left the function returns.

The ShiftArray function is responsible for mass reassigning tasks to new processors in the

48 CHAPTER 3. MAPPING ALGORITHM

Algorithm 3.19 Routing Phase - ColSplits

ColSplits(DependCol, SplitCol) : chooses the columns to split, stored in SplitCol, based on
which columns have the most dependencies in DependCol

loop
let Sizemax ← 1
let Select ← queue that contains column numbers
for X ← 1 to Graph.Size.X - 1 do
let Size ← length of queue DependCol [X]
if Size > Sizemax then
let Sizemax ← Size

clear queue Select
end if
if Size = Sizemax then
insert X into queue Select

end if
end for
if length of queue Select = 0 then
break loop

end if
let Col ← random element from queue Select
insert Col into queue SplitCol
for each Edge in queue DependCol [Col] do
for each Queue in array DependCol do
if Edge is in Queue then
remove Edge from Queue

end if
end for

end for
end loop

array. Shifting the array is also referred to as splitting the array. Every shift operation depends

upon two coordinates. The first coordinate is the lower bounds for selecting tasks. Every task below

and to the right of the lower bounds coordinate will be included in the shift. The second coordinate

is the displacement. Each task will be shifted by the amount set in the displacement coordinate.

There are two types of shifts, horizontal shifts and vertical shifts. The only difference between the

two types is how the two previous coordinates are initialized. For horizontal shifts, the X dimension

for the lower bounds coordinate is set to the starting position and the Y dimension for the lower

bounds coordinate is set to zero. Also the X dimension for the displacement coordinate is set to the

shift amount and the Y dimension for the displacement coordinate is set to zero. For vertical shifts

the X and Y dimensions are reversed. Before shifting the array every task must be checked to ensure

that no constraints are violated. The first check that is done on each task is to ensure that the task

is within the lower bounds. The second check that is done on each task is to ensure that the task is

movable. If this check fails then the shift operation is impossible so the function returns the value

3.3. ROUTING PHASE 49

Algorithm 3.20 Routing Phase - RowSplits

RowSplits(DependRow, SplitRow) : chooses the rows to split, stored in SplitRow, based on
which rows have the most dependencies in DependRow

loop
let Sizemax ← 1
let Select ← queue that contains row numbers
for Y ← 1 to Graph.Size.Y - 1 do
let Size ← length of queue DependRow [Y]
if Size > Sizemax then
let Sizemax ← Size

clear queue Select
end if
if Size = Sizemax then
insert Y into queue Select

end if
end for
if length of queue Select = 0 then
break loop

end if
let Row ← random element from queue Select
insert Row into queue SplitRow
for each Edge in queue DependRow [Row] do
for each Queue in array DependRow do
if Edge is in Queue then
remove Edge from Queue

end if
end for

end for
end loop

false. The final check that is done on each task is to ensure that the task will not be assigned to an

excluded processor. Like the previous check, if this check fails then the shift operation is impossible

so the function returns the value false. If a task passes all three checks then the task is inserted

into the shift queue. Once every task has been checked the array can be shifted. Shifting the array

is as simple as adding the displacement coordinate to each task in the shift queue. This effectively

creates an empty column or row in the array. The final step is to update the size of the array to

account for the new column or row. The function then returns the value true to indicate that the

shift was successful.

Only one configuration parameter is used by these functions. The Config.ExcludeList pa-

rameter is a list of locations within the target array that should not have tasks assigned to them.

This list is used when shifting the array to ensure that none of the tasks are moved onto an excluded

processor. The shift operation will fail if even a single task is predicated to land on an excluded

processor.

50 CHAPTER 3. MAPPING ALGORITHM

Algorithm 3.21 Routing Phase - ShiftArray

ShiftArray(Type, Start, Amount) = Shifted : shifts all nodes between Start and the array
edge by Amount either vertically or horizontally based on Type, returns true if every move was
valid

if Type = HORIZONTAL then
let Bounds ← Coordinate (Start, 0)
let Shift ← Coordinate (Amount, 0)

else
let Bounds ← Coordinate (0, Start)
let Shift ← Coordinate (0, Amount)

end if
let Select ← queue that contains vertices
for each Vertex in Graph do
if Vertex.X < Bounds.X or Vertex.Y < Bounds.Y then
next iteration

end if
if Vertex.NoTouch = true then
return false

end if
let Coord ← Vertex.Coordinate + Shift

if Coord is in Config.ExcludeList then
return false

end if
insert Vertex into queue Select

end for
for each Vertex in Select do
let Vertex.Coordinate ← Vertex.Coordinate + Shift

end for
let Graph.Size ← Graph.Size + Shift

return true

The constants VERTICAL and HORIZONTAL are simply enumerations used to distinguish

the type of shift operation being performed.

Initialize Gridmap

The gridmap is initialized by the InitGridmap function listed in Algorithm 3.22. To

initialize the gridmap a new gridmap object is created and each grid point in the gridmap is initialized

to match its corresponding location in the target array. Every gridmap object contains three 2D-

arrays each the size of the target array. These three 2D-arrays contain the information necessary to

distinguish one grid point from another when deciding which grid points are available for routing.

Initializing the gridmap fundamentally consists of assigning values to these three 2D-arrays so that

the gridmap and target array are synchronized.

The routing gridmap is stored in the global variable Gridmap, which contains all the infor-

3.3. ROUTING PHASE 51

Property Description
Gridmap.Size The dimensions for the Gridmap
Gridmap.Value 2D-array containing route marker values
Gridmap.Routes 2D-array containing remaining intersections
Gridmap.Vertex 2D-array containing associated vertices

Table 3.5: List of properties for the Gridmap variable.

mation necessary to ensure that routers are only assigned to valid locations. The properties for this

global variable are listed in Table 3.5. The types of values stored in each field and how each field is

used is described in further detail in the remainder of this subsection. The Gridmap variable has a

limited lifetime and after being initialized only exists until the end of the routing phase.

The types of values stored in the three 2D-arrays play an important role in determining

which grid points are available for routing. There are three different types of values stored in the

Value field for a grid point. The three types are negative values, positive values, and the value zero.

A negative value (which most of the time is −1) is used to indicate that the grid point is occupied

by a task. A positive value is used to indicate that the grid point has been considered as a possible

candidate for the route currently being solved. A value of zero is used to indicate that the grid point

is available and unoccupied. There are two different types of values stored in the Routes field for a

grid point. The two types are positive values and the value zero. A positive value is used to indicate

that the grid point still has ports available for routing data. This also indicates that the grid point

is available. A value of zero is used to indicate that the grid point has no more ports available for

routing data. The number of routes is decremented each time a new route intersects the grid point.

The Vertex field for a grid point can either be a valid vertex (containing its associated task) or an

invalid vertex. Two cases where the vertex will be valid are, when the grid point is associated with

a task from the original graph or when a routing task has been inserted at that location.

The InitGridmap function is responsible for initializing the grid points within the gridmap.

The function starts by creating a new gridmap object and setting the size of the gridmap object

equal to the size of the target array. In the beginning every grid point in the gridmap is initialized

as available. To appear available the value of the grid point is set to 0, the number of routes for

the grid point is set to the maximum (defined by a configuration parameter), and the vertex for the

grid point is set to an invalid vertex. Next the grid points in the gridmap are synchronized to the

vertices in the graph. For each grid point with a corresponding vertex in the graph, the value of the

grid point is set to −1, the number of routes for the grid point is set to 0, and the vertex for the grid

point is set to the corresponding vertex in the graph. These grid points will appear as unavailable.

52 CHAPTER 3. MAPPING ALGORITHM

Algorithm 3.22 Routing Phase - InitGridmap

InitGridmap() : creates and initializes a new Gridmap object for tracking routing progress

create new global object Gridmap
let Gridmap.Size ← Graph.Size

let Gridmap.Value ← 2D-array of size Graph.Size.X × Graph.Size.Y containing numbers
let Gridmap.Routes ← 2D-array of size Graph.Size.X × Graph.Size.Y containing numbers
let Gridmap.Vertex ← 2D-array of size Graph.Size.X × Graph.Size.Y containing vertices
for each index Coord of 2D-arrays do
let Gridmap.Value[Coord] ← 0
let Gridmap.Routes[Coord] ← Config.MaxRoutes

let Gridmap.Vertex [Coord] ← invalid vertex
end for
for each Vertex in Graph do
let Coord ← Vertex.Coordinate

let Gridmap.Value[Coord] ← −1
let Gridmap.Routes[Coord] ← 0
let Gridmap.Vertex [Coord] ← Vertex

end for
for each Coord in Config.ExcludeList do
let Gridmap.Value[Coord] ← −1
let Gridmap.Routes[Coord] ← 0
let Gridmap.Vertex [Coord] ← invalid vertex

end for

To finish initializing the gridmap each location that is excluded in the target array must appear as

unavailable. For each grid point that matches an excluded location, the value of the grid point is

set to −1, the number of routes for the grid point is set to 0, and the vertex for the grid point is set

to invalid. When the function returns the gridmap and graph will be synchronized.

Two configuration parameters are used when initializing the gridmap. The

Config.MaxRoutes parameter determines the maximum number of routes that can pass-through a

single grid point. This parameter can be any number between 1 and 4, with 4 providing the most

routing flexibility. The problem is that each processor in the AsAP architecture has only 2 input

ports so the effective range is actually a number between 1 and 2. The Config.ExcludeList parameter

is a list of locations within the target array that should never be used for routing. This list is used

to setup permanent obstacles in the gridmap and ensure that the state of any corresponding grid

points remains consistent with the target array.

Wave Propagate

The wave propagate stage is broken down into two functions. These functions are

Propagate and QueueNeighbors, listed in Algorithm 3.23 and Algorithm 3.24 respectively. The

goal of wave propagation is to find the shortest path from the source to the target. The shortest

3.3. ROUTING PHASE 53

path is found using an expanding wavefront, which marks each available grid point with the distance

the grid point is from the source. This method is called single wave propagation. Another method

is to use two wavefronts, one starting from the source, another starting from the target [29]. Both

wavefronts propagate simultaneously until the two wavefronts collide. Double wave propagation is

quicker than single wave propagation but single wave propagation was used because it is easier to

implement and the runtime was already extremely short.

The Propagate function is responsible for marking grid points between the source and the

target using an increasing numerical sequence. In order for the target location to be selectable the

value of the grid point for the target location must be set to 0. The initial wavefront is created by

inserting the source location into the wavefront queue. Since the source location is the start of the

route, and wavefronts are numbered sequentially starting from 1, the value of the grid point for the

source location is set to 1. The reason the sequence starts at 1 instead of 0 is to distinguish the

source grid point from unoccupied grid points, otherwise the route would double back. Once the

wavefront begins propagating it continues to propagate until either the target location is selected

by the wavefront or the wavefront is unable to expand any further due to obstacles. To expand the

wavefront a new wavefront queue is created, which is filled with the locations for next wavefront. To

determine the locations for the next wavefront each location in the current wavefront queue is passed

in turn to the QueueNeighbors subfunction. The subfunction selects all the available neighbors for

a given location and puts them into the new wavefront queue. The current wavefront queue is then

replaced by the new wavefront queue and the wave expands again. If a path from the source to the

target was not found then the value of the grid point for the target location is reset back to −1 (the

clean-up stage will not reset grid points with a value of 0) and the function returns the value false.

By returning the value false back the parent function, RoutingMain, the parent function will know

not to attempt a traceback since it will fail. If a path from the source to the target was found then

the value of the grid point for the target location will contain the length of the shortest path plus

one since numbering starts from 1.

The QueueNeighbors function is responsible for checking which neighbors are available for

a given grid point and inserting them into the wavefront queue. The four neighbor locations checked

are the north, south, east, and west locations relative to the given location. The first check that is

done on each location is to ensure that the location is within the boundaries of the gridmap in case

the edge of the array is reached. The next check that is done on each location is to verify that the

location has not already been selected by a previous wavefront. Without this check the wavefront

54 CHAPTER 3. MAPPING ALGORITHM

Algorithm 3.23 Routing Phase - Propagate

Propagate(Source, Target) = Routable : finds the shortest path from Source to Target by
propagating in waves and bubbling around obstacles, returns true if some path was found

let Gridmap.Value[Target] ← 0
let Gridmap.Value[Source] ← 1
let Wave ← queue that contains coordinates
insert Source into queue Wave

while Target is not in Wave and Wave is not empty do
let NewWave ← queue that contains coordinates
for each Coord in Wave do
QueueNeighbors(Coord, NewWave)

end for
let Wave ← NewWave

end while
if Wave is empty then
let Gridmap.Value[Target] ← −1
return false

end if
return true

would propagate back to the source. The next check that is done on each location is whether or

not the location is occupied and if so can the location accept another route. The final check that

is done on each location only applies to locations that are occupied by routing tasks. For these

locations we need to perform an additional check to determine whether or not the ports between the

original location and the neighbor location are already allocated to another route. If the ports have

already been allocated then we will need to enter this location from another direction. If the value

of the grid point for the location is zero it’s assumed to be available. This is why the value of the

grid point for the target location was changed to zero, otherwise it would have been skipped. If the

location passes all these checks then the value of the grid point is changed to the next number in the

sequence. The location is also inserted into the new wavefront queue. The function then continues

on to the next neighbor until every neighbor has been checked.

Path Traceback

The path traceback stage is broken down into three functions. These functions are

Traceback, NextNeighbor, and InsertRouter listed in Algorithm 3.25, Algorithm 3.26, and Al-

gorithm 3.27 respectively. The goal for the path traceback stage is to assign new routing tasks to

grid points along the shortest path. Tracing the shortest path from the target back to the source

is as simple as following the decreasing numerical sequence. This numerical sequence starts at the

value of the grid point for the target location and ends at 1. The path traceback stage contains

3.3. ROUTING PHASE 55

Algorithm 3.24 Routing Phase - QueueNeighbors

QueueNeighbors(Coord, NewWave) : checks the coordinates neighboring Coord and inserts
available coordinates into the queue NewWave

let Value ← Gridmap.Value[Coord] + 1
for each NewCoord that is a neighbor of Coord do
if NewCoord is outside of Gridmap then
next iteration

end if
if Gridmap.Value[NewCoord] > 0 then
next iteration

end if
if Gridmap.Value[NewCoord] < 0 then
if Gridmap.Routes[NewCoord] < 1 then
next iteration

end if
end if
if edge exists in Graph from Coord to NewCoord then
next iteration

end if
let Gridmap.Value[NewCoord] ← Value

insert NewCoord into queue NewWave

end for

one modification to the maze routing algorithm that greatly enhances the mapping quality for com-

plex applications. This modification is the ability to re-use certain grid points that were previously

marked as unavailable. This is needed so that routing tasks with more than one route passing

through them can be inserted.

The Traceback function is responsible for tracing the shortest path from the target back to

the source and inserting or modifying routing processors. When the function first starts the active

grid point is set to the target location. Since the target location is already part of the route the

active grid point immediately becomes the target’s predecessor and the value of the grid point for the

target location is reset back to its original value of −1. The function then starts the traceback loop,

which will continue traversing the shortest path until the source location is found. In order to find

the predecessor for a grid point, the value of the grid point must be one greater than its predecessor.

This is important to remember because once the grid point becomes part of the route the value of

the grid point is changed to reflect its new state. For this reason the first step of each iteration is to

save the next grid point in the path. Once the next grid point in the path has been saved, the value

of the active grid point is changed to −1 to indicate that the grid point is now part of the route. Next

the vertex for the active grid point and the edge being routed are both passed to the InsertRouter

function. If the vertex was invalid, which indicates that the grid point was unoccupied, then a new

56 CHAPTER 3. MAPPING ALGORITHM

router vertex will be created. If the vertex was not invalid, which indicates that a router vertex

already exists, then the vertex is modified to allow another route to pass-through it. To make the

vertex part of the actual route the edge is split into two parts and the vertex is inserted at the

midpoint. The number of routes for the active grid point is then decremented to reflect the changes

just made to the vertex. Newly created router tasks must be assigned to a processor location in the

target array. The coordinate assigned to the new task is the location of the active grid point. In

order to keep the gridmap in sync with the graph the vertex field for the active grid point must be

replaced with the new or modified router vertex. The final step is to replace the active grid point

with the next grid point in the path so that the next iteration can begin. After the traceback loop

finishes the value of the grid point for the source location is reset back to its original value of −1 to

complete the route.

Algorithm 3.25 Routing Phase - Traceback

Traceback(Source, Target, Edge) : traces the shortest path from Target back to Source

inserting new routing vertices along Edge

let Neighbor ← NextNeighbor(Target)
let Gridmap.Value[Target] ← −1
while Neighbor is not Source do
let Next ← NextNeighbor(Neighbor)
let Gridmap.Value[Neighbor] ← −1
let Vertex ← Gridmap.Vertex [Neighbor]
InsertRouter(Edge, Vertex)
decrement Gridmap.Routes[Neighbor]
let Vertex.Coordinate ← Neighbor

let Gridmap.Vertex [Neighbor] ← Vertex

let Neighbor ← Next

end while
let Gridmap.Value[Source] ← −1

The NextNeighbor function is responsible for figuring out which neighbor precedes a given

grid point. The four neighbor locations searched are the north, south, east, and west locations

relative to the given location. The first check that is done on each location is to ensure that the

location is within the boundaries of the gridmap in case the edge of the array is reached. The next

check that is done on each location, which is the most important check, is to see whether or not

the neighboring grid point actually precedes the original grid point. In order to pass this check the

value of the grid point for the neighbor location must be one less than the value of the grid point for

the original location. The final check that is done on each location only applies to locations that are

occupied by routing tasks. For these locations we need to perform an additional check to determine

whether or not the ports between the neighbor location and the original location have already been

3.3. ROUTING PHASE 57

allocated to another route. If the ports were already allocated, which is a very rare occurrence, then

the path was diverted during the wave propagation stage. If the location passes all these checks

then the predecessor has been found so the function returns. If the location did not pass all these

checks then the function starts checking the next neighboring location.

Algorithm 3.26 Routing Phase - NextNeighbor

NextNeighbor(Coord) = NextCoord : finds the neighboring coordinate NextCoord that pre-
cedes Coord in the route

let Value ← Gridmap.Value[Coord] - 1
for each NewCoord that is a neighbor of Coord do
if NewCoord is outside of Gridmap then
next iteration

end if
if Gridmap.Value[NewCoord] 6= Value then
next iteration

end if
if edge exists in Graph from NewCoord to Coord then
next iteration

end if
return NewCoord

end for

The InsertRouter function is responsible for creating new routing vertices and modifying

existing routing vertices to handle one more route. This function is also responsible for placing

the vertex along the edge being routed. Placing the vertex along the edge involves removing the

original edge and inserting two new edges with the routing vertex at the midpoint. The source

and target vertices for the original edge must be saved before the edge can be removed. This is

required so that the two new edges can be connected properly. Though before the two new edges

can be created, the routing vertex has to be created or modified. There are five categories used

for classifying a vertex. The PROCESSOR category is used for computing tasks, which are always

tasks from the original application. The ROUTER 1WAY, ROUTER 2WAY, ROUTER 3WAY,

and ROUTER 4WAY categories are used for routing tasks that can handle one, two, three, or four

simultaneous routes, respectively. If the vertex was previously invalid then a new router vertex is

created with the category ROUTER 1WAY. If the vertex was not previously invalid then the category

for the vertex is upgraded. The possible upgrades are: ROUTER 1WAY becomes ROUTER 2WAY,

ROUTER 2WAY becomes ROUTER 3WAY, and ROUTER 3WAY becomes ROUTER 4WAY. The

vertex is now ready so the new edges can be created. The first new edge connects from source vertex

to the router vertex. The second new edge connects from the router vertex to the target vertex. Since

the original edge was removed one of the two new edges must take its place for future splitting. The

58 CHAPTER 3. MAPPING ALGORITHM

first edge is the most logical choice since the next router vertex will be inserted between the current

router vertex and the source vertex. The source side edge is shortened each time this function is

called until finally the source side edge has a length of one.

Algorithm 3.27 Routing Phase - InsertRouter

InsertRouter(Edge, Vertex) : adds a midpoint to Edge that passes through Vertex and
promotes Vertex to the next category

let Source ← Edge.Source

let Target ← Edge.Target

remove Edge from Graph

if Vertex is invalid then
let Vertex ← new vertex added to Graph
let Vertex.Category ← ROUTER 1WAY

else if Vertex.Category = ROUTER 1WAY then
let Vertex.Category ← ROUTER 2WAY

else if Vertex.Category = ROUTER 2WAY then
let Vertex.Category ← ROUTER 3WAY

else if Vertex.Category = ROUTER 3WAY then
let Vertex.Category ← ROUTER 4WAY

end if
let SrcEdge ← edge added to Graph from Source to Vertex
let DstEdge ← edge added to Graph from Vertex to Target
let Edge ← SrcEdge

The constants ROUTER 1WAY, ROUTER 2WAY, ROUTER 3WAY, and

ROUTER 4WAY are simply enumerations used to distinguish the type of an object.

Gridmap Cleanup

The gridmap cleanup stage is performed by the Cleanup function listed in Algorithm 3.28.

The goal of the gridmap cleanup function is to reset the values of the grid points used during the

wave propagation stage back to their original values. Grid points that became part of a route during

the path traceback stage are ignored since their values have already been updated to reflect their

new state.

The Cleanup function is responsible for resetting the values for any grid points used during

wave propagation. Every grid point in the gridmap is analyzed in order to determine which grid

points were used during wave propagation. If the value of the grid point is greater than zero then

the grid point was used during wave propagation and needs to be reset. There are two types of

grid points used during wave propagation, occupied grid points and unoccupied grid points. Each

type of grid point has a different reset value. If the vertex for the grid point is invalid then the grid

point is unoccupied, otherwise the grid point is occupied. For unoccupied grid points the value of

3.3. ROUTING PHASE 59

the grid point is reset to 0. For occupied grid points the value of the grid point is instead reset to

−1. A value of −1 indicates to the wave propagation stage that the grid point is occupied. When

the function returns, every possible routable grid point will again be available.

Algorithm 3.28 Routing Phase - Cleanup

Cleanup() : resets gridmap values for locations that were not chosen during the traceback

for each index Coord of 2D-arrays do
if Gridmap.Value[Coord] > 0 then
if Gridmap.Vertex [Coord] is valid then
let Gridmap.Value[Coord] ← −1

else
let Gridmap.Value[Coord] ← 0

end if
end if

end for

3.3.3 Modifications

Very few modifications were made to the classic maze routing algorithm. The space in-

sertion component is not technically a modification to the maze routing algorithm, but instead a

complementary component. Despite being somewhat of a hack, space insertion was necessary to

map complex applications using only nearest neighbor communication. The space threshold value

determines the complexity of an application and enables this component when need. However, the

space threshold value is somewhat unreliable. The most substantial modification, not found in other

implementations, was the addition of a route counter for each grid point. This modification enabled

multiple datastreams to pass-through a single grid point. The target array is populated more ef-

fectively when grid points can be reused. A modification specific to this work was inserting new

routing nodes into the graph for each grid point along a routable path. This modification is typically

not applicable in most implementations since routing resources are often separate from computing

resources. Each of these modifications attempt to either reduce routing conflicts or improve the

utilization for the target array.

3.3.4 Summary

Maze routing is an efficient and flexible routing algorithm that works very well for the

routing phase of the mapping algorithm. The implemented routing algorithm is able to find the

shortest path in a short period of time under the constraints of the AsAP architecture. Not many

60 CHAPTER 3. MAPPING ALGORITHM

modifications had to be made to the maze routing algorithm with the only major modification being

the space insertion component. Space insertion greatly improves the mapping quality for complex

applications but there are likely other methods for inserting space that could further improve the

mapping quality. For most applications the routing algorithm is able to successfully route every long-

distance edge. Though for some applications routing conflicts occur that could be eliminated by

routing edges in a different order. Research has already been done on ways to change the order paths

are routed, but implementing this feature is left for future work. Overall the current implementation

has been very successful in routing a wide variety of applications on the AsAP architecture.

3.4 Top-Level

The mapping algorithm is composed of both the placement phase and the routing phase.

These two phases must somehow be combined together or the mapping algorithm won’t be very

useful. The top-level logic, which is responsible for combining these two phases, is performed by the

AlgorithmMain function listed in Algorithm 3.29. This function also prepares the global variables,

including the random seed, and performs some post-processing. This section describes in detail how

the top-level logic is used to glue the placement and routing phases together.

The AlgorithmMain function is indirectly responsible for mapping applications to the AsAP

architecture. This function relies upon the subfunctions PlacementMain and RoutingMain to do all

of the heavy lifting. These two subfunctions have already been discussed in great detail in the

previous two sections. The function starts by initializing all the global variables. The function then

checks the size field of the global configuration object to ensure that the desired rectangular array

area is not invalid. The desired rectangular array area will be considered invalid if it’s either not

set or too small for the application being mapped. If the desired rectangular array area is found

to be invalid, the optimal rectangular array area will be calculated and the size field of the global

configuration object will be updated with the calculated value. The optimal rectangular array area is

the smallest rectangular array area that will hold the minimum number of processors. The minimum

number of processors is calculated by adding the number of tasks in the application to the number

of locations in the excluded processor list. The X dimension for the optimal rectangular array area

is calculated first, which is done by taking the square root of the minimum number of processors

and rounding the result up to the nearest integer. Next the Y dimension for the optimal rectangular

array area is calculated by dividing the minimum number of processors by the previously calculated

X dimension then rounding the result up to the nearest integer. The mapping process can begin

3.4. TOP-LEVEL 61

once the size field of the global configuration object is valid. The placement phase is executed first,

followed by the routing phase if it’s enabled. Once the mapping process is complete post-processing

is applied. Post-processing involves shifting the array left and up until both the first column and the

first row are no longer empty. This is also called aligning the array. Before shifting the array we need

to calculate the inner coordinate. The inner coordinate is the upper-left corner of the array based

on its contents, not its physical dimensions. Initially the inner coordinate is set to the bottom-right

corner of the physical array. Next the location of every vertex in the graph is compared one-by-one

to the inner coordinate. The inner coordinate is updated whenever a location is encountered that

is further left or further up than the current inner coordinate. After every vertex location has been

processed the inner coordinate contains the amount that the array must be shifted in order to align

the array contents with the upper-left corner of the physical array. The number of times the array

is shifted left is equal to the X dimension of the inner coordinate. The number of times the array

is shifted up is equal to the Y dimension of the inner coordinate. Shifts are applied one position at

a time instead of all at once in case a failure occurs. This technique results in the largest possible

shift without violating any constraints. The function then returns and the mapping is complete.

Four configuration parameters are used by this function. The Config.RandSeed parameter

contains the random seed used to initialize the random number generator. Setting the random seed

to a known value at the beginning of the mapping algorithm results in a reproducible sequence of

random numbers. The Config.ExcludeList parameter is a list of processors within the target array

that should never have tasks assigned to them. The length of this list is used to calculate the

minimum number of processors which is in turn used to calculate the optimal rectangular array

area. The Config.Size parameter contains the desired rectangular array area for the target array.

If this parameter is initially invalid, which is often done on purpose using the coordinate (−1, −1),

then the optimal rectangular array area is calculated and replaces the value of this parameter. The

Config.UseRouting parameter determines whether or not the routing phase is executed. One possible

reason for skipping the routing phase is when mapping applications to the second version of AsAP

where routing processors are not always needed.

The constants VERTICAL and HORIZONTAL are simply enumerations used to distinguish

the type of operation being performed.

62 CHAPTER 3. MAPPING ALGORITHM

Algorithm 3.29 AlgorithmMain

AlgorithmMain(Graph, Config) : entry point for the mapping algorithm, maps the
pre-defined dataflow graph Graph onto the given architecture using the parameters in Config

set global variable Graph ← Graph

set global variable Config ← Config

let initial random seed ← Config.RandSeed

let Count ← number of nodes in Graph + length of Config.ExcludeList
if Config.Size is invalid or area of Config.Size < Count then

let Config.Size.X ←
⌈√

Count
⌉

let Config.Size.Y ← dCount / Config.Size.Xe
end if
PlacementMain()
if Config.UseRouting = true then
RoutingMain()

end if
let Inner ← Graph.Size

for each Vertex in Graph do
let Coord ← Vertex.Coordinate

let Inner.X ← min(Inner.X, Coord.X)
let Inner.Y ← min(Inner.Y, Coord.Y)

end for
for PosX ← Inner.X to 1 do
if ShiftArray(HORIZONTAL, PosX, −1) = false then
break loop

end if
end for
for PosY ← Inner.Y to 1 do
if ShiftArray(VERTICAL, PosY, −1) = false then
break loop

end if
end for

3.5 Conclusion

In summary the mapping algorithm consists of two phases, a placement phase and a routing

phase. The placement phase is based on simulated annealing but required a few modifications to

the base algorithm. The routing phase is based on maze routing and includes an additional space

insertion component. Both phases contain some unique optimizations that have greatly improved

the mapping quality. Even though the mapping algorithm is somewhat intended for the first version

of AsAP, the algorithm can easily be re-targeted for the second version of AsAP using just a few of

the many runtime configurable parameters. I believe the most valuable characteristic of the mapping

algorithm is the framework it provides for mapping arbitrarily connected task graphs onto 2D-mesh

nearest neighbor dominated parallel arrays. This framework is by no means complete with work still

to be done on improving the mapping quality.

63

Chapter 4

Implementation

Programming parallel array processors like AsAP is very different than programming gen-

eral purpose processors. General purpose processors usually have only a few cores and one large

shared memory for storing variables. For these architectures a programmer typically writes one large

program that is intended to be executed sequentially. For parallel array processors there can be as

many as 1000 cores with each core having its own memory for storing variables. Variables must

be passed from core to core in order for them to be shared. For these architectures, many small

programs must be written or generated, one for each core, and are executed in parallel. The fact

that these programs can operate independently and in parallel is the reason the AsAP mapping tool

is possible.

The programming methodology used by the AsAP mapping tool is very similar to Mat-

lab’s Simulink. Simulink provides a natural way to describe signal processing systems by visually

connecting together basic building blocks. When writing an application for AsAP the first step is to

write a number of small independent kernels. Each kernel is then converted into a module, which is a

highly reusable and sometimes configurable, building block used for creating applications. Connect-

ing modules together is as simple as drawing a line from one module to another. What makes the

mapping tool unique is the ability to build applications (from existing modules) by simply describing

their dataflow. The remainder of this chapter describes the AsAP mapping tool’s implementation.

4.1 Back-end

The mapping tool back-end is an implementation of the mapping algorithm described in

Chapter 3. The back-end receives the dataflow graph and configuration parameters from the front-

64 CHAPTER 4. IMPLEMENTATION

end and uses them to execute the mapping algorithm. The mapping algorithm assigns each task

in the dataflow graph a coordinate in the array and also adds a new task to the graph for each

routing processor inserted. Coordinates are assigned in a way that maximizes nearest neighbor

communication and minimizes area. Configuration parameters allow the location of tasks to be

fixed, processors to be excluded from the mapping, and the mapping quality to be improved for

certain applications. The back-end is actually capable of mapping applications to any large scale

parallel array not just specifically AsAP. The procedure for the mapping algorithm has already

been discussed in great detail in Chapter 3 so only the implementation will be discussed here.

The mapping tool back-end, also called the mapping library or libamap for short, is a

statically linked library written in C++. The primary motivation for choosing C++ was that the

boost graph library is written in C++ [1]. Also C/C++ compilers produce very optimized code. This

is important since the mapping library accounts for more than 99% of the runtime when mapping

an application. The boost graph library was designed using C++ templates so an unlimited number

of vertex and edge properties can be added to the graph. Also boost graph objects can be used

with many of the Standard Template Library (STL) functions to save coding time. The boost

graph library is a member of the boost libraries. The boost libraries are a collection of generic

programming libraries using C++ templates. In addition to the boost graph library, the boost

random library, the boost date time library, and a few other members of the boost libraries are

used in the implementation of the mapping algorithm. The mapping library has a simplistic API

that makes it easy to include in tools other the AsAP mapping tool. The mapping library has been

tested on Windows, Linux, and MacOS X, but it is likely compatible with other POSIX platforms

that are supported by the boost libraries.

4.2 Front-end

The mapping tool front-end was designed primarily to be an interface between Extensible

Markup Language (XML) module files and the mapping library. The mapping tool has two modes of

operation, graphical mode, and batch mode. Graphical mode makes it easy to construct and analyze

complex applications using an intuitive interface. In this mode applications are designed by simply

dragging modules onto a canvas and drawing lines between them to create the dataflow. An user can

also look at the array layout and processor code for a module by just double-clicking. Batch mode

provides a way to map applications without user intervention. This mode can be used to experiment

with different configuration parameters or iterate over many random seeds. By using shell scripts

4.2. FRONT-END 65

this can all be done in an automated fashion to try and improve the mapping quality. Unlike the

back-end, the front-end has been designed specifically for the first and second versions of AsAP.

Although the implementation is modular so it’s easy to adapt the front-end to other architectures.

The remainder of this section will discuss the different phases the front-end goes through and how

they were implemented.

The mapping tool front-end, or asapmap for short, is both a graphical user interface and

a command-line program written in C with some C++. Most of the application is written in C,

since the gnome libraries are written in C [2], but C++ is used to create the dataflow graph and

set the configuration parameters for the back-end. The gnome libraries are a collection of libraries

that target the gnome platform used by Linux. These libraries contain functions for many common

operations such as displaying help files and creating about boxes. The primary motivation for using

the gnome libraries was the gnome canvas widget. The gnome canvas widget is a special drawing

widget where visual elements, such as rectangles and lines, can be associated with events such as

mouse clicks and mouse movements. Without this widget, creating applications wouldn’t have been

as simple as dragging modules and drawing lines. In addition to the gnome libraries, libxml is

used for reading and writing XML files, and libglade is used for designing the user interface. These

two extra libraries are closely tied to the gnome platform and are often included with the gnome

libraries. The complete mapping tool, including both the front-end and the back-end, has been tested

on Windows, Linux, and MacOS X (using X11), but Linux is the primary development platform.

4.2.1 Procedure

The mapping tool front-end goes through three phases when mapping an application. These

three phases are separate from the two phases performed by the mapping library. All three phases

are required when mapping any application. The first phase populates the module list and connects

processors together. This can either be done by loading a saved project file or by creating an appli-

cation manually using the mouse. The second phase executes the mapping algorithm and analyzes

the results. The mapping algorithm objects, which are the dataflow graph and the configuration

parameters, are created during this phase. The third phase modifies the modules used by the appli-

cation then combines all the processors into one large module. Modifications to modules are made

using a set of translation objects, which are created during the second phase. The complete process

from loading the application to saving the results is described in further detail in the remainder of

this subsection.

66 CHAPTER 4. IMPLEMENTATION

The first phase is responsible for creating a list of modules and linking together processors

both inside and across modules. The module list is created by either dragging modules onto the

canvas or by loading a previously saved project file. When a module is either dragged onto the

canvas or loaded from a project file its XML file is parsed into memory and a new module is added

to the module list. The XML file contents determine the number of inputs, the number of outputs,

the number of parameters, how processors are locally connected, the name of the module, and many

other little details. Processors are linked locally by finding matching pairs of opposing ports inside

the XML file. If there is a mismatch between two opposing ports then a connection is not made. This

is usually the case for module inputs and outputs where there is no local processor to connect to. To

give an example, if the processor at location (0, 0) has an east output and the processor at location

(1, 0) has a west input then the opposing ports match and they are connected. Processors are linked

globally by either drawing a line between two modules on the canvas or using link elements inside a

saved project file. Global linking is performed using module ids and port numbers to look-up which

modules and which processors should be connected. The final step is to set the primary input and

primary output for an application. This is done by either right-clicking on the desired port or by the

input and output elements inside a saved project file. Once this is done the first phase is complete

and the dataflow graph is ready. In batch mode the only option for this phase is using a project file.

The second phase is responsible for executing the mapping algorithm and converting the

results into meaningful translations. The first step of this phase is to prepare the mapping pa-

rameters. This is an optional step that is only required if changes need to be made to the default

parameters. For batch mode any parameter changes are requested on the command-line before the

mapping tool is started. Once the dataflow graph and the mapping parameters are ready they are

converted into C++ objects which can be passed to the mapping tool back-end. When constructing

the C++ graph object the output ports (since input ports are mirrored) for every processor, across

the entire module list, are checked to see if they are connected and to which processor. A new vertex

is added to the graph for each processor and a new edge is added to the graph for each connected

output port. When constructing the C++ configuration parameters object each setting from the

mapping parameters is simply copied over in an appropriate format. The algorithm is then executed,

which computes the coordinates for every vertex including any vertices that were created as a result

of inserting routing processors. For each new router vertex inserted into the graph, a new router

module is instantiated and inserted into the router list (which is similar to the module list). The next

step is to analyze the mapping algorithm results. This is done by comparing the original locations

4.2. FRONT-END 67

and port directions to those returned by the mapping algorithm. A location translation is added to

the processor if any changes were made to its location. A location translation is simply a field inside

the processor where the new target location is stored. A port translation is added to the processor

if any port directions were changed. A port translation consists of an array of port index numbers

that transform an old port index into a new port index. While calculating port translations, if the

distance between any two processors is non-nearest neighbor then a long-distance interconnect is

added. A long-distance interconnect is a direct connection specified using the source and target

processor locations and the source and target port directions. Processor ports are divided into two

groups. The first 4 ports are used for nearest neighbor communication and the second 4 ports are

used for long-distance interconnects. When the ports are grouped the routing overlay network, used

by the second version of AsAP, is easier to configure. These translation sets are used by the third

phase to produce a properly working output module. In graphical mode the final array configuration

is displayed once this phase is complete.

The third phase is responsible for modifying the processors inside the original XML files

then combining these processors into one large XML file. For each module or router that is loaded,

the parameters, processor locations, and port directions are updated. To update the parameters for

a processor the original values are replaced by the new values stored in the corresponding module

object from the module list. To update the location for a processor, the original location is replaced

by the new location stored when the location translation was created. To update the port directions

for a processor each character in the input and output masks are run through the port translation

array. To determine the new port direction the original port direction is first converted to a port

index that is compatible with the port translation array. This port index is then used against the

port translation array to obtain a new port index. This new port index is then converted back into

the new port direction. After all the processor elements inside an XML file have been updated the

processor elements are copied to the output XML file. This includes the code for each processor.

Once every processor from every module in the module list and every router in the router list has

been copied over, the long-distance interconnects are added to the output XML file. After adding

the new module name and module description to the output XML file the third phase is complete.

4.2.2 Interface

In graphical mode almost everything is done interactively using the mouse and Drag-N-

Drop [3]. Since graphical mode is mainly driven by the mouse most tasks are easier to accomplish

68 CHAPTER 4. IMPLEMENTATION

in graphical mode than in batch mode. Some tasks such as creating or modifying an application

are only possible in graphical mode. The AsAP mapping tool has four major windows. The main

window is for constructing and modifying applications. The array window and code window are

for viewing module attributes. The mapping window is for configuring and executing the mapping

algorithm. In addition to these four major windows there are two minor windows, a parameter

window for changing module parameters, and a coordinate window for fixing processor coordinates.

These two additional windows are rarely used. The purpose for each of the four major windows is

discussed in more detail in the remainder of this subsection.

When starting the program in graphical mode the first thing the user sees is the main

window. The main window is shown in Figure 4.1 with the module palette on the left and the

application canvas on the right. When the program starts the module directory is scanned and

an icon is added to the palette for each module file that is found. Whenever the mouse hovers

over a module in the palette the status bar along the bottom of the window displays the module’s

description. To create an application modules are dragged from the palette onto the canvas. When a

module is dragged onto the canvas its underlying XML file is parsed into memory and an appropriate

figure is drawn. Any number of identical modules can be placed on the canvas at one time without

any problems. Right-clicking on a module will allow the user to change module parameters and

fix processor locations. In order to construct the application’s dataflow, modules must be linked

together. Modules are linked together by dragging a line from the output port of one module to the

input port of another module. Connections can only be point-to-point. Once a port is linked it can

not be used again (unless unlinked first). Right-clicking on any free port will allow the user to set

the primary input or primary output, which are colored green in the figure. Anything that needs to

be done in order to construct a new application can be done from this window.

The array window and code window are used for displaying module attributes. The array

window is shown in Figure 4.2 and the code window is shown in Figure 4.3. The array window

displays the processor layout for a module, which can be accessed by double-clicking the module

on the canvas. Processors are drawn as rectangles with their coordinate in the upper-right and

connections are drawn as lines with arrow heads to indicate their direction. Connections that are

drawn in green represent module inputs and module outputs. Connections that are drawn in red

represent non-nearest neighbor connections. When viewing a module that was created by mapping

an application, the name of the module from where the processor originated from is shown in the

center of the rectangle. The code window displays the different code files inside a module and can be

4.2. FRONT-END 69

Figure 4.1: The main window of the AsAP mapping tool showing an 802.11a wireless transmitter
application being created using an FFT module

70 CHAPTER 4. IMPLEMENTATION

Figure 4.2: The array window of the AsAP mapping tool showing the array layout for the FFT
module used by the 802.11a wireless transmitter

accessed by double-clicking a processor in the array window. A module can contain multiple code files

because AsAP supports running multiple configuration programs before running the computation

program. The active code file can be changed by selecting a new filename from the combo box at

the top of the window. Some simple formatting is applied to the code, such as aligning labels and

comments, to make it easier to read. The formatter only supports code files for the first version

of AsAP, which will change once the second version of AsAP is ready. Viewing the code inside a

processor can help determine its purpose or help the user select the correct input ports or output

ports to use for linking. Without these two windows the user would need to look through the

module’s XML file in order to obtain this information.

Once an application has been created the next step is to map the application. The mapping

algorithm can be configured and executed using the mapping dialog, which is accessible from the

mapping menu of the main window. The three tabs of the mapping dialog are shown in Figure 4.4,

Figure 4.5, and Figure 4.6, each containing a different category of configuration parameters. The first

tab in the mapping dialog contains the array configuration parameters, which effect the structure of

the mapping. These are parameters like the desired array size, the input location, and the output

location. The second tab in the mapping dialog contains the algorithm configuration parameters,

4.2. FRONT-END 71

Figure 4.3: The code window of the AsAP mapping tool showing the code for an intersecting routing
processor used by the 802.11a wireless transmitter

which effect how the mapping is optimized. These are parameters like the random seed, the number

of placement iterations, and space insertion. The third tab in the mapping dialog contains any

remaining configuration parameters, such as the cost weights used by the configuration cost function.

Only values from the array settings tab and the excluded processors are saved to the project file

since the other parameters are most often varied in batch mode when trying to obtain the best

mapping. The mapping dialog also contains a combo box at the top of the window for selecting

a mapping profile. Mapping profiles change a number of configuration parameters at one time to

achieve some goal. One example is the Application Module profile, which sets the configuration

parameters for the array size, input location, and output location to match the first version of

AsAP. Once all the configuration parameters have been set the execute button is clicked to start

the mapping algorithm. Any changes made to the configuration parameters are saved automatically

before the mapping algorithm is executed. Once the mapping algorithm finishes and the results

72 CHAPTER 4. IMPLEMENTATION

Figure 4.4: The array settings tab of the mapping dialog for the AsAP mapping tool, which is used
for configuring the array input/output and the array size

have been processed, a new array window will appear which shows how the final module will look.

The final module can be saved using the mapping menu from the main window. Since the mapping

results are displayed automatically the mapping window provides an easy way to see how different

parameters effect the mapping quality.

In batch mode everything is done entirely without user intervention. This mode requires

an existing project file. This can either be created with scripts or created in graphical mode. All

configuration parameters are specified on the command-line before the program is executed. The

mapping results are saved to an output module file also specified on the command-line. Batch mode

is extremely useful for performing a large number of mappings where the configuration parameters

4.2. FRONT-END 73

Figure 4.5: The algorithm settings tab of the mapping dialog for the AsAP mapping tool, which is
used for configuring the placement and routing phases and the random seed

are varied to try and obtain the best mapping. When working with very large applications, with

many levels of dependencies, batch mode can be used to update modules after changes have been

made to its dependencies (using makefiles). Since everything is done from the command-line the

results are not displayed once the mapping is complete. A submode of batch mode, called module

view mode, provides a quick and easy way to view mapping results. Module view mode only displays

the array window for the module then exits. Viewing the module in graphical mode requires the

module to be placed on the canvas then double-clicked. Some tasks, such as executing the mapping

algorithm, are quicker in batch mode than in graphical mode since it has a minimal amount of

interaction.

74 CHAPTER 4. IMPLEMENTATION

Figure 4.6: The other settings tab of the mapping dialog for the AsAP mapping tool, which is used
for configuring the excluded processors and cost weights

4.3. XML FILE FORMATS 75

4.3 XML File Formats

The AsAP mapping tool would be useless if it were unable to store modules and projects

in an easily accessible and consistent format. For this reason modules and projects are stored in

Extensible Markup Language (XML) files. XML has many advantages over other custom formats.

Two of these advantages are: XML is an industry standard and files can be edited with a text

editor. By choosing XML there were already a plethora of tools and libraries available for reading,

writing, manipulating, searching, and viewing these types of files. The XML format is a very good

fit for both module and project files due to its hierarchical nature. The remainder of this section

will describe in more detail the contents and possible uses for these two file types.

4.3.1 Module Files

Modules files are the main unit of input and output for the mapping tool. Modules are

loaded into the mapping tool when creating an application and modules are created by the map-

ping tool when saving mapping results. Allowing module files to contain vastly different levels of

granularity is the very reason the mapping tool is so easy to use. One module file may contain a

single processor while another module file may contain an array of 1000 processors. Even though

these two module files are vastly different, they can be linked together with a simple dragging of

the mouse. Regardless of how many processors are inside a module each module has a defined set

of inputs and outputs, which conform to the AsAP FIFO interface. This allows any two modules to

be seamlessly linked together. The XML module format is flexible enough that it could be used by

other tools instead of just as an input and output format for the AsAP mapping tool. By storing

processor code inside the XML file other tools can avoid the complexity involved in parsing AsAP

assembly code.

An XML module file is self-contained meaning that everything needed to simulate the

module is contained within the XML file. Each module file contains a number of processors, the

layout for the processors, a list of long-distance interconnects, and even assembly code for each

processor. Figure 4.7 shows the hierarchy of a module file when using the Document Object Model

(DOM). We can see from the figure that each module file contains an array of one or more processors,

which can each contain a number of configuration options and one or more code files. These code

files contain the processor’s input ports and output ports, which are used for linking processors

together. The top-level input ports and output ports simply point to which processor ports other

modules should connect to. After all, connecting processors globally is no different then connecting

76 CHAPTER 4. IMPLEMENTATION

module

description input output array routing

processor

configuration code

userdata parameter input output instructions

channel

Figure 4.7: The Document Object Model hierarchy for XML module files

processors locally inside the mapping tool. Long-distance interconnects (or routing channels) are

described similarly to module input ports and module output ports except that the two ports are

connected together instead of left dangling. The XML module format should be easy to adapt to

other parallel arrays since only the instruction elements are truly AsAP specific.

Module files are used quite extensively throughout the AsAP mapping tool. What is missing

is a way to import AsAP assembly code, to perform mappings, and a way to extract AsAP assembly

code, to perform simulations. To fill this void conversion scripts have been written that convert

back and forth between AsAP flat files (assembly, configuration, etc.) and module files. The first

script, asap2mod.py, will parse all flat files within the current directory and create a new module

file. When executed it will prompt for a module name, a module description, and an icon filename,

which are all used during graphical mode. The second script, mod2asap.py, will extract a module

file into a number of flat files and place them in the current directory. The resulting flat files are

ready to be simulated. These two scripts are included with the source code for the AsAP mapping

tool. Since the AsAP architecture has only one primary input and one primary output, modules

that require more than one primary input or one primary output must be edited manually after the

conversion process. Parsing and storing C-code is more difficult than parsing and storing assembly

code so this is left for future work.

4.3. XML FILE FORMATS 77

project

module mapping

path parameter coordinate link input output array exclude

item

Figure 4.8: The Document Object Model hierarchy for XML project files

4.3.2 Project Files

Project files store applications that are in the pre-mapping stage along with some basic

configuration parameters. These files essentially contain the dataflow graph for an application.

This is why project files are the input format used for batch mode. After applications have been

successfully mapped they are stored in module files. Since module files are self-contained, the project

files are only needed to updated the module files when any changes are made to their dependencies.

The remainder of this subsection will explain in more detail how an application is rebuilt whenever

a project file is loaded.

A project file at its very core is nothing more than a list of module references and a

list of links for connecting them. Figure 4.8 shows the hierarchy of a project file when using the

Document Object Model (DOM). We can see from the figure that each project file contains one

or more modules, which each contain a number of properties. Project files maintain references to

modules using filepaths and id numbers so that modules contain the latest information when they

are reloaded again later. Project files maintain links between modules using id numbers and port

numbers. When restoring a link the source and target modules are found using the id numbers and

the source and target ports are found using the port numbers. One problem with linking modules

this way is that when the number of ports on a module changes, or they are reordered, the project file

will likely fail to load or function correctly. Module parameter values and fixed processor locations

are also stored in the project file so they can be used in the final mapping. The graphical position

for a module is stored in the module’s location attribute so the application can be correctly redrawn

when its reloaded in graphical mode. Rebuilding the application each time the project file is loaded

is the key to creating applications with many levels of dependencies.

78 CHAPTER 4. IMPLEMENTATION

Figure 4.8 also shows that these project files can store some mapping parameters. The four

mapping parameters stored in these project files are: the primary input and its position, the primary

output and its position, the desired array size, and a list of excluded processor locations. The input

element determines the primary input and its desired location. The primary input is determined

using a module id number and a port number. There are three types of input locations, don’t

care, edge based, and fixed. When the input location is set to don’t care the processor is placed in

whatever location appears most optimal. When the input location is set to one of the four edges the

processor is placed along the desired edge. When the input location is set to fixed the processor is

placed in the location specified by an additional location attribute. The output element is the same

as the input element except that it configures the primary output instead of the primary input.

The array element determines the desired array size. If the size is set to (−1, −1) then the optimal

size is calculated, otherwise the desired size is used verbatim. The exclude element contains zero or

more child elements each containing one excluded location. Each processor that matches a location

in this list will not have a task assigned to it in the final mapping. Other configuration parameters

are intended to vary between mappings so they are not stored in the project file.

4.4 Conclusion

New programming tools and programming languages are being developed in order to ef-

ficiently program parallel array processors. The AsAP mapping tool explores one possible method

for programming parallel array processors, which is creating applications visually based on their

dataflow. The AsAP mapping tool exploits the fact that kernels operate independently and in par-

allel on a homogeneous architecture. This allows applications to be constructed by simply chaining

together tasks. Other research groups have been focusing on new programming languages that

diverge from the sequential execution model we are accustom to. StreamIt is just one of these pro-

gramming languages [15]. Single chip parallel array processors have only recently started to appear.

There is still work to be done before programming these architectures is as simple and common

place as writing a C program for a general purpose processor.

79

Chapter 5

Evaluation Methods

The mapping algorithm is nothing more than an academic exercise unless real applications

are actually mapped to the array and the results are evaluated. When evaluating an algorithm

or processor we would typically use a set of benchmarks. This presents a problem since there are

no established benchmarks for nearest neighbor dominated parallel arrays. Another problem that

arises when evaluating the mapping algorithm is that mappings can be optimized in many different

ways and even for specific chips. To overcome these problems an excellent set of metrics must

be developed. These metrics must not only compare mappings to each other but also determine

absolute quality. The absolute quality of a mapping helps to determine how far the mapping is from

a theoretical optimal. In addition to excellent metrics a wide variety of applications are needed for

performing evaluations. These applications should consist of dataflow patterns that are likely to be

found in realistic applications. These applications should also contain dataflow patterns that will

be difficult to map in order to stress the mapping algorithm. In this chapter a set of metrics and

several applications are developed, which are used to evaluate the quality of the mapping algorithm

in Chapter 6.

5.1 Quality Metrics

To evaluate the quality of the mapping algorithm a few metrics need to be established.

These metrics represent the most desirable properties in the algorithm results. Each metric is

expressible as a scalar quantity so different configurations can be compared. Since metrics have

different priorities a scale factor is applied to emphasize the importance of one metric over another.

The metrics used in this work improve as the value decreases. Therefore the best configuration has

80 CHAPTER 5. EVALUATION METHODS

the lowest value for each metric. The metrics have been chosen so the best possible configuration,

which is also referred to as optimal, has a combined value of zero across all metrics.

5.1.1 Communication

For this metric the goal is to quantify the simplicity of mapping applications to a purely

nearest neighbor parallel array. This metric primarily quantifies the length of communication chan-

nels between processors. It seems pretty straight forward to quantify this value as the combined

length of all communication channels. It only requires a minor adjustment, which is to subtract the

minimum channel length. The minimum channel length occurs when two processors are adjacent

having a channel length of 1. For this work a value of 1 is subtracted from the length of each channel.

This metric is incremented once for each channel with a length still greater than zero.

For the first version of AsAP the communication metric is the most important metric. If

this value is greater than zero than the configuration can not be simulated. It may sometimes be

acceptable to have a low number for this metric if the configuration can easily be modified by hand.

To signify the importance of this metric, due to its criticality, a large scale factor is applied. A

scale factor of 4 is applied to this metric, which is then squared. This result is then added to the

optimization cost. A scale factor of 4 is used so the metric grows quicker linearly than the other

metrics. The metric is squared to assure that even small values have a significant impact on the

optimization cost. This scale factor is somewhat related to the CostChannelLength configuration

parameter, which determines the penalty for using long-distance connections. When communication

is weighted equally with area the array size is smaller, but the result is a significant increase in the

number of long-distance interconnects. For the second version of AsAP this metric is still important

to maximize nearest neighbor communication, or communication delay, but the scale factor can be

reduced to decrease the area.

5.1.2 Area

For this metric the goal is to quantify the size of the array. This includes both the compu-

tation processors and the routing processors (if they were inserted). The easiest way to quantify this

metric is to simply multiply the maximum x-dimension by the maximum y-dimension, which is the

rectangular array area. The problem with quantifying the array size using this method is that the

value will never reach zero unless the array has no processors or routers. To overcome this problem

the optimal rectangular array area is first calculated then subtracted from the actual rectangular

5.1. QUALITY METRICS 81

 Rectangular Array Area (20)

Enclosed Array Area (14)

Figure 5.1: Visual depiction of the difference between rectangular array area (in solid blue) and
enclosed array area (in dotted red) for a graph with 12 nodes

array area. The optimal rectangular array area is the smallest rectangular array area that will fit

every node in the graph, excluding routing processors and ignoring data dependencies. The formula

used to calculate the optimal rectangular array area is shown in Equations 5.1, 5.2, and 5.3.

DimX =
⌈√

NumNodes
⌉

(5.1)

DimY = dNumNodes / DimX e (5.2)

Optimal Area = DimX ×DimY (5.3)

Since larger arrays can execute multiple applications at one time it’s sometimes desirable to

calculate the enclosed array area. The difference between the rectangular array area and the enclosed

array area is roughly the number of processors available for other applications. To calculate the

enclosed array area, processors not enclosed by the application are subtracted from the rectangular

array area. Locations that are unoccupied, have fewer than three occupied neighbors, and are not

surrounded by occupied processors are not considered enclosed and can be subtracted. Figure 5.1

gives an example of the difference between the rectangular array area and the enclosed array area.

The rectangular array area is used for quantifying this metric instead of the enclosed array area

because the rectangular array area is much simpler to calculate.

Just like in VLSI, the smaller the design the better (assuming consistent performance).

For AsAP smaller designs typically consume less power since more processors can be turned off.

Also communication channels are typically shorter since fewer hops are required, thereby decreas-

ing communication delay. By having a smaller design more applications can be fit onto a single

chip. The area metric is important for both the first and second version of AsAP. For the second

82 CHAPTER 5. EVALUATION METHODS

version of AsAP this metric may have equal importance and sometimes more importance than the

communication metric. For this work the metric is multiplied by a scale factor of 2 before adding

it to the optimization cost. A scale factor of 2 was chosen so the metric will grow quicker than

the utilization metric but not as quick as the communication metric. This scale factor is somewhat

related to the CostArraySize configuration parameter, which determines the penalty for increasing

the array dimensions. When area is weighted equally with utilization the array tends to be a little

larger since the focuses shifts towards removing routing processors.

5.1.3 Utilization

For this metric the goal is to quantify the percentage of the array used for computation

as opposed to routing. This percentage is derived from the number of computation processors with

respect to the total number of processors (including both computation and routing processors). In

other words an increase in utilization means a decrease in the number of routing processors. The

value for this metric is simply the number of routing processors inserted into the mapping. There is

no need to calculate the actual percentage since the number of computations processors is fixed for

a single application. This metric is not as significant as the other metrics but it allows very similar

configurations to be compared.

In AsAP, when a routing processor is inserted an additional hop is needed to pass data

between any connected nodes. Minimizing the number of routers decreases the number of hops

between nodes, which in-turn decreases communication delay. Also when fewer routing processors

are used less area is required to map the application so power can be saved by turning off additional

processors. This metric has no scale factor applied and is simply added to the optimization cost.

No scale factor was applied to this metric because it’s less important than the other metrics that

have a much larger impact on the mapping qualities we desire.

5.1.4 Runtime

For this metric the goal is to quantify the time required to obtain a given mapping. This

metric does not actually reflect the quality of the mapping but instead the quality of the imple-

mentation of the mapping algorithm. The runtime is calculated by summing the time expended for

all previous mapping attempts up to the selected mapping. The runtime is useful for comparing

hand mappings to automatic mappings. All mappings were performed on a lightly loaded cluster

with two systems containing 2.0 GHz Intel Xeon processors, four systems containing 2.4 GHz Intel

5.1. QUALITY METRICS 83

Operation Runtime
Configuration Cost 51.49 %
Perturb Configuration 22.76 %
Graph Object Manipulation 15.68 %
Random Number Generation 10.07 %
Other Operations 00.00 %

Table 5.1: A breakdown of the runtime for the mapping algorithm while mapping the 802.11a
wireless transmitter using the default settings.

Xeon processors, and one system containing 3.2 GHz Intel Xeon processors, all dual-socket with

hyper-threading enabled (donated by the Intel Corporation). Testing was initially done on my home

computer, which contains two 1.6 GHz AMD Opterons processors.

One problem with the mapping problem discussed in this work is that the solution space

is essentially infinite since the array size can grow without bounds. For this reason the runtime is

important in order to determine how quickly near-optimal mappings can be obtained. When near-

optimal mappings are obtained quickly time can be spent improving the mapping by hand to obtain

a very good mapping. For this metric a perfect value of zero seconds will never be attainable unless

the application was already mapped. This metric is therefore not included in the optimization cost,

but it is interesting to see how other metrics decrease over time.

The mapping algorithm consists of two phases with each phase having many parts. To get

a better idea for where time is spent the mapping algorithm was profiled while mapping the 802.11a

wireless transmitter application, described later in this chapter. Table 5.1 shows how the runtime is

broken down and what operations require the most time. Operations are listed by category instead

of function name for simplicity. Most of the time is spent calculating the configuration cost, which

makes sense since it’s the most complex part of the algorithm. Perturbing the configuration is

the second most complex part of the algorithm so it makes sense that this operation is second in

the table. Random number generation is used primarily when perturbing the configuration but

this operation has been put into its own category because the percentage of time it consumes is

significant. All categories, with the exception of a small fraction of the Graph Object Manipulation

category and the Other Operations category, belong to the placement phase. The remainder of the

runtime belongs to the routing phase. Based on the data in this table it’s quite obvious that most

of the time is spent in the placement phase of the mapping algorithm. The routing phase is entirely

predictable so it doesn’t require the time needed by the placement phase to search the solution space.

Configuration parameters that effect the placement phase, like the number of iterations, result in

the biggest runtime savings. Although runtime savings usually result in lower mapping quality.

84 CHAPTER 5. EVALUATION METHODS

5.1.5 Summary

In order to compare one configuration against another we must combine the three quality

metrics into one comparable quantity. This quantity is called the optimization cost. The lower

the optimization cost the better the mapping. If the optimization cost is zero then the mapping is

considered optimal. Equation 5.4 shows how the optimization cost is calculated for a given mapping

using the three metrics. This simple cost equation is used to evaluate mappings throughout Chapter 6

in order to find the best mapping for an application. The optimization cost is different than the

configuration cost, though there are a number of similarities. The configuration cost is used by the

placement phase of the mapping algorithm to determine whether or not to accept a perturbation.

The optimization cost equation is a simpler version of the configuration cost function and is used

for comparing final mappings, not intermediate mappings.

Optimization Cost = (4× Communication)2 + (2×Area) + Utilization (5.4)

5.2 Applications

To evaluate the quality of the mapping algorithm a set of applications must be mapped then

analyzed. The following applications vary in size and structure. Each application was considered

because of its dataflow patterns or its popularity in the signal processing field. These applications

are used throughout Chapter 6 to demonstrate various properties of the mapping algorithm.

5.2.1 Building Blocks

Applications are created by combining a number of kernels that have each been coded for

a specific task. For this work the code inside each kernel is not as important as the application’s

dataflow (how the kernels are connected). Instead of writing actual code for each module, pre-built

modules are used to simplify the design. These pre-built modules, or basic building blocks, contain

the necessary dataflow components needed to build any application. There are six basic building

blocks, which are shown in Figure 5.2. The Null Input and Null Output blocks act as a data

sink and a data source, respectively. The Null Input block is used for either testing purposes or

special measurements and therefore isn’t used by any of the applications in this work. The Forward

and Intersect blocks pass data between one or two pairs of processors, respectively. The Split and

Join blocks split one datastream into two datastreams and join two datastreams back into one

5.2. APPLICATIONS 85

Figure 5.2: The basic building blocks used for creating applications

Figure 5.3: The dataflow graph entered into the mapping tool for the 802.11a wireless transmitter

datastream, respectively. Datastreams are split and joined using the round-robin method. Every

application presented in this work is built using different combinations of these basic blocks.

5.2.2 802.11a Wireless Transmitter

Implementations of the IEEE 802.11a and 802.11g wireless LAN standard include a number

of subsystems such as digital baseband processing, analog circuits, and high-frequency RF circuits.

An important workload examined throughout this work is the processing required for the digital

baseband transmitter. The 802.11a wireless baseband transmitter contains a number of common

DSP components, such as filters, an FFT, and some codecs. The dataflow graph for this application

is almost linear but it has been mapped previously to AsAP by another student, Michael Meeuwsen,

which is useful for comparing hand mappings to automatic mappings [26]. The simplicity of this

application also allows more restrictive mapping parameters to be tested. The dataflow graph for

the 802.11a wireless transmitter is shown in Figure 5.3.

86 CHAPTER 5. EVALUATION METHODS

Figure 5.4: The dataflow graph entered into the mapping tool for the Viterbi decoder

5.2.3 Viterbi Decoder

Viterbi is an error correction code algorithm that performs fairly well and requires rela-

tively little computation [34]. This algorithm is a very common component in a number of wireless

standards, such as IEEE 802.11. Viterbi first creates a trellis through a series of adds, compares,

and selects which is then followed by a traceback phase to determine the original code. This algo-

rithm has also been previously mapped to AsAP by another student in our research group, Daniel

Gurman, and was given to me in private communication. This algorithm also has an interesting

dataflow graph with a number of small feedback loops. The dataflow graph for the Viterbi decoder

is shown in Figure 5.4.

5.2. APPLICATIONS 87

Figure 5.5: The dataflow graph entered into the mapping tool for the Fast Fourier Transform

5.2.4 Fast Fourier Transform

The Fast Fourier Transform is a very common building block in many DSP systems. The

Fast Fourier Transform, or FFT, is used to transform an N -point discrete time domain signal into

a frequency domain signal required by many algorithms. There are many forms of FFTs but the

form used in this work is the Cooley-Tukey Radix-2 Decimation in Time [28]. The size of the FFT

is undefined as only the dataflow for a block based FFT is important for this work. The FFT was

chosen because of its high fan-out and fan-in as well as its regular communication structure. The

dataflow graph for the Fast Fourier Transform is shown in Figure 5.5.

5.2.5 Clos Networks

A Clos network is a multistage switching network designed to route data between a large

number of nodes when switches with only a small number of ports are available. There are several

methods for combining these switches so they resemble larger versions of the smaller switches. The

Clos networks used in this work are NxN non-blocking networks, which allow N nodes to talk to

another N nodes simultaneously. These Clos networks are based on designs from the book Principles

and Practices of Interconnection Networks by Dally and Towles [12]. Two different size networks

are used, a smaller 4x4 network, and a larger 8x8 network. The larger 8x8 network was previously

mapped by an employee at Google, Wei-Hwa Huang, and was given to me in private communication.

His mapping offered some guidance when mapping the other complex applications by hand. Clos

networks were chosen because of their complex routing paths which have many crossing connections.

The dataflow graphs for the small Clos network and the large Clos network are shown in Figure 5.6

88 CHAPTER 5. EVALUATION METHODS

Figure 5.6: The dataflow graph entered into the mapping tool for the small Clos network

Figure 5.7: The dataflow graph entered into the mapping tool for the large Clos network

and Figure 5.7 respectively.

5.2.6 Random Graphs

Randomly generated graphs, which are converted into pseudo-applications, are used by a

few of the tests in Chapter 6. Each random application has the same relative mapping difficulty. The

algorithm used for generating these applications starts by selecting between two types of constructs,

a forward chain or a split/join, which are shown in Figure 5.8. Each choice is weighted by some

probability which makes choosing one construct more probable than the other. The forward chain

ranges from 1 to 5 nodes with each possibility weighted equally. The splits/joins can have either 2, 4

or 8 branches, with a probability of 3x, 2x, and 1x respectively. Between the split nodes and the join

nodes another random selection is made from the two constructs but the forward chain is given a

higher probability to keep the application from growing too large. Constructs continue to be added

until finally only forward chains are selected. This entire process is then repeated until the total

number of nodes exceeds a given minimum. All randomly generated segments are then connected

in series with the first and last segments connected to the module’s input and output respectively.

Examples of these randomly generated graphs can be seen in Figure 5.9. Since the number of nodes

5.2. APPLICATIONS 89

S

S

S

J

J

J

F F

Split / Join Construct

Forward Chain Construct

FF

Figure 5.8: Basic constructs used to build the random node applications

can exceed the given minimum the script must be run multiple times to get an exact number of

nodes.

5.2.7 Multi-App Application

The multi-app application is constructed by chaining together a number of smaller appli-

cations as shown in Figure 5.10. The applications combined are, the 802.11a wireless transmitter,

the Fast Fourier Transform, and the Viterbi decoder, in that order. The resulting dataflow graph is

shown in Figure 5.11. The principle behind creating an application of this type is that each of the

smaller applications create clusters which could present some interesting challenges for the mapping

algorithm. This is a typical scenario for AsAP where multiple applications are combined to make

up a complete system. It also wouldn’t be unexpected to put a few independent applications onto

a single chip when there are a very large number of processing elements.

90 CHAPTER 5. EVALUATION METHODS

in

2 4

out

6

11

3

15 19

5

7

8

9

10

12

13

14

16

17

18

21 22

20

23

24

in

2 10

1

15

4 9

3

5

6

7

8

11

12

13

14

17 19

16

out

18

20

21

22

23

in

1

2

3

4

5

7 22

out

9 11

8

13 16

10

17

18

12

14

15

19

20

21

23

24

Figure 5.9: Examples of randomly generated graphs that are used for the random node applications.
Each graph shown here contains 25 nodes with the input and output nodes colored green.

802.11a
Transmitter

Viterbi
Decoder

Fourier
Transform

Figure 5.10: Applications used for constructing the multi-app application

5.2. APPLICATIONS 91

Figure 5.11: The dataflow graph entered into the mapping tool for the multi-app application

92 CHAPTER 5. EVALUATION METHODS

5.3 Conclusion

The mapping algorithm contains many complex optimization factors that make its quality

difficult to evaluate. Since there were no benchmarks for nearest neighbor dominated parallel arrays

a set of metrics had to be developed in order to evaluate mappings. Each metric, with the exception

of the runtime metric, quantifies a desirable attribute for the mapping. The closer each metric

is to zero the more optimal and more desirable the mapping. A collection of applications were

created to produce the diverse mappings needed to properly evaluate the mapping algorithm. These

applications contain common dataflows patterns and vary in difficulty and problem size to help

stress the mapping algorithm. In Chapter 6 these metrics and applications are used to evaluate the

quality and runtime for the mapping algorithm.

93

Chapter 6

Results

This chapter analyzes the quality and run-time of the mapping algorithm using the various

metrics and applications discussed in Chapter 5. Each of these results demonstrate a different

aspect of the mapping algorithm. These aspects include the efficiency of automatic mappings to

hand mappings, scalability over growing problem sizes, overcoming faults in the physical device, and

optimizing for frequency and leakage differences due to fabrication. The analyses in this chapter focus

on the mapping quality for popular DSP applications and tasks. By focusing on DSP applications

in the general sense, the mapping algorithm avoids becoming application specific.

6.1 Procedure

The following procedure was used to obtain the results in the remainder of this chapter.

Derivations from this procedure are noted where they apply. First the application is prepared by

constructing its dataflow graph inside the graphical user interface using the basic building blocks.

Next the input and output configuration parameters are set to be compatible with the first version of

AsAP, where the input processor is fixed at location (0, 0) and the output processor is aligned with

the right edge. Next the static parameters, those different from the default values listed in Table 6.1,

are appended to the batch mode command-line. Next the dynamic parameters are generated (using

scripts) and appended to the batch mode command-line. Dynamic parameters are derived from the

trial number, which is typically used directly as the random seed. The parameters set on the batch

mode command-line are identical to those used by the mapping algorithm. The purpose of each

parameter is explained in Chapter 3 and the Glossary. Finally jobs are spawned across multiple

machines each working on a subset of the solution space. These steps have been summarized in the

94 CHAPTER 6. RESULTS

Parameter Default Value
QuickPlace False
UseRouting True
AddSpacing True
ExpandType Vertical
NumIters 3
MaxRoutes 2
SpaceThreshold 110

Table 6.1: Relevant default batch mode configuration parameters, see Glossary.

following list.

1. Prepare the application dataflow graph

2. Set the configuration parameters for the input and output

3. Determine and set the static configuration parameters

4. Generate dynamic configuration parameters from the trial number

5. Execute the mapping algorithm using a batch mode script

6. Analyze the results from the mapping algorithm

6.2 Efficiency

For some problems there is a finite solution space that is simply searched more efficiently

using heuristics, such as an iterative improvement algorithm. For the mapping problem addressed in

this work the solution space would be finite if the array dimensions had an upper limit. This would

mean that through permutations of every node at every location all possible configurations could

be explored in some finite amount of time. Therefore the optimal configuration could eventually be

determined. However, even with a finite array size the runtime would be extremely prohibitive. The

array size though has no upper limit, so it can be difficult to determine the optimal configuration

for some large applications.

Since the solution space is infinite, the optimal configuration has to either be determined

theoretically or approximated by hand mappings. The reason we compare with hand mappings is

that the programmer has an intuition about how the application was developed. These intuitions

are, knowledge about any dataflow patterns and any underlying mathematical optimizations. Hand

6.2. EFFICIENCY 95

mappings are almost always desirable but sometimes they can be very time consuming. It’s impor-

tant to also analyze how the mapping tool can aid the programmer when mapping both large and

small applications.

This section will compare hand mappings to automatic mappings for a number of the

applications listed in Chapter 5. For each comparison the two most important factors are the

mapping quality and the time required to obtain the mapping. When comparing mapping qualities

the three values of interest are: 1) the quality of the hand mapping, 2) the quality of the best

automatic mapping, and 3) the best theoretical mapping (optimization cost equal to zero). When

comparing mapping times the two values of interest are: 1) the estimated time for preparing the

hand mapping, and 2) the sequential time necessary to obtain the automatic mapping used for

quality comparisons. For these mappings 1000 trials were executed (random seeds 1 through 1000).

The last three applications tested in this section (Fast Fourier Transform, Small Clos Net-

work, and Large Clos Network) can’t be mapped using only nearest neighbor communication without

the use of routing processors. For the second version of AsAP some of these routing processors can

be converted into long-distance interconnects. This reduces the rectangular array area by allocating

fewer processors for pure routing. Instead this data is passed through the switched routing overlay

network. Though sometimes routing processors can be desirable since they can be programmed

to perform tasks such as buffering (if this does not effect the area by too much). In this section

we will compare automatic mappings targeting the second version of AsAP to automatic mappings

targeting the first version of AsAP for these last three applications. The values of interest are the

reduction in rectangular array area and the number of routing processors removed with respect to

any increase in the number of long-distance interconnects.

6.2.1 802.11a Wireless Transmitter

Settings: Defaults + “UseRouting = False”

The 802.11a wireless transmitter is relatively simple to map to AsAP and requires no

routing processors so the router insertion flag has been disabled, which saves time. The two mappings

in Figure 6.1 show that the rectangular array area for both mappings are equal (6x4 = 6x4), the

enclosed array area is slightly larger for the automatic mapping (23 < 24), both have no long-distance

interconnects, and both have no routing processors. In fact both mappings look very similar. The

optimal rectangular array area for this application is 25 (5x5). This means that the automatic

mapping has an optimization cost of zero, which is considered optimal by the metrics used in this

96 CHAPTER 6. RESULTS

P P P

P

P

P P PP

P

P PP

P

P

P PP

P

P

I

O

(a) Hand mapping (b) Automatic mapping

Figure 6.1: Side-by-side comparison of the hand mapping and the automatic mapping for the 802.11a
wireless transmitter shown in Figure 5.3 on page 85

work. Figure 6.2 shows that the automatic mapping took 1 minute and 9 seconds to obtain. The

hand mapping only took around 5 minutes since the application had been previously mapped by

hand. The mapping tool is very fast for this small application. For this application the automatic

mapping is just as good as the hand mapping. This application requires no routing processors so

there would be no benefit to mapping this application using parameters for the second version of

AsAP since the mapping would be identical.

6.2.2 Viterbi Decoder

Settings: Defaults + “UseRouting = False”

The Viterbi decoder is also relatively simple to map to AsAP, and again requires no routing

processors, but the small loops in the traceback phase make this application a little more difficult

to map. Since we know that the application can be mapped without routers we again disable router

insertion to save time. Routing processors are of course not used in both mappings, but the two

mappings in Figure 6.3 show that the hand mapping has a little bit smaller rectangular array area

(6x6 < 8x5), the enclosed array areas are both equal (30 = 30), and that both mappings have no

long-distance interconnects. The optimal rectangular array area for this application is 30 (5x6).

Neither mapping is considered optimal by the metrics used in this work, but the hand mapping is

slightly closer. Figure 6.4 shows that the automatic mapping took 18 minutes and 13 seconds to

obtain. The hand mapping took around 10 minutes since the application had already been mapped.

For this application the automatic mapping is very close to the hand mapping and even equal to the

6.2. EFFICIENCY 97

 0

 5

 10

 15

 20

 25

 30

 35

00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09 00:10 00:11

O
pt

im
iz

at
io

n
C

os
t

Runtime (HH:MM)

Optimization Cost vs. Runtime

Cost

Figure 6.2: Reduction in optimization cost over time for the 802.11a wireless transmitter using 1000
trials

hand mapping in terms of enclosed array area. Again this application requires no routing processors

so there would be no benefit to mapping this application using parameters for the second version of

AsAP since the mapping would be identical.

6.2.3 Fast Fourier Transform

The Fast Fourier Transform application is more complex than the previous two applications

making the mapping impossible without routers. The two mappings in Figure 6.5 show that the

rectangular array area for the hand mapping is smaller (7x7 < 8x9), the enclosed array area for the

hand mapping is smaller (43 < 64), and that both mappings have no long-distance interconnects.

Counting the number of routing processors, the hand mapping requires only 23 routing processors,

which is less than the 43 routing processors required by the automatic mapping. The optimal

rectangular array area for this application is 20 (4x5). This is far below the area of the two mappings

but this is expected since the mapping requires routers. As seen in Figure 6.6 the time required

to obtain the automatic mapping was 6 minutes and 44 seconds. This is not the mapping with

the lowest optimization cost because we prefer a mapping with no long-distance interconnects. The

hand mapping took around 1 hour. For this application the automatic mapping was somewhat larger

than the hand mapping but the automatic mapping was much quicker. The user could modify the

98 CHAPTER 6. RESULTS

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

OI

(a) Hand mapping (b) Automatic mapping

Figure 6.3: Side-by-side comparison of the hand mapping and the automatic mapping for the Viterbi
decoder shown in Figure 5.4 on page 86

 0

 100

 200

 300

 400

 500

 600

 700

00:00 00:02 00:04 00:06 00:08 00:10 00:12 00:14 00:16 00:18 00:20

O
pt

im
iz

at
io

n
C

os
t

Runtime (HH:MM)

Optimization Cost vs. Runtime

Cost

Figure 6.4: Reduction in optimization cost over time for the Viterbi decoder using 1000 trials

6.2. EFFICIENCY 99

I

P

P

P

P P

P

R

R

P

P

P

P

R

R

R

R

R

P

P

P

P

R

R

R

R R

R

RR

R

R

R

R R

R

P

P

R

R

O

(a) Hand mapping (b) Automatic mapping

Figure 6.5: Side-by-side comparison of the hand mapping and the automatic mapping for the Fast
Fourier Transform shown in Figure 5.5 on page 87

automatic mapping and save time over a fully manual mapping.

AsAP Version 2.0

Settings: Defaults + “AddSpacing = False” + “CostArraySize = 2X”

In order to target the second version of AsAP the spacing insertion flag is disabled and

the cost for increasing the area during the placement phase is doubled. This still allows routing

processors to be inserted but will produce a much tighter mapping, decreasing the rectangular array

area. The automatic mapping in Figure 6.7 shows that the rectangular array area decreased by

quite a bit (4x5 < 8x9) and also that the enclosed array area decreased by quite a bit (20 < 64)

from the previous automatic mapping. Comparing routing processors, this new mapping uses only 2

routing processors, which is far less than the previous 43 routing processors required. This decrease

in rectangular array area and routing processors only added 7 long-distance interconnects, all of

which are easily routable using the routing overlay network. This new mapping targeting the second

version of AsAP is much better than the previous mapping targeting the first version of AsAP

because the array area is significantly less.

100 CHAPTER 6. RESULTS

 140

 160

 180

 200

 220

 240

 260

00:00 00:03 00:06 00:09 00:12 00:15 00:18 00:21 00:24 00:27

O
pt

im
iz

at
io

n
C

os
t

Runtime (HH:MM)

Optimization Cost vs. Runtime

Cost

Figure 6.6: Reduction in optimization cost over time for the Fast Fourier Transform using 1000 trials

Figure 6.7: Automatic mapping for the Fast Fourier Transform shown in Figure 5.5 on page 87 when
targeting the second version of AsAP

6.2. EFFICIENCY 101

I P

P P

P P

P

R

R

R

R

R

R

O

(a) Hand mapping (b) Automatic mapping

Figure 6.8: Side-by-side comparison of the hand mapping and the automatic mapping for the small
Clos network shown in Figure 5.6 on page 88

6.2.4 Small Clos Network

The small Clos network is a relatively small application but each node has a high input

and output degree. This becomes a problem because not every node can be configured to use

nearest neighbor communication only. This creates a large number of intersecting routes that must

be negotiated using routers. Figure 6.8 shows that both mappings require quite a few routing

processors. The hand mapping requires 6 routing processors and the automatic mapping requires

11 routing processors. Both mappings have no long-distance interconnects. Comparing areas, the

hand mapping has a rectangular array area of 16, which is smaller than the automatic mapping

that has a rectangular array area of 25 (4x4 < 5x5). The hand mapping also has a smaller enclosed

array area than the automatic mapping (14 < 19). The optimal rectangular array area is 9 (3x3)

for this application. The high optimization cost for this application indicates that this application

is a poor fit for the AsAP architecture but nevertheless still an interesting application. As seen

in Figure 6.9 the time required to obtain the automatic mapping was 5 minutes and 26 seconds.

The time required to perform the hand mapping was about 30 minutes. The hand mapping is a

little smaller than the automatic mapping as expected, but this application is very small so a decent

solution can be reached in a short period of time and improved manually from there.

102 CHAPTER 6. RESULTS

 40

 50

 60

 70

 80

 90

 100

 110

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10

O
pt

im
iz

at
io

n
C

os
t

Runtime (HH:MM)

Optimization Cost vs. Runtime

Cost

Figure 6.9: Reduction in optimization cost over time for the small Clos network using 1000 trials

AsAP Version 2.0

Settings: Defaults + “AddSpacing = False” + “CostArraySize = 2X”

Like before space insertion is disabled and the area cost during the placement phase is

doubled to target the second version of AsAP. The automatic mapping in Figure 6.10 shows that

the new mapping has a smaller rectangular array area (4x4 < 5x5) and a smaller enclosed array

area (14 < 19) than the previous automatic mapping. Not only did the area decrease but the new

automatic mapping is exactly the same as the hand mapping. This happened because space was

inserted in the previous automatic mapping, due to the high edge to node ratio, when it was not

needed. This is an example of how tuning the configuration parameters can improve the mapping

quality for certain applications. This new mapping is not only better for the second version of AsAP

it’s also better for the first version of AsAP since it has a lower rectangular array area, uses fewer

routing processors, and still has no long-distance interconnects.

6.2.5 Large Clos Network

The large Clos network is larger than the previously tested applications. This application

has a large number of intersecting routes that must all be dealt with by routers. For this reason the

areas of both the hand mapping and the automatic mapping will be far from the optimal rectangular

6.2. EFFICIENCY 103

Figure 6.10: Automatic mapping for the small Clos network shown in Figure 5.6 on page 88 when
targeting the second version of AsAP

array area, which is 20 (4x5). The two mappings in Figure 6.11 show that both mappings have no

long-distance interconnects and that the hand mapping has a rectangular array area of 100, which

is less than the automatic mapping that has a rectangular array area of 132 (10x10 < 12x11). The

enclosed array area is also smaller for the hand mapping (70 < 109). The areas for these two

mappings may not be extremely close but they are within the same ballpark, which suggests that

the mapping algorithm handles this application decently even though this application is not well

suited for AsAP. Comparing the number of routing processors, the hand mapping has 42 routing

processors, which is quite a bit less than the automatic mapping that has 73 routing processors. The

hand mapping took only 15 minutes because it had been previously mapped by another individual.

The original author estimates that the hand mapping took him somewhat less than an hour and in

addition to his mapping I made a number of less successful attempts. As seen in Figure 6.12, the

automatic mapping took 24 minutes and 7 seconds to obtain. The automatic mapping was faster

for this application but the mapping still contains some trivial improvements.

The first two implementations of the mapping algorithm were unable to produce a valid

mapping for the first version of AsAP when mapping the large Clos network. The mapping was

compacted more than necessary so the remaining intersecting edges were left unrouted due to routing

conflicts. My first attempt at solving this problem was to detect and remove intersecting edges, but

this resulted in a large number of parallel edges that caused even more routing conflicts. My

second attempt at solving this problem was to insert additional rows and columns of empty space so

intersections were handled by additional routing processors. This solved the problem but it severely

degraded the mapping quality for other applications. The solution was to add a threshold value

104 CHAPTER 6. RESULTS

to determine when to enable this feature. However, this threshold value was unreliable for some

applications, like the small Clos network, so space insertion had to be disabled manually for these

applications.

AsAP Version 2.0

Settings: Defaults + “AddSpacing = False” + “CostArraySize = 2X”

To target the second version of AsAP the spacing insertion flag has again been disabled

and the cost for increasing the area has been doubled. The automatic mapping in Figure 6.13 shows

that the rectangular array area has decreased quite a bit (6x5 < 12x11) and that the enclosed array

area has also decreased quite a bit (29 < 109) from the previous automatic mapping. Comparing

the number of routing processors, the new mapping has 3 routing processors while the previous

mapping had 73 routing processors. This substantial decrease in rectangular array area and routing

processors comes with a penalty of 16 long-distance interconnects. These long-distance interconnects

can be negotiated using the routing overlay network, but configuring these long-distance connections

is not trivial. For the second version of AsAP this new mapping is much better than the previous

mapping due to the significant decrease in array area.

6.2. EFFICIENCY 105

I

P

P

P

P P

P

R

R

R

R

R

R

R

R R

P

P

P

P

R R

R R

R

R R

P

P

P

P

R

R

R

R

R P

P

P

P

R

R

R

R

R

P

P

P

P

R

R

R

R

R

R R

R R

R R

R

R R

P

P

OR

R

(a) Hand mapping

(b) Automatic mapping

Figure 6.11: Side-by-side comparison of the hand mapping and the automatic mapping for the large
Clos network shown in Figure 5.7 on page 88

106 CHAPTER 6. RESULTS

 200

 300

 400

 500

 600

 700

 800

 900

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10

O
pt

im
iz

at
io

n
C

os
t

Runtime (HH:MM)

Optimization Cost vs. Runtime

Cost

Figure 6.12: Reduction in optimization cost over time for the large Clos network using 1000 trials

Figure 6.13: Automatic mapping for the large Clos network shown in Figure 5.7 on page 88 when
targeting the second version of AsAP

6.2. EFFICIENCY 107

Hand Mapping Auto Mapping Auto Mapping
Application (Rect. Area) (Rect. Area) Area Increase
Wireless 24 (6x4) 24 (6x4) 0%
Viterbi 36 (6x6) 40 (8x5) 11.1%
Fourier 49 (7x7) 72 (8x9) 46.9%
Small Clos 16 (4x4) 25 (5x5) 56.3%
Large Clos 100 (10x10) 132 (12x11) 32.0%

Table 6.2: The rectangular array area for the hand mappings and the automatic mappings, along
with the percentage overhead, when targeting the first version of AsAP

6.2.6 Summary

What the mappings in this section show is that automatic mappings are often viable al-

ternatives to hand mappings and sometimes even equal to hand mappings. Table 6.2 compares the

rectangular array area, when targeting the first version of AsAP, and shows that the best mapping

was the 802.11a wireless transmitter with no overhead and that the worst mapping was the small

Clos network with an overhead of approximately 56%. Table 6.3 compares the enclosed array area,

when targeting the first version of AsAP, and shows that the best mapping was the Viterbi decoder

with no overhead, and that the worst mapping was the large Clos network with an overhead of

approximately 56%. The percentage overhead is quite low for the first two applications, which are

well suited to the first version AsAP. However, the overhead is more than 30% for the last three ap-

plications. This is because the last three applications have a higher routing complexity than the first

two applications and require routing processors which typically bloat the array. Table 6.4 compares

the rectangular array area, when targeting the second version of AsAP, and shows that the most

improved mapping was the large Clos network with a decrease of 70% and that the least improved

mapping was the small Clos network with no decrease at all. Table 6.5 compares the enclosed array

area, when targeting the second version of AsAP, and shows that the most improved mapping was

again the large Clos network with a decrease of approximately 59% and that the least improved

mapping was again the small Clos network with no decrease at all. The percentage decrease is

very high for two of these applications. This is because these two applications make extensive use

of routing processors. The bloat typically associated with inserting routing processors is removed

when routing processors are converted into long-distance interconnects.

For most of these applications the time required to obtain a decent mapping is much lower

when mapped automatically than when mapped entirely by hand. These automatic mappings can

sometimes be further improved by the user. Therefore quickly achieving a decent mapping will

save the user a great deal of time. This is especially true for very large applications. Automatic

108 CHAPTER 6. RESULTS

Hand Mapping Auto Mapping Auto Mapping
Application (Encl. Area) (Encl. Area) Area Increase
Wireless 23 24 4.3%
Viterbi 30 30 0%
Fourier 43 64 48.8%
Small Clos 14 19 35.7%
Large Clos 70 109 55.7%

Table 6.3: The enclosed array area for the hand mappings and the automatic mappings, along with
the percentage overhead, when targeting the first version of AsAP

Hand Mapping Auto Mapping Auto Mapping
Application (Rect. Area) (Rect. Area) Area Decrease
Fourier 49 (7x7) 20 (4x5) 59.2%
Small Clos 16 (4x4) 16 (4x4) 00.0%
Large Clos 100 (10x10) 30 (6x5) 70.0%

Table 6.4: The rectangular array area for the hand mappings and the automatic mappings, along
with the percentage savings, when targeting the second version of AsAP

mappings could also provide some guidance when mapping applications by hand. When mapping

applications to the second version of AsAP the mapping algorithm does an excellent job of reducing

the rectangular array area and the number of routing processors without using too many long-

distance interconnects. All these tests show that the mapping algorithm can be an efficient tool

when mapping various types of applications.

6.3 Scalability

As VLSI technology continues to improve the number of processing elements on a single

die continues to increase. This means that as time progresses there will be more processing elements

on a single die that need to be programmed. This in-turn results in larger applications or many

smaller applications sharing a single chip. An important goal for this work is to develop a mapping

algorithm that is scalable and able to map larger applications even when these applications can not

be realized on current physical designs.

If the mapping algorithm was ideal the runtime would grow linearly with respect to the

Hand Mapping Auto Mapping Auto Mapping
Application (Encl. Area) (Encl. Area) Area Decrease
Fourier 43 20 53.5%
Small Clos 14 14 00.0%
Large Clos 70 29 58.6%

Table 6.5: The enclosed array area for the hand mappings and the automatic mappings, along with
the percentage savings, when targeting the second version of AsAP

6.3. SCALABILITY 109

problem size. If this growth was instead exponential the runtime would be prohibitive for large

applications. Also, if the mapping algorithm was ideal the mapping quality would have equal

variance from the optimal mapping for all problem sizes. In summary, the algorithm should perform

enough work on each node that the runtime remains linear and the quality remains relatively constant

for any problem size. Estimating the runtime for the mapping algorithm using Big-O notation, or

O(N) (which approximates an algorithm’s runtime based on its input data size), is a rather complex

process since many decisions in the algorithm are made based upon some random value. Therefore

the algorithm is simulated using randomly generated applications with problem sizes of 100, 250,

500, and 1000, in order to get an estimate of the algorithms scalability. Each application is simulated

using the same settings and 100 trials are executed (random seeds from 1 to 100) on each application.

6.3.1 100 Random Nodes

The 100 random nodes application is the smallest of the four applications tested for scal-

ability so it will serve as a baseline for the other applications. To get an idea of the runtime of the

algorithm we choose the mapping with the lowest optimization cost and noted the time required

to obtain this mapping. As seen in Figure 6.14 the time required to obtain the mapping with the

lowest optimization cost was about 2 hours and 5 minutes. At this point the rectangular array area

is 399 (21x19), 143 routing processors are used, and there are zero long-distance interconnects. For

100 processors the optimal rectangular array area is of course 100 (10x10). In relative terms we have

about a 4x increase in rectangular array area, and about 1.5x the number of routing processors as

the minimum number of processors. These relative numbers will be used for comparisons with the

remaining tests.

6.3.2 250 Random Nodes

For the 250 random nodes application we would ideally expect the runtime to be around

2.5x longer than the 100 random nodes application and have the same relative quality. Trends can

not yet be formed without a third data point. This time we chose a mapping that does not have

the lowest optimization cost since the mapping with the lowest optimization cost uses long-distance

interconnects. As seen in Figure 6.15 the mapping chosen required about 22 hours and 1 minute to

obtain. This mapping has a rectangular array area of 1224 (36x34), uses 550 routing processors, and

has no long-distance interconnects as stated before. Comparing runtimes for the 100 random nodes

application and the 250 random nodes application the increase is about 11x, which is more than

110 CHAPTER 6. RESULTS

 700

 750

 800

 850

 900

 950

 1000

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15 02:30 02:45

O
pt

im
iz

at
io

n
C

os
t

Runtime (HH:MM)

Optimization Cost vs. Runtime

Cost

Figure 6.14: Reduction in optimization cost over time for the 100 random node application using
100 trials

the ideal 2.5x increase. The optimal rectangular array area is 256 (16x16), which gives a relative

increase in rectangular array area of about 4.75x and about 2x the number of routing processors as

the minimum number of processors. The runtime is higher than expected but the quality metrics

are close to those of the 100 random nodes application.

6.3.3 500 Random Nodes

For the 500 random nodes application we would ideally like the runtime to be around

5x longer than the 100 random nodes application with the same relative quality. Based on runtime

results from the previous tests, we can expect the runtime to increase by about twice as much for this

test, or around 22x. Once again the point chosen was not the mapping with the lowest optimization

cost since the mapping with the lowest optimization cost has long-distance interconnects. As seen

in Figure 6.16 this mapping was obtained in around 109 hours and 8 minutes. This mapping has

a rectangular array area of 2548 (49x52), uses 1302 routing processors, and has no long-distance

interconnects. Comparing the runtime of this application to the runtime of the 100 random nodes

application the increase is about 55x, about twice what we expected. Comparing quality, the optimal

rectangular array area is 506 (22x23), which gives a relative increase in the rectangular array area

of about 5x. The number of routing processors is about 2.5x the minimum number of processors.

6.3. SCALABILITY 111

 2250

 2300

 2350

 2400

 2450

 2500

 2550

 2600

 2650

 2700

 2750

 2800

00:00 04:00 08:00 12:00 16:00 20:00 24:00 28:00 32:00 36:00

O
pt

im
iz

at
io

n
C

os
t

Runtime (HH:MM)

Optimization Cost vs. Runtime

Cost

Figure 6.15: Reduction in optimization cost over time for the 250 random node application using
100 trials

For this application the runtime is higher than expected but the quality metrics are quite close.

6.3.4 1000 Random Nodes

For the 1000 random nodes application we would ideally like the runtime to be around 10x

longer than the 100 random nodes application with similar quality metrics. Based on the previous

tests we expect the runtime to be around 110x. For comparisons the mapping selected is again the

mapping with the lowest optimization cost. The selected mapping (and all the other mappings)

doesn’t have zero long-distance interconnects so the mapping is invalid for the first version of AsAP.

Therefore, the values obtained from this test will serve as lower bounds instead of actual data points.

As seen in Figure 6.17 the selected mapping was obtained in around 163 hours and 52 minutes. It’s

important to also notice that the final mapping for this test, obtained in around 393 hours and

28 minutes, is also invalid. This indicates that more time is needed to find a valid mapping and

that the final mapping is the best choice for the lower bounds regarding runtime. For this mapping

the rectangular array area was 5112 (71x72), 2814 routing processors were inserted, and there were

17 long-distance interconnects that could not be removed. For the mapping to be valid these 17

long-distance interconnects would have to be converted into routing processors. This would not only

increase the number of routing processors but also increase the rectangular array area. Therefore

112 CHAPTER 6. RESULTS

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

00:00 24:00 48:00 72:00 96:00 120:00 144:00 168:00 192:00

O
pt

im
iz

at
io

n
C

os
t

Runtime (HH:MM)

Optimization Cost vs. Runtime

Cost

Figure 6.16: Reduction in optimization cost over time for the 500 random node application using
100 trials

the mapping with the lowest optimization cost is the best choice for the lower bounds with regards

to metric quality. Comparing the runtimes between this application and the 100 random nodes

application the increase is about 197x, again about twice what we expected. Comparing quality,

the optimal rectangular array area is 1024 (32x32), which gives a relative increase in rectangular

array area of about 5x. The number of routing processors is about 2.75x the minimum number of

processors. For this application the runtime is again higher than expected but the quality metrics

are close to previous values.

6.3. SCALABILITY 113

 15000

 20000

 25000

 30000

 35000

 40000

 45000

00:00 48:00 96:00 144:00 192:00 240:00 288:00 336:00 384:00 432:00

O
pt

im
iz

at
io

n
C

os
t

Runtime (HH:MM)

Optimization Cost vs. Runtime

Cost

Figure 6.17: Reduction in optimization cost over time for the 1000 random node application using
100 trials

114 CHAPTER 6. RESULTS

Runtime Increase in Rect Area Increase in Routers
Problem Size (Hours) (Relative Min Nodes) (Relative Min Nodes)
100 2.08 3.99 X 1.43 X
250 22.02 4.78 X 2.15 X
500 109.13 5.04 X 2.57 X
1000 393.47 4.99 X 2.75 X

Table 6.6: Runtime and increase in metric quality, relative to the minimum number of nodes, with
respect to problem size for the random node applications.

6.3.5 Summary

The four tests performed in this section show that the mapping algorithm is scalable. As

stated earlier, the runtime should not grow exponentially and the relative quality should not grow

uncontrollably in order for the mapping algorithm to be considered scalable. The resulting data

from these four tests is listed in Table 6.6. Figure 6.18 plots the runtime for each application with

respect to problem size. The coefficient for the best-fit line shows an increase of about 27 minutes for

each node added. If jobs were divided across 30 CPUs the increase would be less than 1 real world

minute for each node added. Since the last data point is only a lower bound this leads to two possible

outcomes. The best case scenario is that the true data point is just a few iterations away, resulting

in a linear increase. The worst case scenario is that the increase is actually quadratic (somewhat

indicated by the other data points) and therefore the true data point would be over 500 hours.

Neither outcome results in an exponential increase, which would disprove scalability. Figure 6.19

plots the increase in rectangular array area and the increase in the number of routing processors

relative to the minimum number of nodes with respect to problem size. Like before there are two

possible outcomes based on these lower bounds. The best case scenario is that the true data points

are on par with the lower bounds, resulting in near equal variance for the metric quality across all

problem sizes. The worst case scenario is that the true data points are much higher than the lower

bounds, resulting in a linear increase. Having equal variance is not required for scalability but is

instead ideal. Based on the observed trends for the runtime, rectangular array area, and number

of routing processors, the mapping algorithm has been shown to be scalable. To get more precise

results more trials would have to be performed. This would provide a concrete data point for the

1000 random nodes application. Also testing intermediate problem sizes will increase the accuracy

of the observed trends.

6.3. SCALABILITY 115

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000

R
un

tim
e

in
 H

ou
rs

Number of Nodes

Runtime
Best-fit Line

Figure 6.18: Plot of the application runtime with respect to problem size for the random nodes
applications. The up arrow indicates that the point is a lower bound.

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000

In
cr

ea
se

 in
 M

et
ric

 R
el

at
iv

e
to

 M
in

im
um

 N
od

es

Number of Nodes

Area (Rect)
Routers

Figure 6.19: Plot of the increase in metric quality, relative to the minimum number of nodes, with
respect to problem size for the random nodes applications. The up arrows indicate that these points
are a lower bound.

116 CHAPTER 6. RESULTS

6.4 Fault Tolerance

When fabricating a large number of chips some chips will inherently have flaws due to

defects. These defects are expected so complex testing procedures have been developed to determine

which of these chips contain flaws. Industry standards have been developed that estimate the yield

expected for a given number of chips fabricated. This estimate is based on the size of the design,

the size of the wafer, the technology used, and other factors. Chips found to have fabrication errors

must be discarded so this is accounted for in the final cost of a design.

One goal of this work is to mitigate this yield problem. This is possible with AsAP because

it has a large number of identical processing elements (also called a homogeneous array), that can be

configured in many different ways to accomplish the same task. If one of these processing elements is

determined to be bad it can be excluded and the mapping algorithm will choose another processor to

take its place. An excluded processor is a processor within the target array that must remain unused

in the final mapping. This means no task may be assigned to a location associated with an excluded

processor. Every chip must still be tested, which can be difficult, but chips found to have defects can

still be used if enough processing elements remain, thus mitigating the yield problem. The mapping

algorithm can be considered tolerant to processor failures if the area, utilization, and communication

metrics remain close to their original values (which is when no processors are excluded). However

it’s likely not possible for these metrics to remain close to their original values if the number of

excluded processors is close to the number of nodes in the application. In this case we would like to

know how many additional processors are needed for a given number of excluded processors.

This section first tests two larger applications and one smaller application to see if they can

tolerant minor fabrication errors, or single processor failures, without increasing any of the metrics.

The first large application is the multi-app application (page 117), which has 70 nodes. The second

large application is the 100 random nodes application (page 134), from the previous section (6.3).

The small application is the 802.11a wireless transmitter application (page 150), which has only

22 nodes and is very easy to map. The two larger applications are tested on both the first and

second versions of AsAP using an array of size 25x25 and by executing 100 trials for each excluded

processor. Comparisons are made between the two platforms for these tests. The smaller application

is only tested on the first version of AsAP, but uses an array of size 8x8 and executes 1000 trials for

each excluded processor to obtain higher resolution results. The minimum values for each metric

from each of these tests are plotted in a color-coded 2D-array by excluded processor location, as

a histogram, and as a cumulative distribution function. The best automated mapping for each

6.4. FAULT TOLERANCE 117

application is also shown, which includes one of the excluded processors.

This section next tests how the 802.11a wireless transmitter application (page 154) tolerates

a large number of fabrication errors, or multiple processor failures. Excluded processors are chosen

randomly from an array of size 10x10. In one test case there are actually more excluded processors

than nodes in the application. Fabrication errors are simulated within the mapping tool using the

excluded coordinate feature of the mapping algorithm. This feature prevents the tool from assigning

tasks to processors that match an excluded coordinate. Tests are performed by excluding 100

different combinations of randomly selected processors, mapping the application 100 times (random

seeds from 1 to 100), then analyzing the results. To analyze the results, the minimum values for

each metric from each of these 100 trials are plotted along with the mean of these minimum values

and the base values. Base values are obtained by performing 100 trials using no excluded processors

then finding the minimum value for each metric from these 100 trials. Any mappings that utilize

long-distance interconnects are ignored since these mappings are invalid for the first version of AsAP.

6.4.1 Multi-App Application

Settings: Defaults + “InputEdge = Left”

For this test each processor from an array of 25x25 is excluded one-by-one in sequence.

For each excluded processor 100 trials are performed using unique random seeds. Base values are

obtained by performing 100 trials with no excluded processors then finding the minimum value for

each metric from these 100 trials. Minimum values for each metric are then obtained from every 100

trial block that includes an excluded processor. Next the mean and the median of these minimum

values are computed. The array input is allowed to float along the left edge of the array so coordinate

(0, 0) can be excluded even though the first version of AsAP doesn’t support this. Also by making

this adjustment to the array input, mappings are more likely to converge to a nearest neighbor only

solution when performing these fault tolerance tests.

In Figure 6.20 the minimum rectangular array area for each excluded processor has been

plotted as a 2D-array and each square has been labeled with its value. The lighter the color of

the square the higher its value. A white square with a black X indicates that the application

can not be mapped when the location in question is excluded. Similarly Figure 6.23 shows a 2D-

array of the minimum number of routing processors for each excluded processor. In Figure 6.21 and

Figure 6.22 the minimum rectangular array area has been plotted as a histogram and as a cumulative

distribution function, respectively. The median, mean, and base values are provided as tick marks

118 CHAPTER 6. RESULTS

across the top of the graph along with their exact values for comparisons. Similarly, Figure 6.24 and

Figure 6.25 show the histogram and the cumulative distribution function for the minimum number

of routing processors. Figure 6.26 shows the best automated mapping for the multi-app application

when targeting the first version of AsAP, which happens to exclude processor (10, 1). Plots are not

necessary for the minimum number of long-distance interconnects since this value must always be

zero when targeting the first version of AsAP.

The 2D-array plots indicate that the application is more difficult to map when processors

are excluded near the center of the array. The minimum rectangular array area increases when

processors are excluded near the region between columns 11 and 13 and between rows 5 and 7. In

some cases the application even becomes unmappable. This is not entirely unexpected since the

application is very cluster oriented. The Viterbi decoder, which is part of the multi-app application,

requires a large contiguous space for mapping the traceback cycle. The Fast Fourier Transform,

also part of the multi-app application, is very demanding in terms of routing resources. Excluded

processors not only disrupt the contiguity of the target array but they also interfere with the space

insertion component. This leads to unwanted long-distance interconnects. The histograms for the

minimum rectangular array area and the minimum number of routing processors show that the mean

and base values for these two metrics are quite close. This indicates that the application is mostly

unaffected by the excluded processors and is therefore tolerant of single processor exclusions. These

histograms also show the base value being greater than both the mean and median values. This is

quite unexpected! This unexpected occurrence is largely due in part to the size of the application and

the number of trials that were performed. If a significantly higher number of trials were performed,

or a more highly optimized algorithm was available, the entire graph would shift left and the base

value would drop below the mean and median values. Later in this section (page 150) the 802.11a

wireless transmitter application is mapped using 10 times the number of trials to compare how

the number of trials affects the base, mean, and median values. It’s important to notice that in

the two cumulative distribution functions 1.0 is never reached because a few of the mappings were

unsuccessful. The cumulative distribution functions indicate that by using a rectangular array area

of 288 there is a 95% chance that the mapping will be successful with one excluded processor.

6.4. FAULT TOLERANCE 119

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

14

16

18

20

22

24

255 270 255 285 224 266 272 256 240 240 270 270 270 238 252 240 256 255 224 234 266 255 252 255 255

252 285 240 255 255 255 240 270 240 323 192 342 X 266 210 225 256 255 270 210 270 266 270 272 238

270 270 272 270 270 255 285 224 270 285 252 X 210 255 238 240 256 255 252 300 252 255 238 255 255

224 270 270 255 266 238 288 272 285 272 X 270 272 340 285 255 272 256 234 252 255 256 240 240 270

255 270 256 238 252 240 272 240 342 255 288 256 306 255 266 238 240 238 288 266 270 270 270 255 285

221 266 272 240 252 225 304 240 300 320 288 X X X 221 304 256 238 255 256 285 252 255 256 238

252 266 255 255 252 288 252 300 288 208 256 X 255 238 289 255 240 272 270 256 252 234 270 240 272

240 285 255 266 285 256 272 306 238 304 255 X X 272 238 255 240 238 238 280 252 256 255 210 272

288 289 285 256 240 272 256 256 306 X 306 255 240 272 240 240 270 221 255 270 272 266 240 285 256

240 252 270 289 270 272 272 221 288 342 270 255 256 234 255 288 240 234 255 247 273 285 255 240 288

270 247 240 320 285 304 270 306 288 270 240 300 288 221 266 255 270 272 240 255 270 270 256 266 256

252 285 221 252 288 266 270 272 234 285 272 272 288 228 288 208 270 204 270 224 289 252 288 221 289

270 270 266 270 266 252 247 285 260 280 270 266 266 270 238 260 273 266 272 240 240 266 256 270 272

270 247 255 270 272 288 255 221 247 252 272 285 234 272 255 260 238 234 266 252 252 252 224 255 272

266 270 266 240 221 238 255 224 252 238 285 252 252 266 252 252 238 256 270 255 260 288 270 285 225

240 240 260 270 252 255 270 272 266 270 224 221 270 270 255 255 272 255 252 272 288 252 256 266 256

255 270 256 272 288 256 272 252 270 270 270 272 252 272 255 270 240 266 255 252 240 266 266 270 288

272 240 247 266 234 270 260 280 288 270 208 270 240 272 240 266 270 255 252 272 255 270 224 272 272

270 256 240 252 266 255 255 238 240 270 270 256 270 266 225 270 285 240 238 255 285 252 288 240 255

270 255 252 255 270 270 221 247 272 247 240 252 247 255 224 266 280 256 272 266 270 256 270 252 266

238 255 252 210 255 270 270 255 255 255 272 266 270 270 266 252 270 252 270 288 252 238 238 240 270

255 256 240 240 272 255 252 240 240 225 272 210 252 255 272 270 270 270 252 225 240 266 240 252 224

238 224 270 289 270 270 255 266 266 252 266 252 289 256 252 272 255 221 272 272 252 247 255 255 252

270 240 300 255 289 270 272 252 238 256 255 272 266 247 266 272 240 256 256 255 266 272 255 272 255

255 256 234 270 285 247 272 256 266 256 270 252 247 270 285 256 247 255 256 234 255 285 285 256 255

X-Coordinate for Excluded Processor

Y
-C

o
o
rd

in
a
te

 f
o
r

E
xc

lu
d

e
d

 P
ro

ce
ss

o
r

Figure 6.20: 2D-plot of the minimum rectangular array area when excluding each processor individ-
ually from the target 25x25 array (using 100 trials for each excluded processor) for the multi-app
application targeting the first version of AsAP. The square with the darkest color has the lowest
rectangular array area. The rectangular array area increases as the square lightens in color. A
white square with a black X indicates an unmappable location. The statistics for this test regard-
ing the minimum rectangular array area are: minimum = 192; maximum = 342; mean = 259.6;
median = 256; base = 270.

120 CHAPTER 6. RESULTS

180 200 220 240 260 280 300 320 340 360
Minimum Rectangular Array Area

0

50

100

150

200

N
u

m
b

e
r

o
f

C
a
se

s

Base(270)
Mean(259.6)

Median(256)

Figure 6.21: Histogram of the minimum rectangular array area, along with the base value (no
excluded processors), the median value, and the mean value, when excluding each processor indi-
vidually from the target 25x25 array (using 100 trials for each excluded processor) for the multi-app
application targeting the first version of AsAP. The statistics for this test regarding the minimum
rectangular array area are: minimum = 192; maximum = 342; mean = 259.6; median = 256;
base = 270.

6.4. FAULT TOLERANCE 121

200 250 300 350
Minimum Rectangular Array Area

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
o
f

a
 S

u
cc

e
ss

fu
l

M
a
p

p
in

g

Base(270)
Mean(259.6)

Median(256)

Figure 6.22: Cumulative Distribution Function for the minimum rectangular array area, along with
the base value (no excluded processors), the median value, and the mean value, when excluding each
processor individually from the target 25x25 array (using 100 trials for each excluded processor) for
the multi-app application targeting the first version of AsAP. The statistics for this test regard-
ing the minimum rectangular array area are: minimum = 192; maximum = 342; mean = 259.6;
median = 256; base = 270.

122 CHAPTER 6. RESULTS

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

14

16

18

20

22

24

99 99 94 88 64 104 89 95 77 84 96 92 99 89 106 97 88 96 92 85 95 99 103 89 100

77 111 85 104 87 97 89 93 73 107 77 143 X 99 95 90 88 92 94 83 86 105 89 96 90

98 95 99 85 108 90 116 79 90 108 91 X 84 110 104 76 89 89 95 98 83 98 92 83 99

95 102 102 107 103 100 99 80 97 108 X 109 95 117 104 93 87 96 84 97 100 104 97 91 100

99 103 91 87 84 94 99 87 112 87 105 129 118 75 107 90 88 83 91 100 96 88 108 97 105

80 81 104 89 101 86 128 101 103 110 110 X X X 89 115 82 84 84 98 94 88 76 87 99

84 105 78 87 85 116 109 112 97 70 101 X 92 102 107 88 77 88 82 93 98 102 109 84 99

90 99 97 106 92 91 104 117 89 107 84 X X 97 84 86 90 83 94 86 73 82 103 80 109

101 92 100 94 93 83 95 114 112 X 99 113 75 98 88 89 111 86 86 101 99 85 88 96 85

88 89 107 102 99 96 99 63 103 137 102 114 99 88 99 106 83 84 91 91 97 89 92 84 102

93 98 99 112 100 113 104 112 104 111 88 105 96 88 97 96 99 96 72 92 107 98 85 100 103

102 102 89 73 95 91 101 98 98 95 108 93 116 80 101 77 94 67 72 77 106 86 92 92 94

89 104 97 102 104 81 91 96 105 99 117 98 95 108 94 98 96 99 78 98 88 94 90 92 101

99 91 96 88 98 89 82 79 88 88 97 103 65 116 103 98 96 67 94 86 91 95 76 97 95

87 106 96 95 92 89 90 82 93 76 105 89 96 94 82 96 80 89 93 98 78 96 91 103 68

96 97 97 96 82 84 106 97 87 78 105 84 91 90 93 94 100 77 95 105 97 99 100 109 95

90 87 65 91 97 103 90 98 103 94 86 92 96 100 85 101 92 116 84 87 98 88 91 102 97

108 99 95 99 76 95 97 101 108 84 73 99 76 99 82 103 67 92 83 89 88 84 93 96 101

97 91 89 98 92 86 86 81 84 106 104 81 92 95 89 90 95 85 78 84 89 81 107 88 84

95 102 88 92 108 97 88 95 84 86 82 98 92 88 81 89 113 86 92 95 94 104 75 77 95

82 79 101 85 105 88 110 103 88 100 94 82 98 87 92 100 100 93 92 102 94 87 80 87 97

90 85 90 82 88 90 92 89 87 87 96 92 94 88 104 103 95 100 94 90 96 95 105 88 70

82 81 95 103 84 80 84 94 99 99 107 92 95 84 98 77 97 87 94 97 91 94 90 98 91

88 94 82 91 97 105 95 101 96 100 81 104 89 97 95 99 91 93 92 87 100 89 93 100 97

89 98 87 99 100 86 98 116 100 88 102 107 89 92 89 90 95 90 78 89 100 87 103 95 90

X-Coordinate for Excluded Processor

Y
-C

o
o
rd

in
a
te

 f
o
r

E
xc

lu
d

e
d

 P
ro

ce
ss

o
r

Figure 6.23: 2D-plot of the minimum number of routing processors when excluding each processor
individually from the target 25x25 array (using 100 trials for each excluded processor) for the multi-
app application targeting the first version of AsAP. The square with the darkest color has the lowest
number of routing processors. The number of routing processors increases as the square lightens
in color. A white square with a black X indicates an unmappable location. The statistics for this
test regarding the minimum number of routing processors are: minimum = 63; maximum = 143;
mean = 93.8; median = 94; base = 105.

6.4. FAULT TOLERANCE 123

60 80 100 120 140
Minimum Number of Routing Processors

0

20

40

60

80

100

120

140

160

N
u

m
b

e
r

o
f

C
a
se

s

Base(105)
Mean(93.8)
Median(94)

Figure 6.24: Histogram of the minimum number of routing processors, along with the base value (no
excluded processors), the median value, and the mean value, when excluding each processor indi-
vidually from the target 25x25 array (using 100 trials for each excluded processor) for the multi-app
application targeting the first version of AsAP. The statistics for this test regarding the minimum
number of routing processors are: minimum = 63; maximum = 143; mean = 93.8; median = 94;
base = 105.

124 CHAPTER 6. RESULTS

60 80 100 120 140
Minimum Number of Routing Processors

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
o
f

a
 S

u
cc

e
ss

fu
l

M
a
p

p
in

g

Base(105)
Mean(93.8)
Median(94)

Figure 6.25: Cumulative Distribution Function for the minimum number of routing processors,
along with the base value (no excluded processors), the median value, and the mean value, when
excluding each processor individually from the target 25x25 array (using 100 trials for each excluded
processor) for the multi-app application targeting the first version of AsAP. The statistics for this
test regarding the minimum number of routing processors are: minimum = 63; maximum = 143;
mean = 93.8; median = 94; base = 105.

6.4. FAULT TOLERANCE 125

Figure 6.26: Best automatic mapping for the multi-app application after excluding each processor
individually from the target 25x25 array (using 100 trials for each excluded processor) while targeting
the first version of AsAP. This automated mapping excludes processor (10, 1), has a rectangular
array area of 192 (12x16), and uses 77 routing processors.

126 CHAPTER 6. RESULTS

AsAP Version 2.0

Settings: Defaults + “InputEdge = Left” + “UseRouting = False”

+ “CostArraySize = 2X”

The setup for this test is almost identical to the setup for the previous test. Each processor

from an array of 25x25 is excluded in sequence and 100 trials are performed for each excluded

processor. One run is also made with no excluded processors and 100 trials, producing the base

values. Next, the minimum values for each metric are obtained from each 100 trial block, followed

by the computation of the mean and median values from these minimums. Once again the array

input is allowed to float along the left edge, but for this test routing is also disabled and the cost

for increasing the array size is doubled. Routing has been disabled to keep the mapping algorithm

from switching back and forth between routing processors and long-distance interconnects, keeping

results consistent. These additional settings are used to target the second version of AsAP and save

time.

Similar to before, Figure 6.27 and Figure 6.30 are plots of the minimum rectangular array

area and the minimum number of long-distance interconnects, respectively, shown as color-coded

2D-arrays. Figure 6.28 and Figure 6.31 plot the minimum rectangular array area and the minimum

number of long-distance interconnects as histograms, respectively, and include value tick marks.

Similarly, Figure 6.29 and Figure 6.32 plot the minimum rectangular array area and the minimum

number of long-distance interconnects as cumulative distribution functions, respectively, and again

include value tick marks. Figure 6.33 once again shows the best automated mapping for the multi-

app application, but this time targeting the second version of AsAP and excludes processor (13, 2).

Plots are not needed for the minimum number of routing processors since routing was disabled so

this value is always zero.

In this test, unlike the previous test, there are no regions within the 2D-array plots that

were particularly difficult to map because of excluded processors. This is because long-distance

interconnects are more flexible and can be routed in different ways whereas routing processors

need to be placed in certain locations (which may be blocked) in order to complete a nearest

neighbor route. The histograms for the minimum rectangular array area and the minimum number

of long-distance interconnects both show that the mean and base values for these two metrics are

very close. This again indicates that the application is mostly unaffected by a single excluded

processor. Also the base value is again greater than or equal to the mean and median values,

which indicates that more trials are needed or a more highly optimized algorithm is needed. The

6.4. FAULT TOLERANCE 127

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

14

16

18

20

22

24

77 80 81 88 88 80 88 72 88 88 88 88 88 80 81 88 81 88 88 81 80 88 88 88 88

88 88 88 88 88 90 88 88 88 88 88 81 88 88 80 88 88 80 88 80 88 80 81 80 80

81 88 88 88 72 88 88 81 81 88 80 88 80 72 88 81 80 80 80 88 88 88 72 88 88

88 88 90 88 88 80 88 88 88 88 80 88 88 81 80 88 88 88 88 72 88 88 77 80 80

88 81 88 72 88 80 88 81 90 90 88 80 80 88 80 88 80 80 88 88 88 80 80 72 80

88 88 80 90 88 88 90 88 88 88 80 80 88 80 80 80 88 80 88 88 81 88 88 88 80

88 88 88 88 88 88 88 88 88 88 80 80 88 88 88 88 80 81 88 81 88 80 88 80 80

72 88 77 88 88 88 88 88 80 88 80 88 80 80 81 88 88 80 80 88 80 80 80 80 80

88 88 88 77 88 81 84 80 80 88 80 80 88 88 88 88 81 80 88 80 80 88 81 88 81

77 88 81 88 88 88 80 77 80 80 88 88 88 77 88 88 80 88 80 80 88 88 88 81 88

88 88 88 88 88 88 88 80 88 80 88 88 88 88 77 88 80 88 88 88 80 80 88 80 81

88 88 88 88 88 80 80 88 72 81 88 88 80 81 88 80 80 80 80 88 80 80 88 80 88

88 80 72 88 80 88 88 88 88 88 88 81 88 80 88 88 88 88 88 88 88 80 72 88 80

72 88 81 81 80 88 88 88 88 80 88 81 80 88 80 80 80 88 88 88 88 80 88 90 80

72 88 80 88 88 88 88 80 80 88 88 80 88 88 88 88 88 88 88 80 80 88 88 72 88

88 80 88 80 81 80 81 80 88 81 80 80 88 88 88 80 81 88 72 88 80 81 80 88 80

88 80 88 88 88 81 88 88 80 80 80 88 88 81 80 88 88 88 88 88 88 88 88 81 88

88 88 77 88 88 88 88 88 72 88 81 88 80 88 81 81 88 81 81 80 81 88 88 88 88

88 88 88 80 88 88 88 88 88 88 88 88 88 81 88 88 88 88 88 88 77 88 88 81 88

80 88 80 72 80 88 88 88 81 72 88 88 72 77 81 88 88 80 80 88 88 88 88 88 88

88 80 88 77 88 81 88 88 88 88 88 81 80 88 88 80 88 88 81 88 80 88 72 80 88

88 80 80 88 80 88 80 88 88 88 88 88 88 88 88 88 88 88 88 88 81 72 80 80 88

88 80 88 77 77 77 80 80 80 88 88 88 88 88 80 80 81 81 80 88 88 80 80 80 80

88 72 88 72 88 88 88 80 88 88 88 72 88 80 81 88 88 88 88 80 88 80 81 88 80

88 88 88 88 81 88 88 88 80 88 77 80 88 88 88 88 72 80 81 88 72 88 88 80 88

X-Coordinate for Excluded Processor

Y
-C

o
o
rd

in
a
te

 f
o
r

E
xc

lu
d

e
d

 P
ro

ce
ss

o
r

Figure 6.27: 2D-plot of the minimum rectangular array area when excluding each processor individ-
ually from the target 25x25 array (using 100 trials for each excluded processor) for the multi-app
application targeting the second version of AsAP. The square with the darkest color has the low-
est rectangular array area. The rectangular array area increases as the square lightens in color.
The statistics for this test regarding the minimum rectangular array area are: minimum = 72;
maximum = 90; mean = 84.4; median = 88; base = 88.

cumulative distribution functions show that by using a rectangular array area of 88 there is a

95% chance that the mapping will be successful with one excluded processor. By comparing the

two automated mappings for the first and second versions of AsAP we notice that the rectangular

array area decreased substantially(9x8 < 12x16). This shows that a significant number of routing

processors were replaced by long-distance interconnects. This is a very desirable trade-off when

targeting the second version of AsAP.

128 CHAPTER 6. RESULTS

65 70 75 80 85 90 95
Minimum Rectangular Array Area

0

50

100

150

200

250

300

350

400

N
u

m
b

e
r

o
f

C
a
se

s

Base(88)
Mean(84.4)

Median(88)

Figure 6.28: Histogram of the minimum rectangular array area, along with the base value (no
excluded processors), the median value, and the mean value, when excluding each processor indi-
vidually from the target 25x25 array (using 100 trials for each excluded processor) for the multi-app
application targeting the second version of AsAP. The statistics for this test regarding the minimum
rectangular array area are: minimum = 72; maximum = 90; mean = 84.4; median = 88; base = 88.

6.4. FAULT TOLERANCE 129

75 80 85 90
Minimum Rectangular Array Area

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
o
f

a
 S

u
cc

e
ss

fu
l

M
a
p

p
in

g

Base(88)
Mean(84.4)

Median(88)

Figure 6.29: Cumulative Distribution Function for the minimum rectangular array area, along with
the base value (no excluded processors), the median value, and the mean value, when excluding each
processor individually from the target 25x25 array (using 100 trials for each excluded processor) for
the multi-app application targeting the second version of AsAP. The statistics for this test regarding
the minimum rectangular array area are: minimum = 72; maximum = 90; mean = 84.4; median = 88;
base = 88.

130 CHAPTER 6. RESULTS

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

14

16

18

20

22

24

12 11 10 12 13 12 13 12 13 11 10 12 12 11 10 11 11 11 12 13 10 12 9 12 11

12 13 11 11 10 13 11 12 12 11 13 12 13 13 12 12 11 11 12 11 11 11 12 13 12

12 11 12 12 12 12 11 12 13 12 9 9 12 12 13 13 11 11 13 11 12 11 11 11 12

13 11 12 11 12 13 12 13 11 10 12 13 9 11 9 11 11 12 12 11 12 10 11 10 13

12 12 10 11 9 13 11 13 11 13 11 13 11 12 11 10 13 11 10 12 11 10 9 12 12

12 12 13 13 10 11 14 11 12 13 12 12 12 10 12 11 11 11 12 11 11 12 10 12 12

12 10 12 11 12 11 10 12 12 12 12 11 11 12 11 10 10 12 10 12 12 11 11 10 12

12 12 12 12 13 10 12 11 12 12 11 12 12 10 12 11 12 13 10 13 12 12 12 11 12

13 10 13 12 12 12 10 12 12 13 12 13 11 12 12 11 13 12 11 12 12 11 13 10 11

12 11 12 11 11 12 12 11 12 11 11 11 11 12 12 11 11 11 11 12 12 11 11 13 11

11 11 9 10 11 12 11 11 11 12 13 12 11 12 11 12 13 12 11 12 11 13 11 12 9

13 12 11 12 12 13 12 12 13 13 9 13 11 12 12 12 11 13 12 11 13 13 12 12 10

10 12 12 12 11 11 13 12 11 12 10 10 11 13 12 10 9 12 12 12 10 13 13 12 12

12 11 12 12 12 10 11 11 12 10 12 12 11 12 12 10 10 12 12 10 12 10 12 10 12

12 13 13 12 11 11 13 10 13 10 10 11 12 12 11 10 11 11 11 11 11 12 12 14 12

12 11 11 10 11 12 13 10 10 12 12 10 11 10 11 12 11 12 13 11 10 12 10 11 11

10 11 13 11 11 10 13 13 11 14 11 13 13 11 11 13 13 14 11 11 12 12 12 10 10

13 12 9 11 12 11 11 11 11 11 12 12 12 10 12 11 11 11 13 11 12 11 12 13 12

12 11 13 13 8 9 13 10 12 12 12 11 12 12 12 13 9 11 9 9 13 12 12 9 12

9 12 12 12 13 12 12 11 13 10 9 13 12 12 11 9 11 12 12 11 10 12 13 11 10

13 12 12 13 12 12 12 11 11 12 10 13 11 12 10 12 11 11 11 11 11 11 12 12 12

11 12 11 10 9 11 13 12 9 10 10 12 9 11 11 11 12 12 12 12 12 12 12 11 13

11 10 12 11 12 10 11 12 12 12 12 12 11 12 12 11 11 12 12 11 13 12 12 14 11

11 11 12 12 13 11 13 12 11 12 10 10 14 13 10 12 13 10 11 13 10 11 12 12 12

12 11 11 11 10 10 12 11 12 12 10 9 10 10 11 11 12 13 11 13 12 10 13 12 12

X-Coordinate for Excluded Processor

Y
-C

o
o
rd

in
a
te

 f
o
r

E
xc

lu
d

e
d

 P
ro

ce
ss

o
r

Figure 6.30: 2D-plot of the minimum number of long-distance interconnects when excluding each
processor individually from the target 25x25 array (using 100 trials for each excluded processor) for
the multi-app application targeting the second version of AsAP. The square with the darkest color
has the lowest number of long-distance interconnects. The number of long-distance interconnects
increases as the square lightens in color. The statistics for this test regarding the minimum number
of long-distance interconnects are: minimum = 8; maximum = 14; mean = 11.5; median = 12;
base = 13.

6.4. FAULT TOLERANCE 131

7 8 9 10 11 12 13 14 15
Minimum Number of Long-Distance Interconnects

0

50

100

150

200

250

N
u

m
b

e
r

o
f

C
a
se

s

Base(13)
Mean(11.5)

Median(12)

Figure 6.31: Histogram of the minimum number of long-distance interconnects, along with the base
value (no excluded processors), the median value, and the mean value, when excluding each processor
individually from the target 25x25 array (using 100 trials for each excluded processor) for the multi-
app application targeting the second version of AsAP. The statistics for this test regarding the
minimum number of long-distance interconnects are: minimum = 8; maximum = 14; mean = 11.5;
median = 12; base = 13.

132 CHAPTER 6. RESULTS

8 9 10 11 12 13 14
Minimum Number of Long-Distance Interconnects

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
o
f

a
 S

u
cc

e
ss

fu
l

M
a
p

p
in

g

Base(13)
Mean(11.5)

Median(12)

Figure 6.32: Cumulative Distribution Function for the minimum number of long-distance intercon-
nects, along with the base value (no excluded processors), the median value, and the mean value,
when excluding each processor individually from the target 25x25 array (using 100 trials for each
excluded processor) for the multi-app application targeting the second version of AsAP. The statis-
tics for this test regarding the minimum number of long-distance interconnects are: minimum = 8;
maximum = 14; mean = 11.5; median = 12; base = 13.

6.4. FAULT TOLERANCE 133

Figure 6.33: Best automatic mapping for the multi-app application after excluding each processor
individually from the target 25x25 array (using 100 trials for each excluded processor) while targeting
the second version of AsAP. This automated mapping excludes processor (13, 2), has a rectangular
array area of 72 (9x8), and uses 30 long-distance interconnects.

134 CHAPTER 6. RESULTS

6.4.2 100 Random Nodes

Settings: Defaults + “InputEdge = Left”

This is the same 100 random nodes application used in the previous section (6.3). The

principle behind using a random application is to avoid tuning the mapping algorithm for a specific

type of application. The 100 random nodes application may be larger, and therefore take more time

to map than the multi-app application, but its complexity is somewhat lower. This means a nearest

neighbor only solution can be found more often. This test is setup exactly the same way as the

previous single exclusion test that targeted the first version of AsAP. Each processor from an array

of 25x25 is excluded in sequence and 100 trials are performed for each excluded processor. The base

and minimum values are obtained first, followed by computing the mean and median values from the

minimum values. The array input is again allowed to float along the left edge to lower the mapping

complexity.

Figure 6.34 and Figure 6.37 are color-coded 2D-array plots of the minimum rectangular

array area and the minimum number of routing processors. These are similar to the 2D-array plots

from the previous tests. Figure 6.35 and Figure 6.36 plot the histogram and the cumulative distribu-

tion function for the minimum rectangular array area and include value tick marks. Figure 6.38 and

Figure 6.39 plot the histogram and the cumulative distribution function for the minimum number

of routing processors and also include value tick marks. Figure 6.40 shows the best automated map-

ping for the 100 random nodes application, while targeting the first version of AsAP, which excludes

processor (14, 9). Plots are not needed for the minimum number of long-distance interconnects since

this value must always be zero for the first version of AsAP.

The 2D-array plots for this test are somewhat different than the 2D-array plots from the

previous tests. When excluding processors near the center of the array the minimum rectangular

array area and the minimum number of routing processors decreases. The explanation for this lies

in how the space insertion component works. This application, being somewhat easier to map than

the previous application, does not always require additional space for routing. Excluded processors

sometimes block the expansion that occurs when adding space for routing. The result is a decrease

in rectangular array area. However, the mean and base values are still very close, as shown in the

histograms for the minimum rectangular array area and the minimum number of routing processors.

This indicates that the application is tolerant of single processor exclusions. As mentioned before, the

base value is greater than or equal to the mean and median values because an insufficient number

trials were performed, or possibly a more highly optimized algorithm is needed. The cumulative

6.4. FAULT TOLERANCE 135

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

14

16

18

20

22

24

380 378 400 396 380 361 323 380 378 304 323 323 320 266 315 285 320 323 306 342 380 396 396 396 378

399 360 323 374 340 360 342 342 323 323 320 315 300 352 294 270 304 340 342 342 360 378 396 374 399

357 357 360 374 378 361 342 324 340 340 330 304 323 300 300 285 336 323 342 342 380 378 374 368 399

391 357 384 378 378 360 360 306 340 340 324 304 285 280 294 306 304 340 342 342 340 352 357 391 378

360 378 360 380 361 361 306 306 342 323 288 336 308 300 252 315 304 323 342 323 323 378 340 378 368

352 360 360 340 340 340 360 342 324 342 304 285 308 304 252 300 288 323 323 361 342 357 414 396 396

336 399 352 350 323 352 323 342 323 336 323 289 306 294 308 285 304 323 342 342 340 357 357 360 399

352 361 323 336 336 352 306 272 342 342 288 304 304 294 280 280 320 306 306 308 360 391 368 384 374

330 336 336 345 300 320 361 340 304 323 306 306 320 300 255 285 342 306 342 352 336 330 357 336 396

312 368 294 352 308 320 294 352 323 320 340 304 315 300 240 285 288 340 323 342 360 374 374 360 360

315 391 252 300 315 315 361 380 266 323 255 304 285 288 288 300 308 306 294 304 299 286 350 330 357

299 336 325 322 312 336 360 340 325 323 323 300 253 306 306 324 304 340 342 286 299 286 368 357 396

322 345 294 299 312 336 264 294 308 336 357 322 252 300 308 276 336 350 286 312 273 352 288 312 360

312 357 330 286 299 336 322 264 299 299 264 360 273 336 308 299 299 286 286 273 312 286 378 340 325

322 378 308 336 322 308 336 315 322 294 322 336 336 308 308 308 336 300 308 312 294 330 312 336 350

336 374 336 315 396 330 330 315 350 368 330 360 322 330 315 345 336 315 330 360 315 352 396 360 374

378 374 374 357 352 352 352 320 330 322 352 336 352 330 304 336 360 368 350 340 330 352 350 360 378

368 374 345 357 304 342 374 340 357 380 340 340 340 360 374 336 357 357 340 374 357 357 384 396 396

391 391 368 391 391 360 378 357 357 391 374 378 352 357 378 378 357 378 378 340 360 352 345 396 378

396 360 357 391 374 368 352 396 380 396 360 378 378 360 378 378 380 378 357 380 399 396 374 361 396

396 374 396 408 336 357 378 380 396 374 396 380 380 391 399 357 336 357 396 374 400 396 378 378 378

378 391 414 378 391 378 378 368 340 378 374 352 378 357 360 368 360 378 380 380 336 368 396 384 340

384 396 391 396 400 391 380 357 396 357 396 396 357 391 399 396 399 396 360 396 324 374 391 418 418

352 391 378 399 378 399 357 324 399 378 378 400 374 418 320 374 380 396 361 361 357 374 396 368 357

399 378 396 378 391 368 418 378 374 396 361 357 378 396 374 330 374 336 400 374 357 396 414 378 368

X-Coordinate for Excluded Processor

Y
-C

o
o
rd

in
a
te

 f
o
r

E
xc

lu
d

e
d

 P
ro

ce
ss

o
r

Figure 6.34: 2D-plot of the minimum rectangular array area when excluding each processor individ-
ually from the target 25x25 array (using 100 trials for each excluded processor) for the 100 random
nodes application targeting the first version of AsAP. The square with the darkest color has the
lowest rectangular array area. The rectangular array area increases as the square lightens in color.
The statistics for this test regarding the minimum rectangular array area are: minimum = 240;
maximum = 418; mean = 345.2; median = 350; base = 357.

distribution functions show that by using a rectangular array area of 396 there is a 95% chance that

the mapping will be successful with one excluded processor.

136 CHAPTER 6. RESULTS

200 250 300 350 400 450
Minimum Rectangular Array Area

0

10

20

30

40

50

60

70

80

N
u

m
b

e
r

o
f

C
a
se

s

Base(357)
Mean(345.2)

Median(350)

Figure 6.35: Histogram of the minimum rectangular array area, along with the base value (no
excluded processors), the median value, and the mean value, when excluding each processor individ-
ually from the target 25x25 array (using 100 trials for each excluded processor) for the 100 random
nodes application targeting the first version of AsAP. The statistics for this test regarding the min-
imum rectangular array area are: minimum = 240; maximum = 418; mean = 345.2; median = 350;
base = 357.

6.4. FAULT TOLERANCE 137

250 300 350 400
Minimum Rectangular Array Area

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
o
f

a
 S

u
cc

e
ss

fu
l

M
a
p

p
in

g

Base(357)
Mean(345.2)

Median(350)

Figure 6.36: Cumulative Distribution Function for the minimum rectangular array area, along with
the base value (no excluded processors), the median value, and the mean value, when excluding each
processor individually from the target 25x25 array (using 100 trials for each excluded processor) for
the 100 random nodes application targeting the first version of AsAP. The statistics for this test
regarding the minimum rectangular array area are: minimum = 240; maximum = 418; mean = 345.2;
median = 350; base = 357.

138 CHAPTER 6. RESULTS

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

14

16

18

20

22

24

124 126 125 129 124 120 97 117 124 99 102 97 91 81 105 88 92 109 113 103 123 130 123 129 132

115 100 113 125 111 119 115 108 119 99 105 99 102 109 108 80 90 100 123 121 103 124 132 124 130

120 129 129 134 120 114 114 100 109 97 90 96 97 106 97 72 93 91 112 106 125 114 125 121 136

119 132 127 117 116 109 103 95 97 112 107 99 90 92 103 86 88 99 104 118 89 122 117 123 118

119 116 105 129 120 113 106 100 122 108 91 94 92 97 79 118 93 92 106 113 112 119 118 115 119

106 115 122 109 116 96 120 99 103 93 101 75 106 84 84 93 91 112 113 117 99 100 125 113 134

105 120 109 130 110 110 113 108 109 90 111 92 116 113 95 91 98 106 108 106 123 106 114 105 133

115 126 108 119 100 109 106 91 105 109 116 102 101 84 91 77 101 95 104 95 115 121 113 116 111

108 121 110 108 83 106 121 116 97 98 102 99 86 110 77 90 104 94 100 124 115 112 114 124 112

108 118 105 90 94 92 83 110 102 97 99 91 89 85 71 89 94 107 117 104 97 111 123 110 102

102 129 79 87 104 103 124 124 80 74 83 89 94 96 103 103 97 87 90 102 80 83 102 121 129

87 108 99 99 107 108 109 107 113 107 110 86 86 85 87 98 102 97 116 89 77 104 106 117 118

97 123 87 102 112 122 99 93 106 93 115 101 81 109 92 90 101 117 98 84 85 126 94 103 112

100 117 108 100 93 106 100 80 83 105 80 110 87 111 110 91 88 79 93 90 109 94 127 113 107

89 121 101 110 100 98 114 93 91 100 91 109 111 100 79 89 92 87 100 95 85 104 86 101 109

109 112 112 101 126 100 95 104 108 122 102 115 104 120 90 113 105 93 102 117 102 107 126 109 121

121 123 110 111 108 120 107 120 119 121 114 97 108 117 96 95 111 100 108 114 92 96 115 124 128

118 106 118 113 99 117 122 101 113 111 108 110 111 121 112 118 111 107 126 114 107 124 121 137 126

130 125 119 118 126 106 124 121 119 124 122 110 123 108 128 120 111 120 120 117 126 128 128 125 107

120 121 120 129 125 118 114 128 125 126 114 120 132 109 113 120 121 122 111 103 126 122 126 109 132

120 127 120 131 116 131 121 132 123 114 116 127 121 120 123 127 104 120 126 114 120 128 114 107 119

114 120 131 114 112 104 127 115 121 109 123 104 130 110 124 118 117 128 117 133 112 121 128 124 124

125 129 119 136 115 134 120 123 114 111 115 118 98 125 128 122 129 134 118 121 115 131 138 128 128

133 127 126 117 116 137 122 103 129 110 130 121 123 124 106 122 123 116 119 121 119 129 119 106 122

126 117 114 119 126 127 109 121 114 132 117 122 127 126 123 107 129 116 134 125 92 133 125 104 124

X-Coordinate for Excluded Processor

Y
-C

o
o
rd

in
a
te

 f
o
r

E
xc

lu
d

e
d

 P
ro

ce
ss

o
r

Figure 6.37: 2D-plot of the minimum number of routing processors when excluding each processor
individually from the target 25x25 array (using 100 trials for each excluded processor) for the 100
random nodes application targeting the first version of AsAP. The square with the darkest color has
the lowest number of routing processors. The number of routing processors increases as the square
lightens in color. The statistics for this test regarding the minimum number of routing processors
are: minimum = 71; maximum = 138; mean = 110; median = 111; base = 110.

6.4. FAULT TOLERANCE 139

60 70 80 90 100 110 120 130 140
Minimum Number of Routing Processors

0

20

40

60

80

100

N
u

m
b

e
r

o
f

C
a
se

s

Base(110)
Mean(110.0)
Median(111)

Figure 6.38: Histogram of the minimum number of routing processors, along with the base value
(no excluded processors), the median value, and the mean value, when excluding each processor
individually from the target 25x25 array (using 100 trials for each excluded processor) for the 100
random nodes application targeting the first version of AsAP. The statistics for this test regarding
the minimum number of routing processors are: minimum = 71; maximum = 138; mean = 110;
median = 111; base = 110.

140 CHAPTER 6. RESULTS

70 80 90 100 110 120 130 140
Minimum Number of Routing Processors

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
o
f

a
 S

u
cc

e
ss

fu
l

M
a
p

p
in

g

Base(110)
Mean(110.0)
Median(111)

Figure 6.39: Cumulative Distribution Function for the minimum number of routing processors, along
with the base value (no excluded processors), the median value, and the mean value, when excluding
each processor individually from the target 25x25 array (using 100 trials for each excluded processor)
for the 100 random nodes application targeting the first version of AsAP. The statistics for this
test regarding the minimum number of routing processors are: minimum = 71; maximum = 138;
mean = 110; median = 111; base = 110.

6.4. FAULT TOLERANCE 141

Figure 6.40: Best automatic mapping for the 100 random nodes application after excluding each
processor individually from the target 25x25 array (using 100 trials for each excluded processor)
while targeting the first version of AsAP. This automated mapping excludes processor (14, 9), has
a rectangular array area of 240 (16x15), and uses 71 routing processors.

142 CHAPTER 6. RESULTS

AsAP Version 2.0

Settings: Defaults + “InputEdge = Left” + “UseRouting = False”

+ “CostArraySize = 2X”

The setup for this test is identical to the setup used for the previous single processor

exclusion test that targeted the second version of AsAP. Each processor from an array of size 25x25

is excluded in sequence and 100 trials are performed for each excluded processor. The base and

minimum values are obtained first, followed by computing the mean and median values from the

minimum values. Just like before, the array input is allowed to float along the left edge of the array,

the routing phase is disabled, and the cost for increasing the array size is doubled to target the

second version of AsAP.

Similar to the other tests, Figure 6.41 and Figure 6.44 are color-coded 2D-array plots

of the minimum rectangular array area and the minimum number of long-distance interconnects,

respectively. Figure 6.42 and Figure 6.45 plot the minimum rectangular array area and the minimum

number of long-distance interconnects as histograms, respectively, and include tick marks for the

mean, median, and base values. Figure 6.43 and Figure 6.46 plot the minimum rectangular array

area and the minimum number of long-distance interconnects as cumulative distribution functions,

respectively, and again include tick marks for the mean, median, and base values. Figure 6.47 again

shows the best automated mapping for the 100 random nodes application, but this time targeting

the second version of AsAP and excludes processor (0, 0). Plots are not needed for the minimum

number of routing processors since routing was disabled and therefore this value is always zero.

The 2D-array plots for this test are very similar to the 2D-array plots for the previous single

exclusion test targeting the second version of AsAP. There are no regions within the 2D-array plots

that are particularly more or less difficult to map because of the excluded processors. This is again

because long-distance interconnects are more flexible than routing processors. The histograms for

the minimum rectangular array area and the minimum number of long-distance interconnects both

show that the mean and base values for these two metrics are quite close. This confirms that the

application is mostly unaffected by single processor exclusions. Surprisingly, the base value is less

than the mean and median values for the minimum rectangular array area, though not by much.

Yet, the base value is greater than the mean and median values for the minimum number of long-

distance interconnects likely due to the number of trials that were performed, or possibly a more

highly optimized algorithm is needed. The cumulative distribution functions indicate that by using

a rectangular array area of 130 there is a 95% chance that the mapping will be successful with one

6.4. FAULT TOLERANCE 143

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

14

16

18

20

22

24

110 126 130 126 130 126 130 130 117 126 130 126 130 126 117 130 132 130 117 126 126 126 117 130 130

130 130 130 130 130 130 130 130 130 126 117 130 130 117 117 120 130 120 117 117 130 130 117 130 130

130 130 130 130 130 130 140 140 130 130 130 130 130 130 120 130 130 117 126 126 130 126 130 130 130

130 130 130 130 130 130 130 140 130 126 132 132 130 130 130 130 126 130 130 126 130 130 130 130 126

120 130 130 130 130 130 130 130 130 130 130 130 130 117 130 130 120 130 130 130 117 130 130 130 130

130 130 140 130 130 132 130 130 130 130 143 130 130 130 130 130 126 126 126 130 130 126 126 130 130

130 140 130 130 130 130 130 140 130 130 140 130 126 130 130 130 130 130 130 126 130 120 130 130 130

130 130 130 132 130 130 140 130 130 130 130 130 130 121 130 130 130 130 130 130 130 130 130 130 130

126 117 130 130 130 130 130 130 130 130 130 130 130 126 126 130 130 130 130 120 130 117 130 130 117

126 130 126 130 130 130 130 130 132 130 130 126 117 130 117 126 117 130 126 130 120 117 130 130 126

130 126 120 130 126 130 130 130 117 130 130 130 130 130 130 130 126 126 130 130 130 130 126 126 117

130 126 130 130 130 126 130 120 130 130 117 130 130 130 126 120 126 117 130 130 126 130 130 117 130

130 130 126 117 130 130 130 120 130 126 120 130 126 117 126 130 126 117 117 130 126 130 117 130 130

117 130 126 130 130 126 130 117 130 130 120 130 117 130 130 126 126 117 117 130 130 130 130 130 126

126 126 130 130 126 117 126 130 117 130 130 130 117 117 126 130 130 117 130 117 130 130 130 117 130

130 130 130 126 120 130 130 130 126 130 117 130 130 120 130 130 130 130 120 117 130 130 130 130 130

130 130 130 130 130 130 126 126 130 126 126 117 130 126 130 130 117 126 126 126 130 130 117 130 117

117 130 126 130 130 130 126 130 126 130 126 130 130 130 126 130 130 130 126 130 130 117 130 117 130

130 130 130 130 130 130 117 126 130 130 126 130 120 130 126 130 130 126 130 130 126 130 117 130 130

130 130 117 130 120 130 130 117 130 126 117 130 126 130 130 126 130 120 126 130 130 130 130 130 130

120 130 130 130 130 126 117 117 126 117 126 130 130 126 130 130 126 130 126 130 126 120 130 130 130

126 120 130 117 130 130 117 130 130 130 130 130 130 126 130 126 130 130 130 130 126 130 117 130 126

130 130 126 130 130 130 126 130 130 117 126 126 130 130 130 130 126 130 130 130 130 130 130 130 130

130 130 120 130 130 130 130 130 130 126 130 130 130 130 130 126 117 130 126 130 130 120 126 126 130

130 120 126 120 120 126 130 130 130 130 126 126 120 130 130 130 130 130 126 130 126 130 126 126 126

X-Coordinate for Excluded Processor

Y
-C

o
o
rd

in
a
te

 f
o
r

E
xc

lu
d

e
d

 P
ro

ce
ss

o
r

Figure 6.41: 2D-plot of the minimum rectangular array area when excluding each processor individ-
ually from the target 25x25 array (using 100 trials for each excluded processor) for the 100 random
nodes application targeting the second version of AsAP. The square with the darkest color has the
lowest rectangular array area. The rectangular array area increases as the square lightens in color.
The statistics for this test regarding the minimum rectangular array area are: minimum = 110;
maximum = 143; mean = 127.6; median = 130; base = 120.

excluded processor. Comparing the automated mappings for the first and second versions of AsAP

we can see that again the rectangular array area decreased substantially (11x10 < 16x15). This is

due to the trade-off between routing processors and long-distance interconnects.

144 CHAPTER 6. RESULTS

105 110 115 120 125 130 135 140 145
Minimum Rectangular Array Area

0

50

100

150

200

250

300

350

400

450

N
u

m
b

e
r

o
f

C
a
se

s

Base(120)
Mean(127.6)

Median(130)

Figure 6.42: Histogram of the minimum rectangular array area, along with the base value (no
excluded processors), the median value, and the mean value, when excluding each processor in-
dividually from the target 25x25 array (using 100 trials for each excluded processor) for the 100
random nodes application targeting the second version of AsAP. The statistics for this test regard-
ing the minimum rectangular array area are: minimum = 110; maximum = 143; mean = 127.6;
median = 130; base = 120.

6.4. FAULT TOLERANCE 145

110 115 120 125 130 135 140 145
Minimum Rectangular Array Area

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
o
f

a
 S

u
cc

e
ss

fu
l

M
a
p

p
in

g

Base(120)
Mean(127.6)

Median(130)

Figure 6.43: Cumulative Distribution Function for the minimum rectangular array area, along with
the base value (no excluded processors), the median value, and the mean value, when excluding each
processor individually from the target 25x25 array (using 100 trials for each excluded processor) for
the 100 random nodes application targeting the second version of AsAP. The statistics for this test
regarding the minimum rectangular array area are: minimum = 110; maximum = 143; mean = 127.6;
median = 130; base = 120.

146 CHAPTER 6. RESULTS

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

14

16

18

20

22

24

11 14 15 15 12 12 13 15 14 14 12 15 13 15 16 16 15 15 14 15 16 15 14 15 16

15 13 15 13 12 15 13 15 15 16 14 15 11 14 14 14 15 14 15 13 15 16 14 15 16

15 14 15 15 16 14 16 16 16 15 16 15 14 14 15 15 15 15 13 14 16 14 14 14 14

15 16 15 16 15 16 16 13 16 16 15 14 15 15 14 16 13 14 14 15 15 13 15 15 15

15 14 12 16 15 15 14 15 15 14 15 14 16 15 14 13 16 14 14 13 15 17 14 15 12

16 15 15 14 14 12 13 15 15 13 16 14 15 14 12 14 13 14 15 12 16 15 15 17 14

15 16 16 15 14 16 15 15 16 14 16 16 15 15 13 15 15 15 15 13 12 13 12 16 15

16 15 15 13 14 15 14 14 16 16 17 14 15 13 15 15 15 16 15 17 13 14 14 14 12

15 12 15 17 17 14 14 15 13 16 13 14 13 13 14 13 14 14 13 16 15 14 16 15 14

15 14 16 16 14 16 13 14 16 16 14 14 16 14 16 13 16 14 13 15 13 16 15 14 15

16 15 15 13 15 15 15 15 16 14 15 15 13 12 13 13 15 15 14 16 15 14 14 14 15

13 16 17 15 15 13 14 14 15 15 14 13 14 13 14 16 15 15 14 15 13 13 14 14 16

16 14 16 16 12 16 16 13 14 15 13 12 15 15 15 13 16 15 15 15 15 13 14 15 14

15 14 13 15 14 15 14 14 14 14 15 16 15 17 14 16 15 15 15 14 14 13 17 15 16

13 15 13 13 15 14 14 14 15 15 16 14 14 14 16 16 14 14 14 15 14 15 15 13 15

16 14 12 14 14 14 15 14 14 16 13 13 15 13 15 15 15 16 13 15 14 16 14 12 14

13 15 15 14 14 14 14 13 14 13 12 14 15 15 15 15 15 15 14 14 13 14 14 14 12

15 11 14 15 15 14 14 14 13 15 14 14 15 14 14 13 13 15 15 15 14 15 15 13 15

16 14 14 14 14 13 15 14 15 12 14 13 15 14 13 14 15 15 15 14 15 14 14 15 16

16 14 13 13 14 15 15 13 14 14 16 12 14 15 16 15 16 15 14 15 15 14 14 15 15

14 13 14 15 16 15 12 14 16 14 15 14 13 15 13 15 15 13 13 16 16 14 14 15 14

15 14 14 14 16 13 15 14 13 13 14 14 14 14 15 14 16 16 16 15 13 14 13 16 14

14 14 14 14 16 14 16 15 15 15 16 16 14 14 16 14 13 14 16 15 14 16 15 14 15

16 14 15 15 12 15 14 15 16 11 15 14 15 15 14 14 13 13 15 13 15 16 14 15 15

13 15 15 13 16 16 14 15 16 13 13 15 15 16 14 15 14 15 14 15 13 14 15 15 15

X-Coordinate for Excluded Processor

Y
-C

o
o
rd

in
a
te

 f
o
r

E
xc

lu
d

e
d

 P
ro

ce
ss

o
r

Figure 6.44: 2D-plot of the minimum number of long-distance interconnects when excluding each
processor individually from the target 25x25 array (using 100 trials for each excluded processor)
for the 100 random nodes application targeting the second version of AsAP. The square with the
darkest color has the lowest number of long-distance interconnects. The number of long-distance
interconnects increases as the square lightens in color. The statistics for this test regarding the
minimum number of long-distance interconnects are: minimum = 11; maximum = 17; mean = 14.5;
median = 15; base = 15.

6.4. FAULT TOLERANCE 147

10 11 12 13 14 15 16 17 18
Minimum Number of Long-Distance Interconnects

0

50

100

150

200

250

N
u

m
b

e
r

o
f

C
a
se

s

Base(15)
Mean(14.5)

Median(15)

Figure 6.45: Histogram of the minimum number of long-distance interconnects, along with the
base value (no excluded processors), the median value, and the mean value, when excluding each
processor individually from the target 25x25 array (using 100 trials for each excluded processor) for
the 100 random nodes application targeting the second version of AsAP. The statistics for this test
regarding the minimum number of long-distance interconnects are: minimum = 11; maximum = 17;
mean = 14.5; median = 15; base = 15.

148 CHAPTER 6. RESULTS

11 12 13 14 15 16 17
Minimum Number of Long-Distance Interconnects

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
o
f

a
 S

u
cc

e
ss

fu
l

M
a
p

p
in

g

Base(15)
Mean(14.5)

Median(15)

Figure 6.46: Cumulative Distribution Function for the minimum number of long-distance intercon-
nects, along with the base value (no excluded processors), the median value, and the mean value,
when excluding each processor individually from the target 25x25 array (using 100 trials for each
excluded processor) for the 100 random nodes application targeting the second version of AsAP.
The statistics for this test regarding the minimum number of long-distance interconnects are: mini-
mum = 11; maximum = 17; mean = 14.5; median = 15; base = 15.

6.4. FAULT TOLERANCE 149

Figure 6.47: Best automatic mapping for the 100 random nodes application after excluding each
processor individually from the target 25x25 array (using 100 trials for each excluded processor)
while targeting the second version of AsAP. This automated mapping excludes processor (0, 0), has
a rectangular array area of 110 (11x10), and uses 34 long-distance interconnects.

150 CHAPTER 6. RESULTS

6.4.3 802.11a Wireless Transmitter

Settings: Defaults + “InputEdge = Left”

The objective for this test is to perform more trials on a smaller application in order to

obtain higher resolution plots. These higher resolution plots show how the mapping algorithm will

converge when a very large number of trials are performed. For this test each processor is again

excluded one-by-one in sequence except that this time the array size is 8x8 instead of 25x25. Also for

each excluded processor 1000 trials are performed instead of just 100 trials. The base and minimum

values are instead obtained from these blocks of 1000 trials. Next, the mean and median values are

calculated from the minimum values. Like before the array input is allowed to float along the left

edge of the array to lower the mapping complexity.

Figure 6.48 shows the minimum rectangular array area for each excluded processor plotted

as a color-coded 2D-array. Figure 6.49 plots the minimum rectangular array area as a histogram

and includes tick marks for the mean, median, and base values. Figure 6.50 plots the cumulative

distribution function for the minimum rectangular array area and again includes tick marks for the

mean, median, and base values. Figure 6.51 shows the best automated mapping for the 802.11a

wireless transmitter application, while targeting the first version of AsAP, and excludes processor

(7, 6). Plots are not necessary for the minimum number of long-distance interconnects since this

test targets the first version of AsAP, which does not allow long-distance interconnects. Also plots

are not needed for the minimum number of routing processors since the application can be mapped

without routers (in at least one trial) for every excluded processor.

The results from this test are quite a bit different than the results from the previous tests.

The 2D-array plot looks more like what we expect. When the excluded processor is near the upper-

left corner of the array the application is more difficult to map. When the excluded processor is near

the bottom and right perimeters of the array the excluded processor is far enough out that it doesn’t

interfere with the mapping. The histogram shows that the mean and base values are again very

close, but this time the base value is the absolute lowest value. This confirms that the application is

mostly unaffected by a single excluded processor and also that the best mapping is the one with no

excluded processors. The cumulative distribution function shows that by using a rectangular array

area of 30 there is a 100% chance that the mapping will be successful with one excluded processor.

Comparing this automated mapping to the previous automated mapping in Figure 6.1 we notice

that the layout is somewhat different but both automated mappings have the same rectangular array

area and both use no routing processors.

6.4. FAULT TOLERANCE 151

0 2 4 6

0

2

4

6

28 28 28 28 30 25 24 25

28 28 28 30 30 25 24 24

30 28 30 28 30 25 24 24

28 28 28 30 30 25 24 24

28 28 24 28 28 24 24 24

25 25 24 25 25 24 24 24

24 28 25 24 24 24 24 24

24 25 24 24 25 25 24 24

X-Coordinate for Excluded Processor

Y
-C

o
o
rd

in
a
te

 f
o
r

E
xc

lu
d

e
d

 P
ro

ce
ss

o
r

Figure 6.48: 2D-plot of the minimum rectangular array area when excluding each processor individu-
ally from the target 8x8 array (using 1000 trials for each excluded processor) for the 802.11a wireless
transmitter application targeting the first version of AsAP. The square with the darkest color has
the lowest rectangular array area. The rectangular array area increases as the square lightens in
color. The statistics for this test regarding the minimum rectangular array area are: minimum = 24;
maximum = 30; mean = 26; median = 25; base = 24.

152 CHAPTER 6. RESULTS

23 24 25 26 27 28 29 30 31
Minimum Rectangular Array Area

0

5

10

15

20

25

30

N
u

m
b

e
r

o
f

C
a
se

s

Base(24)
Mean(26.0)

Median(25)

Figure 6.49: Histogram of the minimum rectangular array area, along with the base value (no
excluded processors), the median value, and the mean value, when excluding each processor indi-
vidually from the target 8x8 array (using 1000 trials for each excluded processor) for the 802.11a
wireless transmitter application targeting the first version of AsAP. The statistics for this test
regarding the minimum rectangular array area are: minimum = 24; maximum = 30; mean = 26;
median = 25; base = 24.

6.4. FAULT TOLERANCE 153

24 25 26 27 28 29 30
Minimum Rectangular Array Area

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
o
f

a
 S

u
cc

e
ss

fu
l

M
a
p

p
in

g

Base(24)
Mean(26.0)

Median(25)

Figure 6.50: Cumulative Distribution Function for the minimum rectangular array area, along with
the base value (no excluded processors), the median value, and the mean value, when excluding
each processor individually from the target 8x8 array (using 1000 trials for each excluded processor)
for the 802.11a wireless transmitter application targeting the first version of AsAP. The statistics
for this test regarding the minimum rectangular array area are: minimum = 24; maximum = 30;
mean = 26; median = 25; base = 24.

154 CHAPTER 6. RESULTS

Figure 6.51: Best automatic mapping for the 802.11a wireless transmitter application after excluding
each processor individually from the target 8x8 array (using 1000 trials for each excluded processor)
while targeting the first version of AsAP. This automated mapping excludes processor (7, 6) and
has a rectangular array area of 24 (6x4).

6.4.4 Multiple Exclusions

Settings: Defaults + “InputEdge = Left”

The 802.11a wireless transmitter application was chosen for the multiple exclusion tests

because it’s the easiest to map and can therefore tolerate the most processor failures. Three tests

are performed on this application. The first test contains 100 unique sets of 10 randomly selected

excluded processors. The second test contains 100 unique sets of 20 randomly selected excluded

processors. Finally, the third test contains 100 unique sets of 30 randomly selected excluded proces-

sors. Excluded processors are chosen randomly from an array of size 10x10. For each set of excluded

processors 100 trials are performed. From these blocks of 100 trials the base and minimum values

are obtained. The mean and median values are calculated from the minimum values just like before.

Routing processors are used, but their exact number is not so important. We are more interested in

the rectangular array area. Since these tests target the first version of AsAP all the mappings must

be nearest neighbor only and therefore use no long-distance interconnects.

Figure 6.52 shows that the mean rectangular array area with 10 excluded processors is

about 36. Figure 6.53 shows that the mean rectangular array area with 20 excluded processors

is about 46. Finally, Figure 6.54 shows that the mean rectangular array area with 30 excluded

processors is about 59. From these three figures we can also see that the rectangular array area

6.4. FAULT TOLERANCE 155

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

R
ec

ta
ng

ul
ar

 A
rr

ay
 A

re
a

Minimum Rectangular Array Area for each set of Excluded Processors

Minimum
Mean
Base

Figure 6.52: Plot of the minimum rectangular array area for each set of 10 excluded processors, the
mean rectangular array area across all minimums, and the base rectangular array area (where no
processors are excluded) for the 802.11a wireless transmitter targeting the first version of AsAP. The
statistics for this test regarding the minimum rectangular array area are: mean = 36.0; base = 28.

without any excluded processors, also called the base rectangular array area, is equal to 28. The

mean rectangular array area increases each time the number of excluded processors increases. This

is of course expected since more routing processors are required to get around the faulty processors,

thereby increasing the rectangular array area. The range of numbers along the x-axis decreases as

the number of excluded processors increases, indicating that fewer mappings were successful as the

number of excluded processors increased. When testing sets of 10 excluded processors the application

was mappable using all 100 sets. When testing sets of 20 excluded processors the application was

mappable using only 94 of the 100 sets. When testing sets of 30 excluded processors the application

was mappable using only 73 of the 100 sets. If significantly more trials were performed it’s possible

that all 100 sets in all three tests would be mappable. The mean values would also likely decrease

as better solutions would be available for each set of excluded processors.

156 CHAPTER 6. RESULTS

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 10 20 30 40 50 60 70 80 90 100

R
ec

ta
ng

ul
ar

 A
rr

ay
 A

re
a

Minimum Rectangular Array Area for each set of Excluded Processors

Minimum
Mean
Base

Figure 6.53: Plot of the minimum rectangular array area for each set of 20 excluded processors, the
mean rectangular array area across all minimums, and the base rectangular array area (where no
processors are excluded) for the 802.11a wireless transmitter targeting the first version of AsAP. The
statistics for this test regarding the minimum rectangular array area are: mean = 46.3; base = 28.

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80

R
ec

ta
ng

ul
ar

 A
rr

ay
 A

re
a

Minimum Rectangular Array Area for each set of Excluded Processors

Minimum
Mean
Base

Figure 6.54: Plot of the minimum rectangular array area for each set of 30 excluded processors, the
mean rectangular array area across all minimums, and the base rectangular array area (where no
processors are excluded) for the 802.11a wireless transmitter targeting the first version of AsAP. The
statistics for this test regarding the minimum rectangular array area are: mean = 59.3; base = 28.

6.4. FAULT TOLERANCE 157

6.4.5 Summary

Upon analyzing the results from the five single exclusion tests, the mapping algorithm

was able to tolerate minor fabrication errors with the exception of just a few cases. This is based

on the observation that the mean values were close to the base values in every test. There was a

noticeable decrease in rectangular array area for applications that were mapped to both the first

and second versions of AsAP. This was due to a desirable trade-off between routing processors and

long-distance interconnects. For the two larger applications only 100 trials were performed instead

of the desired 1000 trials that were performed on the smaller application. This was primarily done

to save time (which already took two weeks using 30 CPUs) but still allowed us to estimate how

the mapping algorithm would handle fabrication errors when mapping larger applications. When

1000 trials were actually performed, the patterns observed were what we expected. An excluded

processor near the periphery of the array is nearly identical to having no excluded processors at

all. Also the base rectangular array area is equal to the lowest rectangular array area, which occurs

when no processors are excluded. The reason why these observations do not hold true in some

cases, and why we see the base value above the mean and median values, is with lower trial counts

only a fraction of the solution space is explored relative to higher trial counts. Also larger more

complex applications require additional trials in order to find mappings comparable in quality to the

mappings found for smaller simpler applications. The solution is to perform more trials or possibly

implement a more highly optimized algorithm.

After analyzing the results from the three multiple exclusion tests, the mean rectangular

array area is indeed quite stable despite the large number of excluded processors. In the last test

there are more excluded processors than nodes in the application. In Figure 6.55, which plots the

mean rectangular array area with respect to the number of excluded processors, the mean rectangular

array area grows linearly as opposed to exponentially. This indicates that the growth is stable. The

coefficient for the best-fit line shows an increase in mean rectangular array area of about 1.04 nodes

for each additional processor failure. This basically indicates that no additional routing processors

are need to handle a new processor failure (up to some limit of course). Based on the previous

efficiency results when mapping the 802.11a wireless transmitter application, 100 trials could be

executed in approximately one minute. The mapping tool could quickly re-map this application if a

new processor failure were to occur. This would be very challenging to do manually in less than one

minute. These observations indicate that the mapping algorithm can tolerate numerous fabrication

errors when working with simple applications.

158 CHAPTER 6. RESULTS

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 5 10 15 20 25 30

M
ea

n
R

ec
ta

ng
ul

ar
 A

rr
ay

 A
re

a

Number of Excluded Processors

Area (Rect)
Best-fit Line

Figure 6.55: Plot of the minimum rectangular array area with respect to the number of excluded
processors for the 802.11a wireless transmitter

6.5 Fabrication Differences

Different processors from the same chip will perform differently due to variations in transis-

tor characteristics as a result of fabrication. These fabrication differences affect the mapping problem

in ways similar to fabrication errors. For fabrication errors the goal is to avoid placing tasks onto

certain processors. For fabrication differences the goal is to place certain tasks onto certain proces-

sors to improve performance or reduce power consumption. Placing tasks with a greater workload

onto processors that have a higher maximum frequency may provide opportunities to improve the

performance of an application. Similarly, placing less active tasks onto higher leakage current pro-

cessors may provide opportunities to reduce the power consumption for an application. The goal is

to quantify these scenarios, associate them with a cost, then minimize this cost in order to improve

the application’s performance and power consumption. This is done by adding annotation values to

each task and each processor, which help guide the user cost function.

The two applications tested in this section are the 802.11a wireless transmitter application

and the Viterbi decoder application, because of their simplicity. Unlike previous tests the desired

array size is pre-defined instead of being calculated automatically. The target array is defined to

be 10x10 even though the required rectangular array area is known to be only 6x6. This was

done intentionally to increase task flexibility, allowing tasks to migrate to their optimal location.

6.5. FABRICATION DIFFERENCES 159

To evaluate the effectiveness of optimizing for speed and power, each application is mapped both

with and without annotations. Each application is first mapped without annotations then mapped

three times with annotations. Each time different annotations are enabled. First just speed related

annotations are enabled, next just power related annotations are enabled, and finally both speed

and power related annotations are enabled. For each test 1000 trials are performed (random seeds

from 1 to 1000). The quality of the unannotated mapping is then compared to the quality of the

three annotated mappings. Mappings are compared both visually and numerically. Mappings are

compared visually by checking the placement of key tasks and the use of key processors. Mappings

are compared numerically using simple equations (Equation 6.1 and Equation 6.2) discussed later

in this section.

6.5.1 Value Annotations

Before we can calculate performance and power consumption costs, annotation values must

be added to each processor within the target array and each task within the application. Two

annotation values are added to each processor within the target array. The first value is themaximum

frequency, which estimates a processor’s maximum clock frequency. The second value is the leakage

current, which estimates a processor’s leakage current. Two annotation values are added to each task

within the application. The first value is the load average, which estimates the number of operations

performed for each sample, or unit, processed. A task with a main loop containing 50 instructions

would have a load average equal to 50. The second value is the activity level, which estimates the

percentage of time a task is active. A task that is active 100% of the time would have an activity

level equal to 100. A custom user function reads in these annotation values and calculates the cost

associated with the current positioning of tasks relative to the processors they have been assigned.

Due to physical differences created during fabrication, regions of faster and slower maximum

frequency, and regions of higher and lower leakage current, are formed in various parts of the target

array. The annotation values entered for the target array are not based on real measured data.

These annotation values were instead generated by hand (as they were typed into the datafile)

to demonstrate some of the benefits of optimizing for fabrication differences. The hand generated

maximum frequency map in Figure 6.56 shows a cluster of faster processors in the center of the array,

capable of 500 MHz, and various clusters of slower processors around the border of the array, capable

of only 400 MHz. The hand generated leakage current map in Figure 6.57 shows that processors in

the upper-left and lower-right regions tend to leak more current, 30 mA, while processors near the

160 CHAPTER 6. RESULTS

lower-left tend to leak less current, 10 mA. The data from these two figures is stored in a datafile

processed by the AsAP mapping tool and passed to the custom user function. Using real measured

data and verifying mappings against the physical chip are left as future work.

Each task must be annotated in order to determine which task is best suited for each

processor. The annotation values entered for each task are not based on real simulation data. These

values were instead generated by hand using general assumptions and visually inspecting the code

inside each task. The hand generated map in Figure 6.58 shows the load average, which is the

top color, and the activity level, which is the bottom color, for each task in the 802.11a wireless

transmitter application. Each task has been numbered to make visual comparisons easier. For

the 802.11a wireless transmitter application the IFFT, which includes tasks 3 - 6 and tasks 8 -

11, performs the bulk of the work. These tasks remain active once started and have the highest

throughput requirements. The hand generated map in Figure 6.59 shows the load average and

activity level for each task in the Viterbi decoder application. For the Viterbi decoder application

the traceback cycle, which includes tasks 14 - 18, performs the bulk of the work and runs all the

time once started. The data from these two figures is stored in the module files, which are processed

by the AsAP mapping tool and passed to the custom user function. Using real simulated data is

left as future work.

Processors with a higher maximum frequency typically have higher leakage currents since

these two characteristics are typically associated with transistors that have a higher Vt (threshold

voltage). Making matters worse, tasks with a higher load average typically have higher activity

levels since these tasks usually have the most data to process. This causes somewhat of a dilemma

when trying to optimize for both speed and power simultaneously. Moving a task with a higher

load average and higher activity level to a processor with a higher maximum frequency and higher

leakage current will reduce performance costs but increase power consumption costs. Moving this

same task to a processor with a lower maximum frequency and lower leakage current will reduce

power consumption costs but increase performance costs. These types of tasks are best handled by

critical processors. A critical processor is a processor that has a higher maximum frequency but

also has a lower leakage current. The critical processors for the target array are processors (3, 5),

(3, 6), (4, 5), and (4, 6) from Figure 6.56 and Figure 6.57. These processors are of course very

desirable, but they should ideally be reserved for critical tasks. A critical task is a task that has

a higher load average and also a higher activity level. The critical tasks for the 802.11a wireless

transmitter application are tasks 4, 6, 8, and 10 from Figure 6.58. The critical tasks for the Viterbi

6.5. FABRICATION DIFFERENCES 161

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5

0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6

0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7 8,7 9,7

0,8 1,8 2,8 3,8 4,8 5,8 6,8 7,8 8,8 9,8

0,9 1,9 2,9 3,9 4,9 5,9 6,9 7,9 8,9 9,9

400 MHz450 MHz500 MHz

Maximum Frequency Map

Figure 6.56: Maximum frequency value for each processor in the target 10x10 array

decoder application are tasks 14, 15, 16, 17, and 18 from Figure 6.59. The mapping with the highest

performance and the lowest power consumption will likely have every critical processor assigned a

critical task.

162 CHAPTER 6. RESULTS

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5

0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6

0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7 8,7 9,7

0,8 1,8 2,8 3,8 4,8 5,8 6,8 7,8 8,8 9,8

0,9 1,9 2,9 3,9 4,9 5,9 6,9 7,9 8,9 9,9

10 mA20 mA30 mA

Leakage Current Map

Figure 6.57: Leakage current value for each processor in the target 10x10 array

6.5. FABRICATION DIFFERENCES 163

2

9

10

3

11

4

5

6

7

8

15

16

12

13

14

20

21

18

19

171

22R

802.11a Tx LoadAvg/Activity Map

LoadAvg
Activity

High Medium Low

100 50 10

Figure 6.58: Load average and activity level for each task in the 802.11a wireless transmitter
application

164 CHAPTER 6. RESULTS

2

10

11

3

12

4

5

6

8

9

16

17

18

13

14

15

22

23

24

20

21

19

26

27

25

29

30

281 7

LoadAvg
Activity

High Medium Low

Viterbi LoadAvg/Activity Map

100 50 10

Figure 6.59: Load average and activity level for each task in the Viterbi decoder application

6.5. FABRICATION DIFFERENCES 165

6.5.2 Custom User Function

The custom user function is an advanced feature of the mapping tool. The custom user

function allows a programmer to augment the configuration cost, which is used extensively during

the placement phase to optimize mappings. An unlimited number of values can be associated with

each task and each processor. The meaning of these values is determined by their use within the

custom user function. The custom user function implemented in this work has two goals. The

first goal is to place tasks with a higher load average onto processors that have a higher maximum

frequency. The second goal is to place tasks with a higher activity level onto processors that have a

lower leakage current. These two goals are achieved using specialized equations that produce lower

values when the configuration is more desirable. The contents of this custom user function are listed

in Algorithm 6.1 using the same typefaces and notations as the code listings in Chapter 3. The value

returned by the custom user function is added to the final configuration cost near the end of the

ConfigCost function (listed in Algorithm 3.4). The equations on lines 12 and 13 of Algorithm 6.1

perform the actual optimizations using the annotation values. The equation on line 12 optimizes

for speed, and the equation on line 13 optimizes for power. These two equations produce whole

numbers in the range of 1 to 100 for the annotation values shown previously. Line 14 determines

which optimizations are enabled by choosing which results from line 12 and 13 are added to the

total cost. The custom user function is integrated into the mapping algorithm so applications are

optimized for both fabrication differences as well as the other primary metrics.

Algorithm 6.1 UserCost

1: let Cost ← 0
2: for each Vertex in Graph do
3: let Coord ← Vertex.Coordinate

4: if Coord.X ≥ Graph.Size.X or Coord.Y ≥ Graph.Size.Y then
5: let Cost ← Cost + 1000
6: next iteration
7: end if
8: let LoadAvg ← load average user data for Vertex
9: let Activity ← activity level user data for Vertex

10: let Frequency ← maximum frequency user data for Coord
11: let Leakage ← leakage current user data for Coord
12: let Costspeed ← (LoadAvg × 30) / (Frequency - 350)
13: let Costpower ← (Activity × Leakage) / 50
14: let Cost ← Cost + Cost speed + Costpower
15: end for
16: return Cost

166 CHAPTER 6. RESULTS

6.5.3 Numerical Evaluation

Performance and power consumption are evaluated numerically using two equations, which

roughly estimate the sample latency and leakage power. The sample latency is the time required

to process a sample assuming the sample is passed to every task only once in sequence (similar to

a software pipeline). The leakage power is the amount of power consumed due to leakage currents

assuming each task is active a constant percentage of time and power is removed from a task when

it’s inactive. These two values help to compare different mappings and also show more concrete

benefits to mapping an application with annotations. The first equation, Equation 6.1, computes

the sample latency for a mapping. The assumption is that the load average is the number of

instructions executed for each sample processed. The time required to process a sample can be

estimated by diving the number of instructions by the maximum clock frequency then doing this

for every task and summing the values. The second equation, Equation 6.2, computes the leakage

power for a mapping. The voltage is assumed to be 1.8 V since that’s the nominal operating voltage

for the first version of AsAP (the nominal operating voltage for the second version of AsAP is not

yet known). The leakage power can be estimated by multiplying together the voltage, the leakage

current, and the percentage of time the task is active then doing this for every task and summing

the values. Mappings can be compared numerically using these two values in addition to being

compared visually using critical processor and critical task locations.

Sample Latency = 1000× LoadAvg / Frequency ns (6.1)

Leakage Power = 1.8× Leakage× (Activity / 100) mW (6.2)

6.5.4 802.11a Wireless Transmitter

Settings: Defaults + “AddSpacing = False”

The 802.11a wireless transmitter application has only 22 processors, which provides plenty

of free space within the target array to optimize the application for speed and power. The spacing

insertion flag has been disabled to keep the array from shifting unexpectedly during the routing

phase, which would leave the processors misaligned. The annotation values used for these tests are

shown in Figure 6.58. When mapping the application without annotations, the mapping chosen

for comparisons is the mapping with the lowest optimization cost, similar to the previous sections.

The optimization cost is calculated by Equation 5.4, which evaluates a mapping using the metrics:

area, communication, and utilization. Since the optimization cost equation doesn’t take into ac-

6.5. FABRICATION DIFFERENCES 167

Figure 6.60: Automatic mapping without using any annotations for the 802.11a wireless transmitter

count annotations, it’s effectively useless when comparing annotated mappings. When mapping the

application with annotations, the mapping chosen for comparisons is the mapping with the lowest

configuration cost. The configuration cost is calculated by the ConfigCost function (listed in Algo-

rithm 3.4), which does take into account annotations. The final configuration cost is display by the

mapping tool upon completion of the placement phase, which can be extracted from the log file. For

all tests, both with and without annotations, 100 trials are first executed before selecting the best

mapping for comparisons.

For this first mapping no annotations were included. The mapping shown in Figure 6.60

has a reasonably small rectangular array area (10x4) and uses only 2 routing processors. Though

upon visual inspection none of the tasks, let alone critical tasks, were placed onto critical processors.

None of the higher maximum frequency processors were even used. In terms of leakage power

this mapping was decent. Only 2 tasks were assigned to higher leakage current processors. Upon

numerical inspection the estimated sample latency was 3000 ns and the estimated leakage power was

440 mW. These numbers don’t mean much by themselves but will help to compare this unannotated

mapping to the following annotated mappings.

For this second mapping only speed related annotations were included, in particular the

maximum frequency and the load average. With speed related annotations included we should

notice an increase in performance. The mapping shown in Figure 6.61 has a larger rectangular

array area (10x9), compared to the previous mapping, and uses 6 routing processors. Upon visual

inspection every critical processor has been assigned a task. Even better, critical processor (3, 6)

was assigned critical task 8. Approximately 75% of the tasks were assigned to higher maximum

frequency processors, which is expected when trying to optimize for speed. Although 6 tasks were

168 CHAPTER 6. RESULTS

Figure 6.61: Automatic mapping using just speed related annotations for the 802.11a wireless
transmitter

assigned to higher leakage current processors. Upon numerical inspection the estimated sample

latency was 2610 ns and the estimated leakage power was 490 mW. This mapping, being about 13%

faster, clearly has better performance than the unannotated mapping, but the power consumption

has increased by about 11%.

For this third mapping only power related annotations were included, in particular the

leakage current and the activity level. With power related annotations included we should notice a

decrease in power consumption. The mapping shown in Figure 6.62 has a rectangular array area of

10x10, which is the maximum size allowed, and uses 12 routing processors. Upon visual inspection

3 of the 4 critical processors were assigned tasks, but none of these were critical tasks. A little over

80% of the tasks were assigned to lower leakage current processors, which is very important when

optimizing for power. Although 7 tasks were assigned to lower maximum frequency processors.

6.5. FABRICATION DIFFERENCES 169

Figure 6.62: Automatic mapping using just power related annotations for the 802.11a wireless
transmitter

Upon numerical inspection the estimated sample latency was 2930 ns and the estimated leakage

power was 280 mW. With a decrease in leakage power of about 36%, this mapping clearly consumes

less power than the unannotated mapping. In addition it’s even slightly faster.

For the final mapping both speed and power related annotations were included. With

annotations fully included we should notice improvements in both performance and power consump-

tion. The mapping shown in Figure 6.63 has a rectangular array area of 10x9 and uses 7 routing

processors. Upon visual inspection every critical processor was assigned a task. Critical processor

(3, 5) was even assigned critical task 8. None of the tasks were assigned to lower maximum fre-

quency processors and 9 tasks were assigned to higher maximum frequency processors. Also none

170 CHAPTER 6. RESULTS

Figure 6.63: Automatic mapping using both speed and power related annotations for the 802.11a
wireless transmitter

of the tasks were assigned to higher leakage current processors and 12 tasks were assigned to lower

leakage current processors. Upon numerical inspection the estimated sample latency was 2720 ns

and the estimated leakage power was 330 mW. This mapping is not only about 9% faster than the

unannotated mapping, but it also consumes 25% less power due to the annotations.

6.5. FABRICATION DIFFERENCES 171

Figure 6.64: Automatic mapping without using any annotations for the Viterbi decoder

6.5.5 Viterbi Decoder

Settings: Defaults + “AddSpacing = False”

The Viterbi decoder application, having 30 processors, still has plenty of free space within

the target array to optimize the application for speed and power. Once again the spacing insertion

flag has been disabled to keep processors from becoming misaligned during the routing phase. The

annotation values used for these tests are shown in Figure 6.59. When mapping the application

without annotations, the mapping chosen for comparisons is again the mapping with the lowest

optimization cost. Due to deficiencies in the optimization cost equation, the configuration cost must

be used when comparing annotated mappings. When mapping the application with annotations,

the mapping chosen for comparisons is once again the mapping with the lowest configuration cost.

For every test 100 trials are first executed before selecting the best mapping for comparisons.

For this first mapping no annotations were included. The mapping shown in Figure 6.64

has a reasonably small rectangular array area (10x5), and uses only 6 routing processors. Though

upon visual inspection none of the tasks, let alone critical tasks, were placed onto critical processors.

Only 2 of the higher maximum frequency processors were used. However, only 3 tasks were placed

onto higher leakage current processors, which is quite impressive. Upon numerical inspection the

estimated sample latency was 3560 ns and the estimated leakage power was 470 mW. Like before,

these numbers mean very little by themselves but will help to compare this unannotated mapping

to the following annotated mappings.

172 CHAPTER 6. RESULTS

For this second mapping only speed related annotations were included, so we should notice

an increase in performance. The mapping shown in Figure 6.65 has a larger rectangular array

area (10x10), compared to the previous mapping, but uses only 4 routing processors. Upon visual

inspection every critical processor was assigned a task and two of these tasks were the critical tasks

16 and 17. Over half of the tasks were assigned to higher maximum frequency processors and only

1 higher maximum frequency processor went unused. Although about one third of the tasks were

assigned to higher leakage current processors, which is acceptable since we are optimizing for speed.

Upon numerical inspection the estimated sample latency was 3300 ns and the estimated leakage

power was 460 mW. This mapping is only about 7% faster than the unannotated mapping, but the

goal for this test was to increase performance, which was accomplished. As an added bonus, this

mapping also consumes less power despite the large number of higher leakage current processors

that were used.

For this third mapping only power related annotations were included, so we should notice a

decrease in power consumption. The mapping shown in Figure 6.66 has a rectangular array area of

10x10, and uses 12 routing processors. Upon visual inspection every critical processor was assigned

a task and two of these tasks were the critical tasks 14 and 15. Exactly 60% of the tasks were

assigned to lower leakage current processors, which includes every lower leakage current processor

in the bottom-left region. However, 6 tasks were assigned to lower maximum frequency processors,

which is not so important when optimizing for power. Upon numerical inspection the estimated

sample latency was 3500 ns and the estimated leakage power was 280 mW. This mapping consumes

about 40% less power than the unannotated mapping, which is significantly lower. This mapping is

even marginally faster.

For the final mapping both speed and power related annotations were included, so we

should notice improvements in both performance and power consumption. The mapping shown in

Figure 6.67 has a rectangular array area of 10x10, which is the maximum size allowed, and uses

8 routing processors. Upon visual inspection every critical processor was assigned a task, and two

of these tasks were the critical tasks 16 and 17. A majority of the higher maximum frequency

processors were used and only 2 tasks were assigned to lower maximum frequency processors. Also 5

tasks were assigned to higher leakage current processors but exactly half of the tasks were assigned

to lower leakage current processors. Upon numerical inspection the estimated sample latency was

3360 ns and the estimated leakage power was 310 mW. This mapping consumes about 34% less

power than the unannotated mapping and is even about 6% faster than the unannotated mapping,

6.5. FABRICATION DIFFERENCES 173

Figure 6.65: Automatic mapping using just speed related annotations for the Viterbi decoder

which clearly shows that both performance and power consumption have been improved.

174 CHAPTER 6. RESULTS

Figure 6.66: Automatic mapping using just power related annotations for the Viterbi decoder

6.5. FABRICATION DIFFERENCES 175

Figure 6.67: Automatic mapping using both speed and power related annotations for the Viterbi
decoder

176 CHAPTER 6. RESULTS

Test (Wireless) Sample Latency Leakage Power
Unannotated 3000 ns Ref 440 mW Ref
Speed Annotations 2610 ns 13% 490 mW −11%
Power Annotations 2930 ns 2% 280 mW 36%
All Annotations 2720 ns 9% 330 mW 25%

Table 6.7: The estimated sample latency (in nanoseconds) and the estimated leakage power (in
milliwatts) for automatic mappings that use no annotations, use speed related annotations, use
power related annotations, and use both speed and power related annotations, for the 802.11a
wireless transmitter application

Test (Viterbi) Sample Latency Leakage Power
Unannotated 3560 ns Ref 470 mW Ref
Speed Annotations 3300 ns 7% 460 mW 2%
Power Annotations 3500 ns 2% 280 mW 40%
All Annotations 3360 ns 6% 310 mW 34%

Table 6.8: The estimated sample latency (in nanoseconds) and the estimated leakage power (in
milliwatts) for automatic mappings that use no annotations, use speed related annotations, use
power related annotations, and use both speed and power related annotations, for the Viterbi decoder
application

6.5.6 Summary

After mapping these two applications both with and without annotations, there are clearly

advantages to including specialized annotations. By adding annotations that account for fabrica-

tion differences, tasks with higher demands are placed onto processors with better characteristics,

thus improving performance and lowering power consumption. Figure 6.68 shows an outline of the

three annotated mappings for the 802.11a wireless transmitter application overlaid on top of the

annotated target array. Figure 6.69 similarly shows the three annotated mappings for the Viterbi

decoder application overlaid on top of the annotated target array. The sample latency and leakage

power results for the 802.11a wireless transmitter application have been summarized in Table 6.7.

Similarly, the sample latency and leakage power results for the Viterbi decoder application have been

summarized in Table 6.8. If the goal is to produce a mapping with the smallest possible rectangular

array area, the least number of routing processors, or the least number of long-distance interconnects

then annotations should not be used. When processor characteristics for the target array vary sub-

stantially and a sufficient number of extra processors are available, then annotations can be used to

improve performance and power consumption. Adding annotations is similar to enabling any other

optimization. How and when annotations are used depends upon the application and the target

platform.

6.5. FABRICATION DIFFERENCES 177

Only Speed Annotations
Only Power Annotations
Speed+Power Annotations

Max Frequency

Leakage Current
5 0 0 4 5 0 4 0 0
3 0 2 0 1 0

Figure 6.68: Visual comparison between the three annotated mappings (using only speed annota-
tions, using only power annotations, and using both speed and power annotations) for the 802.11a
wireless transmitter application. Also included is the maximum frequency and leakage current for
each processor in the target array.

178 CHAPTER 6. RESULTS

Only Speed Annotations
Only Power Annotations
Speed+Power Annotations

Max Frequency

Leakage Current
5 0 0 4 5 0 4 0 0
3 0 2 0 1 0

Figure 6.69: Visual comparison between the three annotated mappings (using only speed annota-
tions, using only power annotations, and using both speed and power annotations) for the Viterbi
decoder application. Also included is the maximum frequency and leakage current for each processor
in the target array.

6.6. CONCLUSION 179

6.6 Conclusion

In summary the mapping algorithm is efficient, scalable, tolerant of processor failures, and

able to optimize for fabrication differences. The tests performed throughout this chapter demon-

strate these various qualities for the applications that were selected. These applications attempt to

represent common dataflow patterns found in many DSP algorithms to provide well-rounded testing

that is not application specific. In general the mapping algorithm is very flexible and when com-

bined with the graphical user interface provides a invaluable tool that saves time when optimizing

applications for AsAP and other parallel array architectures.

180 CHAPTER 6. RESULTS

181

Chapter 7

Related Work

Systems with a large number of processing elements are not a new concept to the computing

community. There are a number of subfields in computer engineering that deal with a large numbers

of elemental units. Sometimes these elemental units are complete computing systems such as in

super-computing clusters. Other times these elemental units are binary logic gates such as in VLSI

design. These systems have applications in digital signal processing, physics simulations, and sensor

networks, among others. Researchers in these fields have developed tools and algorithms for handling

such a large number of units. This chapter will discuss previous work that is closely related to the

AsAP architecture and the mapping problem addressed in this work.

7.1 Parallel Processor Arrays

Recently there has been a trend towards developing chip-multiprocessors. This includes

multi-core and multiprocessor chips. This increase in interest is not because chip-multiprocessors

are a recent innovation but because improvements in VLSI technology have made them realizable.

This section discusses other recently developed parallel array processors that are similar to AsAP. I

will point out any key differences from AsAP and how these differences affect the mapping problem.

7.1.1 RAW

The RAW architecture, designed by a research group at MIT, is a tile-based parallel array

architecture [4, 33]. The first RAW chip contains 16 tiles arranged in a 4x4 grid. Each RAW tile

contains a processor core and a dedicated network router. The processor core, which is similar to

a standard MIPS processor, contains an 8-stage pipeline, large caches, and performs floating-point

182 CHAPTER 7. RELATED WORK

arithmetic operations. Communication between tiles is performed using 4 full-duplex channels, one

to each nearest neighbor, which have only a 1-cycle delay. Long-distance communication is less

efficient and is performed by hopping through intermediate processors. Each processor contains

two static routers, configured at compile time, and two dynamic routers, configured at runtime.

The RAW team has developed a C compiler based on the GNU tool chain. The compiler not only

produces instructions for the compute processors but also produces instructions for the network

routers. A commercial product, named Tilera, was recently introduced that is based heavily on the

RAW architecture [11].

The primary differences between AsAP and RAW are the size of the processor cores and

the communication infrastructure. For AsAP the goal is to have small and simple processors so a

large number of cores can be placed on a single chip. For RAW the goal was to create a general

purpose architecture, which requires a flexible communication infrastructure. Just like in AsAP, the

FIFOs in RAW perform flow-control and stall when writing to a full FIFO or when reading from an

empty FIFO. Communication in AsAP may be nearest neighbor only, but processors are so small

they can be used purely for routing without wasting much die area.

7.1.2 Smart Memories

The Smart Memories architecture, developed by a research group at Stanford, is a tile-

based architecture designed for 0.1 µm technology generations and below [24]. The architecture is

highly configurable which allows it to mimic other parallel architectures. Each tile contains local

memory, local interconnects, and a processor core. To increase communication efficiency each block

of 4 tiles is grouped into a quad. Tiles in a quad share a local data bus. Each quad connects to a

global data bus. The local memory inside a tile is broken down into 16 independent 8 KB memory

mats. The local interconnects, also called the crossbar, can dynamically route data between the

processor core and the quad interface. The crossbar can process up to 8 requests at one time.

Each processor core contains a 64-bit processing engine and uses a 256-bit microcode instruction

format. Instructions can be packed into a 128-bit VLIW format, for applications that contain high

instruction-level parallelism, or a 32-bit RISC format, for general purpose applications.

Very little was mentioned about how the Smart Memories architecture is programmed. The

architecture appears to be based on Tensilica technology and uses the Tensilica XCC compiler. A

related software project, developed by the same research group, called the Stream Virtual Machine

(SVM), is an API for writing stream-based applications [20]. It uses a C-like language with SVM

7.1. PARALLEL PROCESSOR ARRAYS 183

API extensions to produce C code that can be compiled to different parallel architectures, Smart

Memories being one of them. Further details on the high-level and low-level language components

of the Stream Virtual Machine were not given.

Smart Memories is similar to AsAP in that local communication is highly efficient. Al-

though a key difference between Smart Memories and AsAP is that AsAP doesn’t have a global

communication bus. Smart Memories also uses dynamic routing so dedicated routing processors

are not needed. AsAP may be less flexible, but the trade-off is energy efficiency due to simpler

processors and less memory. The applications that were tested on Smart Memories were mapped

manually to the best of my knowledge. The high-level compiler for the Stream Virtual Machine is

responsible for the mapping phase but specific details were not given. Overall the goal is the same,

designing an architecture for future VLSI technologies.

7.1.3 iWarp

The iWarp architecture is a computing platform for high performance image and signal

processing [8]. Up to 1024 iWarp components can be combined to form a single system. An initial

prototype had 64 iWarp components connected in an 8x8 torus. Each iWarp component is an ASIC

consisting of a computation agent and a communication agent. The computation agent consists of a

processor core capable of 20 megaflops with a throughput of 320 MB/s. The communication agent

has 4 inputs and 4 outputs that can access other iWarp cells or the outside world. Data can be

routed in a number of ways including message passing, where data is occasionally exchanged, or

systolic communication, where data flows in a stream.

One of the tools used for programming iWarp is the ASSIGN parallel program genera-

tor [27]. ASSIGN works in two phases by first partitioning the application into cells then placing

and routing these cells. The output of ASSIGN is a set of C files, which can also be compiled on

a typical PC. When partitioning an application, tasks are combined using load balancing until the

number of partitions equals the number of cells. No details were given as to how partitions are

assigned to cells. Since the iWarp system can be configured in almost any way possible, tasks could

simply be assigned to cells sequentially.

The communication infrastructure for iWarp is very different than AsAP where commu-

nication can only be point-to-point and nearest neighbor. iWarp can be configured in almost any

way desired and can even represent AsAP. This extra flexibility requires more complexity in each

node. The reduced complexity of AsAP combined with using asynchronous communication make

184 CHAPTER 7. RELATED WORK

AsAP more efficient for applications that map well to the architecture. The benefit of this additional

complexity is that iWarp supports a larger number of applications.

7.1.4 Imagine Stream Processor

The Imagine platform, developed by researchers at Stanford, is comprised of 48 parallel

ALUs running at 400 MHz [18]. It has a peak performance of 16 gigaflops for single-precision

floating-point data and 32 gigaops for 16-bit fixed point data. For general purpose applications it

would be difficult to continuously supply data to 48 ALUs simultaneously so Imagine classifies itself

as a media processor. Imagine focuses on applications that follow a stream-based programming

model and utilize producer-consumer locality. Imagine requires a host controller to program the on-

board stream controller, which orchestrates dataflow to and from the ALUs. The Imagine Stream

Processor also includes an off-board memory controller, streaming register file, and an instruction

dispatch micro-controller. Data is loaded from an external SDRAM into the stream register file then

into the local register file of each ALU. When the computation is complete data can be transferred

back into SDRAM through the streaming register file. Alternatively, the ALUs can communicate

between clusters via an 8x8 inter-cluster crossbar and also within clusters via an intra-cluster crossbar

that connects all functional unit outputs to all register file inputs. VLIW instructions are broadcast

to the ALUs from the instruction dispatch micro-controller, which also keeps track of the program

counter. A commercial entity was recently formed called Stream Processors Inc., which is based

around the Imagine Stream Processor.

The StreamC and KernelC languages are used for programming the Imagine Stream Pro-

cessor [17, 25]. StreamC is used for scheduling data transfers to and from the ALUs while KernelC

is used to describe the operations performed by the ALUs. StreamC programs are written in C++

and linked to a special library that performs stream operations and host PC communication. A

primary goal when orchestrating dataflow is taking advantage of intra-cluster bandwidth, which is

10x faster then passing data through the streaming register file. KernelC programs are written in a

subset of C and operate on single data elements.

Imagine and AsAP both work very well for applications that exploit cascading task-level

parallelism. Cascading task-level parallelism can be found in applications that use sequential opera-

tion and process continuous datastreams. For Imagine, one such application is graphics processing.

For AsAP, a few of these applications include an FFT and multi-pass filters. A major distinction

between Imagine and AsAP is the communication infrastructure. In AsAP communication must be

7.2. PARALLEL PROGRAMMING TOOLS 185

between processors while in Imagine communication can either be performed globally, through the

stream register file, or locally between ALUs. AsAP can perform more complex operations, while

keeping the data local, by having full RISC-based CPUs in each processing unit.

7.1.5 Explicit Data Graph Execution (TRIPS)

The Explicit Data Graph Execution (EDGE) Instruction Set Architecture (ISA) is an in-

struction set architecture for a new generation [9]. The TRIPS prototype is the first implementation

of an EDGE ISA, developed by a team at the University of Texas, Austin. In typical ISAs data

is read from the register file and written back to the register file. In an EDGE ISA data transfers

between instructions are performed explicitly. The TRIPS prototype has two cores, each with 16

ALUs arranged in a 4x4 grid, running at 366 MHz. Each ALU is connected by a lightweight network

to a bank of 4 register files. Instructions are dispatched in parallel and stored in small local caches

inside each ALU. The chip consumes 36 W when operating at a clock frequency of 366 MHz and

has an on-chip bandwidth of 4.7 GB/s [30].

The TRIPS team has developed a specialized compiler for programming the array of

ALUs [32]. The TRIPS compiler is designed to balance the trade-off between work done in hardware

and work done in software. The goal of the compiler is to find concurrency in the application to

assure that data is always flowing through the ALUs. The compiler works by creating blocks of 128

instructions then allocating registers and ALUs to each block. Each block can only contain 32 loads

and 32 stores since each operation is given a Load-Store ID (LSID). LSID values are used to ensure

that memory is accessed in the correct order across ALUs.

The EDGE architecture and the AsAP architecture are somewhat dissimilar. The goal for

both architectures is to maximize all three forms of parallelism, instruction-level parallelism, data-

level parallelism, and thread-level parallelism. Both architectures have multiple execution units but

in EDGE these units are only the ALU component and the memory is shared between all units. In

AsAP each unit has its own pipeline and its own memory. AsAP uses static task allocation so tasks

are available the entire life of the program. EDGE uses dynamic task allocation but decides these

allocations at compile time.

7.2 Parallel Programming Tools

Various methods for programming parallel architectures have been studied over the past

couple decades, but only recently have these methods been applied to real applications and physical

186 CHAPTER 7. RELATED WORK

devices. New languages and programming tools are being developed to make it easier for novice

programmers to utilize this new type of hardware. Below I will discuss some of these new tools and

how they are related to this work as well as how they differ.

7.2.1 StreamIt

StreamIt, developed by researchers at MIT, is a portable framework for programming

stream-based architectures [14, 15]. The StreamIt language and compiler are designed to overcome

many of the shortcomings associated with using C to program stream-based architectures. The

StreamIt language has a syntax very similar to C and Java. The StreamIt compiler performs all

the tasks necessary to generate code for the target architecture. Although the primary target for

StreamIt is the RAW architecture, it can be adapted to other communication exposed architectures.

The StreamIt language has 4 basic constructs: the filter, for serial computation; the split

and join, for parallel computation; and the feedback loop, for creating cycles. When compiling code

StreamIt language files are first converted into StreamIt IR (Intermediate Representation). StreamIt

IR contains dataflow and hierarchy information for the application. This is followed by partitioning,

layout, and communication scheduling which are more architecture dependent. For the partitioning

phase the compiler uses a series of fission and fusion operations that combine lightly loaded nodes

and split heavily loaded nodes until the number of nodes matches the number of tiles. For the layout

phase the compiler uses simulated annealing. The configuration cost is derived from the number of

items being transferred and the number of hops along the path. For the communication scheduling

phase the compiler must assure that no deadlocks will occur. Deadlocks are avoided by interleaving

read and write operations with the computation code.

StreamIt and this work are closely related and share many common interests. The StreamIt

compiler deals with every aspect of parallel programming while this work focuses on layout and

communication. Comparing layout algorithms both use simulated annealing but this work requires

additional optimizations since AsAP is more constrained than RAW. This work also allows the

programmer to optimize for a specific chip by configuring parameters for fault tolerance and physical

differences. Comparing communication algorithms this work has to explicitly insert additional nodes

for routing since AsAP requires nearest neighbor communication. RAW has a dedicated routing

network that simplifies communication scheduling. This work uses special routing code similar

to StreamIt that detects deadlocks before they occur and continues with other operations first if

possible. This work was somewhat inspired by StreamIt, which is the reason for many of the

7.2. PARALLEL PROGRAMMING TOOLS 187

similarities.

7.2.2 OREGAMI

The OREGAMI project, developed by researchers at the University of Oregon, is a col-

lection of tools for programming parallel architectures [23]. The project contains 3 components:

LaRCS, a graph description language; MAPPER, a library of mapping algorithms; and METRICS,

an interactive graphics tool. OREGAMI is intended to be a front-end for existing parallel languages

and supports architectures with a regular communication network, such as a hypercube or mesh. A

primary interest of the OREGAMI project is to exploit regularity in both structure and communi-

cation. OREGAMI is based on a new graph theoretical method called Temporal Communication

Graphs (TCG). TCGs are similar to static dataflow graphs except they provide information about

communication patterns over time.

Applications in OREGAMI are described using LaRCS. A LaRCS file contains two parts,

the static structure of the application, and the temporal communication behavior of the application.

The LaRCS representation of an application and a description of the target architecture are then

passed to MAPPER, which performs the mapping. If MAPPER recognizes regularities in both the

application and the target architecture then MAPPER uses a canned solution from its library. If no

canned solution was found then MAPPER uses an arbitrary contraction, embedding, and routing

algorithm. For arbitrary graphs MAPPER first executes the contraction phase, which performs

clustering through load-balancing. This is followed by the embedding phase, which places the nodes

with the most communication adjacent to each other. Finally the routing phase is executed, which

minimizes contention and produces source, destination, and intermediate route points. The results

from MAPPER are analyzed using METRICS, which also provides an estimate of the mapping

quality.

The OREGAMI project and this work have some similar components. Comparing com-

ponents, LaRCS serves a similar purpose as XML module files, MAPPER serves a similar purpose

as libamap, and METRICS serves a similar purpose as asapmap. The primary difference between

OREGAMI and this work is that OREGAMI requires regularity in the application for it to really

work, while this work assumes the application is entirely arbitrary. Even though both tools tar-

get homogeneous architectures this work optimizes for nearest neighbor parallel array architectures

while OREGAMI requires a less restrictive architecture, which allows it to use canned solutions.

This work uses simulated annealing so the algorithm is more flexible and can deal with fault toler-

188 CHAPTER 7. RELATED WORK

ance and the physical properties of the target. OREGAMI uses a more theoretical approach that

produces results closer to optimal for applications and architectures with known regularities.

7.2.3 CASCH

The CASCH (Computer Aided SCHeduling) project, developed by researchers at the Uni-

versity of Hong Kong and the State University of New York at Buffalo, is a complete parallel

programming environment [5]. Their tools perform all the steps necessary to convert a sequential

program into a parallel program. This includes code generation for the Intel Paragon. The major

components are: a code lexer and parser; a node and edge weight estimator; a dataflow graph gener-

ator; a scheduling and mapping tool; and a communication insertion and code generation tool. The

project also includes some graphical analysis tools. The CASCH project is mostly an integration of

related research into a unified framework.

Mapping an application with CASCH primarily involves scheduling. Only a minimal

amount of effort is applied to placing the application onto physical processors. The user can se-

lect which scheduling algorithm to use from a collection of scheduling algorithms that are each

designed for a specific architectural environment. There are three categories of scheduling algo-

rithms. The first category, called UNC (Unbounded Number of Clusters), assumes that the network

is fully connected and there are an unlimited number of processing elements. The second category,

called BNC (Bounded Number of Clusters), also assumes that the network is fully connected but

there are a limited the number of processing elements. The third category, called APN (Arbitrary

Processor Network), assumes that there is an arbitrary network and a limited number of processing

elements. Once scheduling is finished tasks appear to be placed onto processing elements sequen-

tially, starting with the highest priority task first. Different scheduling algorithms can be tested

from their graphical user interface in order to find the best schedule.

The primary difference between CASCH and this work is that CASCH focuses on parti-

tioning and scheduling while this work focuses on mapping and communication. The reason CASCH

doesn’t exert much effort when placing an application onto processors is that the scheduling algo-

rithms assume that processors can talk to each other either directly or through a routing network.

For this work all communication is assumed to be nearest neighbor only and scheduling is handled

by the asynchronous FIFOs. Despite these differences both tools are very useful for programming

parallel architectures.

7.2. PARALLEL PROGRAMMING TOOLS 189

7.2.4 PYRROS

The PYRROS project, developed by researchers at Rutgers University, contains an au-

tomatic scheduler and a code generation tool [36]. These tools focus on MIMD message passing

architectures such as the nCUBE-1, the nCUBE-2, and the Intel iPSC/2. The project contains the

following components: a task graph language; a scheduling system; a code generator; and some

graphical tools. The application must already be partitioned into parallel tasks prior to using these

tools.

The PYRROS tools take as input a task graph described using a simple C-like language.

Scheduling is performed in four phases. First tasks are clustered assuming an unbounded number

of processors. Next clusters are merged using load balancing until the number of clusters is equal to

the number of processors. Next clusters are placed onto physical processors by first performing an

initial placement followed by incremental improvements to reduce communication delay. Finally the

tasks within merged clusters are reordered to reduce data dependency delays. After scheduling, the

code generation tool produces both communication code and computation code. The communication

code includes code for deadlock avoidance and message broadcasting.

The PYRROS project, much like the CASCH project, is focused more on scheduling ap-

plications then mapping them onto physical processors. PYRROS and this work may both target

parallel architectures, but the communication infrastructures are vastly different. The first version

of AsAP is nearest neighbor only while the nCube for example is connected in a hypercube. For this

work communication is scheduled using software based routing tasks that are separate from compu-

tation tasks. For PYRROS communication is scheduled during code generation and integrated into

computation tasks. This work is somewhat unique since it takes into account a number of other

factors besides just communication delay, such as fabrication errors and differences in processor

characteristics. One advantage the PYRROS project has over this work is that it can manipulate

the code in ways not possible with this work.

7.2.5 HyperTool

The HyperTool project, developed by researchers at the University of California, Irvine,

consists of a tool for scheduling parallel programs and inserting communication primitives [35]. Hy-

pertool has been designed for message passing architectures such as the Intel iPSC and the nCUBE.

Hypertool is very similar to other parallel programming tools and includes similar components.

These components are: a C-code lexer and parser; a dataflow graph generator; an execution sched-

190 CHAPTER 7. RELATED WORK

uler; a physical processor mapping tool; a communication synchronization tool; and a code generator.

This tool does not partition sequential code into parallel code since the authors believe that code

partitioning is best handled by the user. This tool takes as input a C program with one main proce-

dure and many parallel sub-functions. The call graph is converted into a DFG used for scheduling,

mapping, and code generation.

The scheduling component begins by estimating the number of virtual processors required

to fully maximize parallelism. Tasks are then scheduled onto these virtual processors using both as-

soon-as-possible (ASAP) and as-late-as-possible (ALAP) scheduling techniques. Tasks that have the

same value for ASAP scheduling as ALAP scheduling are given the highest priority. The mapping

component then tries to minimize the communication distance between tasks. An optimal mapping is

one that uses only nearest neighbor communication. Hypertool uses a previously developed mapping

algorithm that starts with an initial placement then iteratively swaps tasks to try and improve the

mapping. The synchronization component then inserts send and receive commands into processing

elements that pass data for non-nearest neighbor connections.

Hypertool and this work have a similar goal, which is to decrease the length of commu-

nication channels. Both algorithms start with an initial configuration then iteratively improve the

configuration to reduce communication delay. One primary difference between Hypertool and this

work is that Hypertool integrates communication code with computation code where this work relies

on dedicated routing processors. Integrating communication code with computation code helps to

decrease the number of processing elements. For AsAP the instruction space is very limited so using

extra processors for routing is preferred since they are considered throw-away processors anyway.

This work also performs other optimizations besides just minimizing communication delay.

7.2.6 Energy-Aware Mapping Algorithm

Researchers at Carnegie Mellon University have developed a mapping algorithm for tile-

based NoC architectures [16]. The mapping algorithm is energy-aware, which means communication

energy is minimized. The communication energy includes both the number of hops and the energy

consumed per transmission. Architectures can be heterogeneous with a mix of ASICs, DSPs, and

CPUs, but each tile must have an interface compatible static router. It’s assumed that each tile is

connected to its four nearest neighbors and uses XY routing. This branch-and-bound based mapping

algorithm efficiently explores the solution space by intelligently deciding which configurations to

explore. IP cores are first sorted and placed into a priority queue. Next a solution space tree is

7.2. PARALLEL PROGRAMMING TOOLS 191

constructed based on the many ways IP cores can be placed onto processors. Upper and lower

bounds are computed for each level in the solution space tree. Part of the solution space tree can

be trimmed using the values for the upper and lower bounds, narrowing the solution space.

The authors compared their algorithm to a simulated annealing based algorithm and no-

ticed significant speed improvements while obtaining similar mapping quality. This is likely true for

the simple cost equation they were using. Though for this work the cost equation is quite complex

and accounts for many other aspects of the mapping. For example this energy-aware mapping algo-

rithm relies on dedicated routers so it doesn’t have to worry about inserting routing processors or

communication code. Since this energy-aware algorithm only minimizes communication energy it’s

likely to be faster. This work is more feature rich but the trade-off is increased runtime.

192 CHAPTER 7. RELATED WORK

193

Chapter 8

Conclusion

The automated mapping algorithm presented in this work has been shown to be an efficient

tool for programming large scale parallel arrays. By applying the mapping algorithm to the AsAP

architecture, programmers are able to design applications in less time and often with better perfor-

mance. One of the goals for AsAP, and other parallel arrays, is to adapt to future VLSI technologies.

This includes an increasing number of processing elements and an increasing number of fabrication

errors as feature sizes approach an atomic level. With the help of the mapping tool, applications

have been mapped to AsAP that were so large they would have been nearly impossible to map by

hand. Not only does the mapping tool overcome fabrication problems but it takes advantage of these

problems to increase performance. The benefits of a rapid and fully automated mapping tool that

takes into account faulty and varying-performance processors, makes a strong case for the usage of

automated mapping tools for programming large scale parallel arrays.

A framework has been developed for mapping applications to 2D-mesh nearest neighbor

dominated parallel arrays. The framework is modular and can be adapted to other large scale parallel

arrays with little work. An automated mapping algorithm and an intuitive graphical user interface

have been created that initially target the AsAP architecture. The mapping algorithm is highly

configurable and capable of mapping applications that require over a dozen optimization factors at

one time. The mapping algorithm has been shown to be efficient, scalable, tolerant of processor

failures, and able to optimize for fabrication differences. The graphical user interface explores a

new technique for programming large scale parallel arrays by allowing applications to be created

based on their dataflow. The graphical user interface allows programmers to quickly develop new

applications and experiment with different configuration parameters in an entirely visual way. The

194 CHAPTER 8. CONCLUSION

most important attribute of this framework is the ability to improve and adapt the framework to

new architectures.

8.1 Lessons Learned

While implementing and testing the mapping algorithm I ran into a number of problems.

The biggest mistake I made was programming the graphical user interface before completing the

mapping algorithm. This delayed my initial results by a few months and the graphical user interface

later needed to be frequently revised, especially in the mapping algorithm setting dialog. Although

the upside to this approach was applications were easy to create and my initial results were simple

to analyze. In the first implementation of the mapping algorithm the placement and routing phases

were combined. Routing processors were periodically inserted along the longest edge. The mapping

quality for this first implementation was terrible and the mapping algorithm was unnecessarily

complex. Results improved after splitting the mapping algorithm into two phases but complex

applications, such as the large Clos network, were still unmappable when targeting the first version

of AsAP. To overcome this problem the space insertion component was added to the routing phase.

This was mostly a hack. This component degraded the mapping quality for some applications but

allowed complex applications, such as the large Clos network, to be mapped using nearest neighbor

communication only. The edge-to-vertex ratio, or space threshold, determines when this hack is

needed. This threshold unreliably estimates the complexity of an application so sometimes good

mappings get trashed by the space insertion component. Given more time I would have liked to

explore other methods for determining when space insertion is needed. From each of these problems

valuable lessons were learned that should be avoided by anyone improving this framework or doing

similar work.

If tomorrow I had to start this project all over again, I would have done a number of things

differently. Currently the graphical user interface is limited to point-to-point connections. The

graphical user interface should allow an user to input one-to-many and many-to-one connections

and handle fan-in/fan-out appropriately. Implementing this change would be far from trivial and

it would likely be easier to do a complete rewrite. After reading about the energy-aware mapping

algorithm it brought back notions of doing an intelligent full-search. To do this, a solution space tree

is created starting with the input vertex then branches are removed that clearly lead to an inferior

solution. This would result in an optimal solution. Of course the runtime would also increase,

but hopefully not by too much. Another modification I would have liked to try is replacing the

8.2. FUTURE WORK 195

initial placement function by a graph planarization process. This would have improved the mapping

quality and lowered the initial temperature, thus saving time. If this work was started at a later date,

the second version of AsAP would have been fabricated. I believe it’s necessary to follow up this

work with some simple performance and power measurements after taking into account fabrication

differences. With multi-core processors on the rise this problem is unlikely to be sufficiently solved

in the near future.

8.2 Future Work

It has been demonstrated that the presented mapping algorithm efficiently produces quality

mappings for most of the applications tested. However, as with any tool dealing with large NP-

complete problems, there is certainly room for improvement. In addition, there are still a number

of valuable tools missing from the parallel programming tool-chain that must be implemented. As

a starting point, the following list contains suggestions for future work:

• Develop a serial to parallel code partitioning algorithm that compliments the AsAP mapping

tool

• Develop an instruction scheduling algorithm for optimizing global throughput that compli-

ments the AsAP mapping tool

• Modify the AsAP mapping tool and the XML module format to work directly with C code

• Explore using various graph planarization techniques to improve the initial placement function

• Modify the mapping algorithm so the array input and the array output are allowed to float

along any combination of the four edges

• Explore new ways to insert additional routing space to reduce array area and routing conflicts

• Explore ways to reorder the list of edges given to the maze routing algorithm to reduce routing

conflicts

• Run some complex applications on the physical chip and measure the difference in power and

throughput as a result of the user cost function

• Put the mapping algorithm into a co-processor that will automatically detect processor failures

and remap applications on-the-fly

196 CHAPTER 8. CONCLUSION

• Integrate canned mapping solutions into the mapping algorithm to optimize common dataflow

patterns found in many DSP applications

• Explore using min-cut in conjunction with hierarchical data structures to improve the mapping

quality

197

Appendix A

Readme - Mapping Library

Contained within this appendix is the contents of the Readme file associated with the

mapping library. This file can be found inside the AsAP mapping tool source code archive. This

Readme file was written to provide the end user with instructions on compiling the mapping library

and the programming API necessary to embedded the mapping library into an application. A general

overview of the placement and routing phases is also provided along with a brief description of the

contents within each source code file.

=== Documentation for the AsAP Mapping Library ===

Author: Eric Work

E-mail: ewwork@ucdavis.edu

Modified: February 2007

***** Overview *****

The primary objective of the mapping library is to assign interconnected

tasks to locations in a 2D-mesh array of processors. These assignments are

optimized to maximize nearest neighbor communication, minimize overall array

area, as well as allow for some customization. A few of the customizations

possible are fixing the location of certain tasks and excluding certain

processors from being assigned.

The mapping library works in two phases. The first phase is the placement

phase, which is based on simulated annealing. The second phase is the routing

phase, which is based on maze routing. Each phase has been optimized to

increase placement quality for an AsAP nearest-neighbor architecture. Since

every application is different the algorithm has a number of configuration

parameters that can be changed to improve placement quality for specific

applications. For further details refer to my thesis on the mapping

algorithm.

198 APPENDIX A. README - MAPPING LIBRARY

The following is a break-down of the source file contents:

algorithm.cpp - algorithm entry point and configuration validation

algorithm.hpp - configuration data-types and their default values

graph.hpp - graph data-types with related descriptors and iterators

gridmap.cpp - routing gridmap implementation details

gridmap.hpp - routing gridmap data-types with helpers

perturb.cpp - placement perturb implementation details

perturb.hpp - placement perturb data-types with helpers

placement.cpp - placement entry point and simulated annealing framework

routing.cpp - routing entry point and maze routing framework

testbench.cpp - testbench implementation for debugging the library

usercost.cpp - user cost function and data file parsing

utility.cpp - utility functions for both placement and routing

utility.hpp - utility function declarations used everywhere

***** Compiling the Library *****

To compile the mapping library you will need to have the boost libraries

installed. The boost libraries are a collection of generic programming

libraries designed using C++ templates. The boost libraries can be obtained

from http://www.boost.org. In particular you will need the following

libraries: graph, property_map, format, random, date_time, and string_algo.

The filesystem library is also needed when building the library in debug mode.

The resulting binaries are statically linked and require no other runtime

libraries beyond the basic libstdc++.

If you want to compile the optional testbench application you will need to

build an additional library for reading graphviz files. The source code for

this library is included with the boost graph library source code. This

can be found inside the following directory of the boost source code,

’./libs/graph/src/’. The i686 version has been included with this package.

This pre-compiled graphviz library was compiled with ’-march=i686 -O2’ using

GCC 4.1.X. Use the following steps to build the static library for a

different architecture or platform:

1. g++ -ftemplate-depth-50 -O2 -I../../.. -c graphviz_*.cpp

2. ar -rc libbgl-‘arch‘.a *.o

3. mv libbgl-*.a /path/to/mapping/library

The location where the boost libraries are installed can be specified by

changing the BOOST_XXX variables in ’Rules.make’. When building in release

mode optimizations are enabled but further tuning can be done by setting the

CXXFLAGS environment variable. For example, optimizing for the Pentium 4 can

be done using the following commands before running make:

bash: export CXXFLAGS="-march=pentium4"

tcsh: setenv CXXFLAGS "-march=pentium4"

To compile the mapping library type: make all

To compile the testbench type: make DEBUG=y testbench

199

***** Using the Library *****

The mapping library will most commonly be used as a component in other

applications. The algorithm testbench is one front-end for the mapping

library which could be used as a simple command-line tool with minor

modifications. The AsAP Mapping Tool on the other hand is a full-featured

graphical interface for the mapping library. Either one of these front-ends

can serve as an example for interfacing with the library’s simple API.

To begin, all programs which link to the mapping library need to include

’algorithm.hpp’ and create at least one object of type ’graph_t’ and

’configuration_t’. An object of type ’graph_t’ is used to describe the

application data-flow and an object of type ’configuration_t’ contains all the

algorithm parameters. These objects are passed to ’algorithm_main’ which then

does the mapping. The ’input_vertex’ and ’output_vertex’ fields of the

configuration object must be set before running the algorithm. If anything

appears inconsistent within the graph or the configuration an error message

will be displayed and ’algorithm_main’ will return false. Below is a very

simple example of using the mapping library.

#include <algorithm.hpp>

void prepare_graph (graph_t &graph, configuration_t &config) {

vertex_t input = add_vertex(graph);

vertex_t middle = add_vertex(graph);

vertex_t output = add_vertex(graph);

add_edge(input, middle, graph);

add_edge(middle, output, graph);

config.input_vert = input;

config.output_vert = output;

}

int main () {

graph_t graph;

configuration_t config;

prepare_graph(graph, config);

config.num_iterations = 1;

config.random_seed = 123;

algorithm_main(graph, config);

}

The mapping library makes extensive use of the boost graph library, and the

first step is to prepare the desired data-flow graph. The majority of

this preparation is based on the API used for creating generic boost graph

objects. There are a few additional properties that can be set to make

conversions between different in-memory graph formats easier. These are the

200 APPENDIX A. README - MAPPING LIBRARY

vertex source and edge connection properties for storing the information about

the original graph. Below are the functions used to create nodes and edges

as well as work with node, edge, and graph properties. For more advanced

graph manipulations refer to the boost graph library documentation.

=> New vertex:

vertex_t // new vertex descriptor

add_vertex(

graph_t graph // graph object

);

=> New edge:

std::pair<edge_t, bool> // new edge descriptor, always true

add_edge(

vertex_t source, // source vertex descriptor

vertex_t target, // target vertex descriptor

graph_t graph // graph object

);

=> Vertex source property:

vertex_t vertex; // previously defined vertex descriptor

object_t object; // previously defined generic object

source_map_t source_map = get(

vertex_source, // property map tag

graph // graph object

);

source_map[vertex] = (void *)&object; // set value

void *data = source_map[vertex]; // get value

=> Vertex category property:

Values:

CATEGORY_PROCESSOR - processor node type

CATEGORY_ONEWAY_ROUTER - one-way router type

CATEGORY_TWOWAY_ROUTER - two-way router type

CATEGORY_THREEWAY_ROUTER - three-way router type

CATEGORY_FOURWAY_ROUTER - four-way router type

vertex_t vertex; // previously defined vertex descriptor

category_map_t category_map = get(

vertex_category, // property map tag

graph // graph object

);

category_map[vertex] = CATEGORY_PROCESSOR; // set value

if (category_map[vertex] == CATEGORY_PROCESSOR) { } // get value

=> Vertex coordinate property:

vertex_t vertex; // previously defined vertex descriptor

int x, y; // previously defined coordinate dimensions

coordinate_map_t coordinate_map = get(

201

vertex_coordinate, // property map tag

graph // graph object

);

coordinate_map[vertex] = coordinate_t(x, y); // set value

coordinate_t coordinate = coordinate_map[vertex]; // get value

=> Edge connection property:

edge_t edge; // previously defined edge descriptor

int source, target; // previously defined port numbers

connection_map_t connection_map = get(

edge_connection, // property map tag

graph // graph object

);

connection_map[edge] = connection_t(source, target); // set value

connection_t connection = connection_map[edge]; // get value

=> Graph dimensions property:

int x, y; // previously defined coordinate dimensions

coordinate_t &dimensions = get_property(

graph, // graph object

graph_dimensions // property map tag

);

dimensions = coordinate_t(x, y); // set value

coordinate_t coordinate = dimensions; // get value

The next preparation step involves configuring the algorithm parameters.

Various fields of the ’configuration_t’ object can be modified to change the

behavior of the algorithm. For further details refer to the contents of the

’algorithm.hpp’ file. Listed below are the configuration fields with a short

description and a simple example for setting them. Default values can be

found in ’algorithm.hpp’.

=> input_vert/output_vert: input and output vertex descriptors

vertex_t vertex; // previously defined vertex descriptor

config.input_vert = vertex;

=> input_type/output_type: input and output vertex placement positions

Values:

POSITION_NONE - ignore placement related costs

POSITION_LEFT - cost based on distance from left edge

POSITION_RIGHT - cost based on distance from right edge

POSITION_TOP - cost based on distance from top edge

POSITION_BOTTOM - cost based on distance from bottom edge

config.input_type = POSITION_LEFT;

=> array_size: desired array size

int x, y; // previously defined coordinate dimensions

config.array_size = coordinate_t(x, y);

202 APPENDIX A. README - MAPPING LIBRARY

=> quick_place: quicker placement phase flag

config.quick_place = true;

=> use_routing: perform routing phase flag

config.use_routing = false;

=> add_spacing: additional space before routing flag

config.add_spacing = true;

=> expand_type: initial placement expansion direction

Values:

DIMENSION_VERTICAL - place vertical first then horizontal

DIMENSION_HORIZONTAL - place horizontal first then vertical

config.expand_type = DIMENSION_HORIZONTAL;

=> num_iterations: number of placement iterations (Max 32)

config.num_iterations = 1;

=> max_routes: number of routable paths through a node (Max 4)

config.max_routes = 4;

=> random_seed: initial random seed

config.random_seed = 123;

=> space_threshold: edge/node ratio required to insert space

config.space_threshold = 100;

=> cost_weight[index]: array of cost weights used during placement

Indexes:

COST_EXCLUDED_MATCH - cost for using an excluded coordinate

COST_CHANNEL_LENGTH - cost for using non-nearest neighbor communication

COST_INOUT_DISTANCE - cost for the input/output edge distance

COST_ARRAY_OVERSIZE - cost for exceeding the desired array dimensions

config.cost_weight[COST_CHANNEL_LENGTH] = 10;

=> excluded_coords: vector of coordinates to exclude

int x, y; // previously defined coordinate dimensions

coordinate_t coordinate(x, y);

config.excluded_coords.push_back(coordinate);

=> fixed_coords: pairs of vertices with their fixed coordinates

203

vertex_t vertex; // previously defined vertex descriptor

int x, y; // previously defined coordinate dimensions

coordinate_t coordinate(x, y);

vertex_coord_pair_t fixed_pair = std::make_pair(vertex, coordinate);

config.fixed_coords.push_back(fixed_pair);

When the preparation is complete, the algorithm can be executed. This can be

done by calling ’algorithm_main’. Below is a more detailed description of how

the function can be called.

bool // returns true unless some failure occurred

algorithm_main(

graph_t graph, // graph object

configuration_t config // configuration object

);

When the algorithm is being executed, the status of the algorithm is printed

to std::cout and any error messages are printed to std::cerr. The global

std::string variable named ’mapping_error_str’ will contain the last error

message reported if ’algorithm_main’ returns false. During the placement

phase, it prints the iteration number as well as the temperature progress.

During the routing phase it prints the route number being solved along with the

total number of routes. A simple report is generated when both phases have

been completed. This includes the array size, the number of non-nearest

neighbor connections, and other useful information. This output information

can be hidden or redirected by assigning std::cout and std::cerr to new values

before executing ’algorithm_main’.

***** Algorithm Testbench *****

The testbench has been designed to easily test the performance and quality of

the mapping algorithm as well as serve as an example for using the library.

Though not required, the testbench is usually compiled in debug mode which

provides internal algorithm information. The testbench is typically executed

from the ’testing’ directory using make. Simply running ’make’ in this

directory displays a list of available options.

Before running the testbench first create an ’input.dot’ file. This input file

is a graphviz DOT file but could also be a symlink to a file in the graphs

directory. The input file must have nodes with the labels ’in’ and ’out’ for

the testbench to work. Look at files in the graphs directory for examples.

The next step is to run ’make execute’ which will execute the testbench and

generate the needed debug files. This is followed by ’make results’ which

processes the debug files and places the results in the results directory. To

view the results run ’make analyze’ which displays the processed results using

an appropriate viewer for each file type. Since each system is different, the

programs used by the analyze target may need to be changed to work correctly

on your system.

Below is a quick example of how to execute the testbench:

1. ln -s graphs/fourier.dot input.dot

204 APPENDIX A. README - MAPPING LIBRARY

2. make execute results analyze

Debug files are created in a new directory called ’debug’ when the testbench

is executed in debug mode. This directory is created in the working directory

where the testbench was executed. It contains a series of three file types

for debugging both the placement and routing phases. The *.dat files are in

CSV format and contain tabulated cost, temperature, and iteration data. The

*.dot files are in graphviz DOT format and have position attributes set as well

as input/output labels and type coloring. The y-coordinates for the resulting

graphviz DOT files have been inverted to correctly render using neato. The

*.map files are in plain text format and contain rows of ASCII characters

depicting the processor array the types of nodes with respect to their routing

states. By default only the initial and final states for placement and routing

phases are processed. One additional file not previously mentioned is the

’output.dot’ file created by the testbench regardless of debug or release mode.

This file contains the final layout including routing processors.

The following is a break-down of the dumped debug files:

placement.dat - placement temperature and cost data

placement-initial.dot - graph layout before the placement phase

placement-final.dot - graph layout after the placement phase

placement-??_????.dot - graph layout at internal placement steps

routing-initial.map - routing grid-map before the routing phase

routing-final.map - routing grid-map after the routing phase

routing-??_??.map - routing grid-map at internal routing steps

output.dot - final layout after placement and routing

The following is a break-down of the processed result files:

placement-cost.eps - graph of current vs overall minimal placement cost

placement-initial.gif - initial graph placement image

placement-final.gif - final graph placement image

placement-??_????.gif - internal graph placement step images

routing-initial.map - initial routing grid-map

routing-final.map - final routing grid-map

routing-??.map - combined grid-maps from internal routing steps

output.gif - final layout image after placement and routing

The testbench makefile contains two hidden options which can either be set

from the command-line or set at the top of the makefile. The SEED variable

can be used to change the initial random seed for the mapping algorithm. The

VIEWSTEPS variable if set to ’yes’ will process intermediate states in

addition to the initial and final states. Due to the large number of

intermediate placement steps only 10 steps, evenly distributed from each

placement iteration, are processed.

In addition to running the testbench in single execution mode, you can use

the ’batch.sh’ script to run many consecutive executions. This script, by

default, iterates over a range of random seeds and saves the resulting layouts

as *.gif files and the mapping algorithm output as *.log files. These files

are placed in the batch directory as they are created. The batch script will

display some simple statistics about each execution while it is running.

205

To make all the processing work, the testing directory contains a number of

helper scripts and other miscellaneous files. The various tools used by these

scripts are listed in the tools section. Below is a brief explanation of

each file:

Makefile - contains various targets to help with debugging

batch/* - results from batch execution are placed here

debug/* - debug information is placed here

graphs/*.dot - a collection of various test graph files

results/* - processed results are placed here

scripts/batch.sh - shell script for running the testbench in batch

scripts/cost.plot - gnuplot script for rendering the cost curve

scripts/dot2gif.sh - graphviz helper for rendering the *.dot files

scripts/gendot.py - python script to generate random *.dot files

scripts/graphs.pl - perl script for rendering placement graphs

scripts/routes.pl - perl script for combining routing grid-maps

***** User Cost Function *****

The mapping library has the ability to use a custom user cost function.

This custom user cost function allows the user to include an additional cost

based on the working array and the target array. Typical usage for the user

cost function is to calculate a cost by comparing a vertex property against

its target array location. One example is to compare the load of a vertex

to the frequency of the target location. There are three parts to the user

cost function. The first part is the code for calculating the cost addition.

The second part is the userdata vertex properties, which contain data values

for each task that is being assigned. The final part is the userdata gridmap

values, which contains data values for each processor in the target array.

To enable the user cost function change ’Rules.make’ so that the variable

’USERCOST’ is set to ’y’. This will set the build flags needed to include

the user cost function code. To change the user cost function modify the code

inside the function ’userdata_cost’ in the file ’usercost.cpp’ so that it

calculates the desired cost addition. The remainder of this section will

explain how to set the userdata values that are used by ’userdata_cost’ and

the functions used for reading back the userdata values.

The userdata vertex properties are stored in hash tables (std::map) using

strings as keys and integers as values. This allows you to lookup values

using strings instead of array index values. By using hash tables you can

store an unlimited number of values. The userdata gridmap values are stored

as an array of these hash values, using processor locations and strings for

looking up stored values.

The following API is used to assign values to the userdata vertex properties.

This is done in a similar fashion to that of setting the coordinate or source

vertex properties.

vertex_t vertex; // previously defined vertex descriptor

std::string hash_key; // previously defined hash string key

int hash_value; // previously defined hash integer value

userdata_map_t userdata_map = get(

206 APPENDIX A. README - MAPPING LIBRARY

vertex_userdata, // property map tag

graph // graph object

);

userdata_t &userdata = userdata_map[vertex]; // get vertex hash table

userdata[hash_key] = hash_value; // set hash value

When using the mapping tool, these values are assigned by the tool using the

following syntax in either AsAP Assembly files or AsAP XML files:

=> AsAP assembly

begin x,y

#userdata(name) value

// remaining instructions

end

=> AsAP XML

<module name="">

<array size="">

<processor loc="x,y">

<code file="">

<userdata name="xxx" value="xxx"/>

</code>

</processor>

</array>

</module>

The following function is used to assign userdata gridmap values for the

target array. This can be done manually but that method is not described

here as the preferred method is using an userdata file and the accompanying

parser. The results are stored in the ’userdata’ and ’userdata_size’ fields

of the configuration object.

bool // returns true unless some failure occurred

parse_datafile (

std::string datafile, // path to the userdata file

configuration_t &config // configuration object to store data

);

The ’parse_datafile’ function expects the input file to follow the format

described below. Any line which begins with a pound (#) character or contains

only whitespace will be ignored. The first processed line (not ignored)

contains the size of the target array and the hash key names for each column.

The lines following the header contain X,Y locations in the array that the

values in the adjacent columns will be assigned to.

=> Userdata file format

SX,SY Header1 Header2

X1,Y1 Value1 Value2

X2,Y2 ValueA ValueB

When using the mapping tool, this datafile can be set using the ’Mapping

207

Execute’ dialog under the ’Advanced’ tab or using the ’-f’ option in batch

mode.

The following functions can be used to read back the stored userdata values

inside the user cost function. For an example of using these functions

look at the commented code inside the user cost function. NOTE: The key

values when stored by the parser and mapping tool are converted to

lowercase to avoid case sensitivities but not converted to lowercase when

values are retrieved to save cpu time, so passed keys should be lowercase.

=> Get vertex property value

int // retrieved userdata value

graph_value (

graph_t &graph, // graph containing the vertex

vertex_t vertex, // vertex containing the value

std::string map_key, // hash key to lookup value

bool &success // set to false if not found

);

=> Get target gridmap value

int // retrieved userdata value

grid_value (

configuration_t &config, // object containing values

coordinate_t coord, // location containing the value

std::string map_key, // hash key to lookup value

bool &success // set to false if not found

);

When writing a custom user cost function, the runtime of the function must be

taken into consideration. The placement cost function is called anytime a

task is reassigned to a new location within the array (this happens often).

***** Tools *****

The following tools are used for compiling or debugging the mapping library:

=> Boost

Description: generic programming libraries using C++ templates

Website: http://www.boost.org/

Version: 1.33+

Usage:

This mapping library uses various parts of this collection of libraries,

the most prevalent being the boost graph library (BGL). In addition the

POSIX time, formatting, and other libraries are used.

=> GNUPlot

Description: plotting tool for viewing X-Y data files

Website: http://www.gnuplot.info/

Version: 4.0+

Usage:

This is used to render graphs of the cost function using data generated by

208 APPENDIX A. README - MAPPING LIBRARY

running the testbench in debug mode. It is very configurable and can save

to a number of file formats, eps being the one used here.

=> GraphViz

Description: a collection of tools and libraries for drawing graphs

Website: http://www.graphviz.org/

Version: 2.4+

Usage:

These tools are used to render images of the *.dot files generated when

running the testbench in debug mode. The *.dot files are rendered to

*.gif files using the neato program from this package. This package has

an insane amount of options, graph layout algorithms, and export

capabilities, including eps.

209

Appendix B

Readme - AsAP Mapping Tool

Contained within this appendix is the contents of the Readme file associated with the AsAP

mapping tool. This file can be found inside the AsAP mapping tool source code archive. This Readme

file was written to provide the end user with instructions on compiling the AsAP mapping tool and

basic operating instructions for batch mode execution. A general overview of the internal data

structures is also provided along with a brief description of the contents within each source code file.

=== Documentation for the AsAP Mapping Tool ===

Author: Eric Work

E-mail: ewwork@ucdavis.edu

Modified: February 2007

***** Overview *****

The mapping tool is designed primarily as an interface between XML modules

and the mapping library. The mapping tool has both a graphical mode and a

batch mode. The graphical mode makes it easy to construct and analyze

complex applications using an intuitive interface. Batch mode can be used to

iterate over an assortment of parameters in an automated fashion to improve

mapping quality. The key advantage to using XML modules is that they can be

converted to and from programmable AsAP code which can be simulated. These

XML modules can also be used by other tools to avoid parsing AsAP code. For

more details on using the mapping tool refer to the help file or from the

command-line type ’asapmap -h’.

The mapping tool goes through three phases when mapping applications. The

first phase populates the module list and connects processors together. The

second phase performs the mapping and analyzes the results. The third phase

translates the involved module files and combines all the processors into one

large XML file.

210 APPENDIX B. README - ASAP MAPPING TOOL

The first phase is done by either dragging items to the canvas and linking

them with the mouse, or by loading a project file. Module files, which are

loaded from project files or dragged onto the canvas, describe the connections

between local processors. These connections are based on matching pairs of

opposing ports. Processors are linked globally by looking at module port

numbers and connecting them according to the links described by the project

file or links drawn with the mouse. For batch mode, the only option is loading

modules through a project file.

The second phase looks at the output ports for each processor across all

modules (inputs are mirrored) to see which processors are connected. A vertex

is added for each processor and an edge is added for each connected output

port. The algorithm is then executed which computes the coordinates for each

vertex. After coordinates have been assigned, new routers are instantiated

and inserted into the module list like any other module. The original

processor’s location and port numbers are compared to calculated numbers to

produce translation sets. These translation sets contain the new location

and an array of port index numbers that transform the old port index to the

new port index. Each time the distance between two processors is non-nearest

neighbor a routing channel is created. When in graphical mode, the final

array configuration is also displayed after mapping.

The third phase goes through all the modules and routers and loads their

XML files one at a time. For each module loaded the parameters are updated,

the processor locations are changed, and the direction masks are changed

according to the port index map. After being updated the processor elements

along with the code inside them are copied and attached to the array element of

the output document. Finally after all processors have been copied, the

routing channels are added and a new XML module is created.

The following is a break-down of the source file contents:

config.h - contains file locations and various constraints

interface.c - callbacks for events triggered by the graphical interface

interface.h - prototypes for functions inside interface.c

main.c - program entry point and command-line parsing

mapping.cpp - functions to prep the algorithm and analyze the results

mapping.h - prototypes for functions inside mapping.cpp

module.c - functions used for loading and saving modules

module.h - prototypes for functions inside module.c

project.c - functions used for loading and saving projects

project.h - prototypes for functions inside project.c

translate.c - functions used to change XML documents based on results

translate.h - prototypes for functions inside translate.c

types.h - core data-types used throughout the mapping tool

utility.c - various utility functions including port manipulations

utility.h - prototypes for functions inside utility.c

visual.c - functions for handling visual aspects of the canvas

visual.h - prototypes for functions inside visual.c

The following is a break-down of the resource file contents:

asapmap.glade - glade XML interface resource file

211

asapmap.gladep - supporting glade project file

asapmap.xml - program help file in DocBook format

asapmap.xpm - XPM format application icon file

figures/* - figures used by the help file

mkhtml.sh - helper script to make HTML help files

***** Compiling the Program *****

To compile the mapping tool you will need to have the boost libraries,

and the gnome development platform installed. The boost libraries are used

to interface with the mapping library. The gnome platform is used to create

the graphical user interface. In particular you will need the following

libraries from the gnome platform: gtk2, libgnomeui2, libgnomecanvas2,

libglade2, and libxml2. The gnome platform is standard on most recent Linux

distributions but may require installing development packages.

You need to compile the mapping library before compiling the mapping tool.

For compiling the mapping library refer to the ’Readme’ file included in the

mapping library source directory. After the library has been compiled, its

location can be specified by changing the LIBAMAP_XXX variables in

’Rules.make’. The BOOST_XXX variables in ’Rules.make’ should be changed

to match the values used for compiling the mapping library. The ’pkg-config’

utility is used to locate the gnome development libraries.

The location where the application data files reside can be changed using the

DATADIR and MODULEDIR variables inside ’Rules.make’. The DATADIR variable

points to the directory where the glade files and helps files reside. This is

the ’resources’ directory in the program source directory. The MODULEDIR

variable points to the base directory where *.mod files are stored. Relative

paths used by project files are based on this variable.

To compile the mapping tool type: make all

If the mapping library has been compiled in debug mode, it will generate debug

files in exactly the same manor as the mapping algorithm testbench. In

addition when the mapping frontend is compiled in debug mode an ’input.dot’

file is generated which allows you to view the graph used as the input to the

library. When running in debug mode you may find it helpful to copy some of

the scripts from the ’testing’ directory from the mapping library source

directory.

***** Batch Mode Testing *****

Batch mode is designed to optimize applications over many trials using various

parameters. To help with this, a collection of scripts and example projects

can be found in the ’testing’ directory. To get started, simply type ’make’ in

the ’testing’ directory which will list some basic operations. The only

requirement when executing the program from the makefile, is that an

’input.proj’ file exist in the same directory as the makefile, or where the

program will be executed. The requirements for this project file are the same

as those required by graphical mode (primarily setting the input/output).

212 APPENDIX B. README - ASAP MAPPING TOOL

To create this input project file use graphical mode or symlink to one of the

files in the ’projects’ directory. Next run ’make execute’ to generate the

output module file called ’output.mod’. The output module can be viewed by

either importing the module in graphical mode, or by running ’make analyze’.

When viewing modules from the command-line, module view mode is used for

displaying the array contents. There is one hidden option inside the makefile,

that is the random seed value. This can be changed by either modifying the

makefile and changing the value of SEED, or by appending ’SEED=val’ when

calling ’make execute’.

Below is a quick example of how to execute batch mode:

1. ln -s projects/wireless.proj input.proj

2. make execute analyze SEED=123

The ’batch.sh’ script can be used to run a number of consecutive trials which

varies the random seed over a given range. This script by default tries the

range from 0 to 10, but this can be changed using the first two command-line

arguments. The ’ASAPMAP_ARGS’ variable inside the script can be modified to

set the static mapping parameters. Resulting modules will be saved in the

batch directory as they are created, as well as any log files. The batch

script will display some simple statistics about each execution while it is

running.

The testing directory contains a number of helper scripts and other

miscellaneous files. Below is a brief explanation of each file:

Makefile - contains various batch mode execution targets

batch/* - results from consecutive trials are placed here

batch-ex/* - results from batch mode exclusion are placed here

projects/*.proj - a collection of various example project files

projects/*-data.proj - a collection of project files using annotations

scripts/batch-ex1.sh - shell script for sequential excluded coordinates

scripts/batch-exN.sh - shell script for lists of excluded coordinates

scripts/batch.sh - shell script for running consecutive trials

scripts/ex1plot.py - python script for plotting single exclusion data

scripts/excludechg.py - python script to change excluded coordinates

scripts/findbest.pl - perl script to find the lowest cost module

scripts/genproject.py - python script for creating random project files

scripts/genrandex.pl - perl script to generate excluded coordinate files

scripts/getperform.py - python script to calculate throughput and power

scripts/getprofile.pl - perl script to extract runtime information

scripts/getsummary.pl - perl script to extract mean and base values

scripts/profile.plot - gnuplot script for plotting runtime information

scripts/summary.plot - gnuplot script for plotting mean and base values

scripts/usercost.data - user cost function array data file

***** Changing the Architecture *****

One of the primary operations of the mapping tool is to move processors while

maintaining connections. This is done by changing port indexes. At the very

core of the mapping tool is the module structure it’s array of processor

structures and each processor’s many port structures. These data types are all

213

defined in ’types.h’, as well as many other types used by the interface. Any

changes to the architecture must follow the assumptions that all ports are

point-to-point connections, the project has exactly one input and one output,

and there are no self-loops or parallel-edges, in order to be mapped.

As expected, processor ports are very important to the core operation of the

entire mapping process. Each processor has a set number of input and output

ports defined by NUM_PORTS. This value comes from the number of items in the

port direction mapping enumeration. Each enumeration entry corresponds to a

character in the mask attribute. When loading an XML file these mask

characters are converted to indexes to determine which ports are being

connected together. When translating module files after mapping, these indexes

are converted back to characters to update the mask attributes. Port index

related functions are found in ’utility.c’, which are what specifies the

architecture being mapped. These functions include finding the port for an

adjacent processor, finding the best port between two processor locations, and

others. These indexes are also used to draw the connecting arrows between

processors in the array. For the AsAP architecture the rule is that cardinal

ports are nearest neighbor and the direction ports are non-nearest neighbor.

Port indexes determine the communication between processors, but routers

determine the mapping flexibility of the architecture. An important step of

the mapping process is the insertion of routing processors. These routing

processors are loaded from the module files in ’MODULEDIR/routers’. The

one-way router is loaded from ’oneway.mod’ and the two-way router is loaded

from ’twoway.mod’. To change the code inside these routing processors, for

example to add buffering, simply change or replace the module files at these

locations. The one-way routing module must have exactly one processor, one

input, and one output. The two-way routing module must have exactly one

processor, two inputs, and two outputs.

***** Libraries *****

The following libraries are used in various parts of the mapping tool.

=> GTK+

Description: library for creating graphical user interfaces

Reference: http://developer.gnome.org/doc/API/2.0/gtk/index.html

Version 2.x

Usage:

This library is used for creating the graphical user interface using

various widgets from the library to handle user input and output. These

widgets include windows, menus, buttons, lists, labels, etc. A related

sub-library, glib, is used for directory manipulation, string manipulation,

and managing linked-lists.

=> LibGnomeUI

Description: library of functions typically required for applications

Reference: http://developer.gnome.org/doc/API/2.0/libgnomeui/index.html

Version: 2.x

Usage:

This library is used for the module icon list, the about box, and setting

the window title among other things. This library is built on top of

214 APPENDIX B. README - ASAP MAPPING TOOL

the GTK+ library and its widgets.

=> LibGnomeCanvas

Description: an object-oriented, event driven canvas widget

Reference: http://developer.gnome.org/doc/API/2.0/libgnomecanvas/index.html

Version: 2.x

Usage:

This library is the core of the interactive canvas that displays the

modules. It provides basic drawing elements that can be attached to

event handlers when clicked, or otherwise manipulated with the mouse or

keyboard. This library is built on top of various gnome libraries.

=> LibGlade

Description: loader for glade XML user interface resource files

Reference: http://developer.gnome.org/doc/API/2.0/libglade/index.html

Version: 2.x

Usage:

This library is used to load interface files designed by the glade tool.

All complex windows in the program are described inside these XML files

and are created automatically based on how they were configured in the

glade file. Glade files can change the program’s appearance without

recompiling the code.

=> LibXML

Description: library for working with XML files

Reference: http://xmlsoft.org/html/libxml-lib.html

Version: 2.x

Usage:

This library is used to load, store, and manipulate module and project XML

files. In this program the document object model (DOM) is used for

reading and writing XML files. XPath, a libxml component, is used for

easily traversing the DOM tree and finding certain elements.

***** Tools *****

The following tools are used to create resources used by the mapping tool.

=> Glade

Description: WYSIWYG tool for designing GTK-based interfaces

Website: http://glade.gnome.org/

Version: 2.x

Usage:

This tool was used to create the user interface for various parts of the

program. The output is an XML file containing an arrangement of GTK

widgets and properties which is used to dynamically create the interface

during program execution. One advantage is that the interface can be

changed without re-compiling the code.

=> Inkscape

Description: vector-based drawing program

Website: http://www.inkscape.org/

Usage:

This program was used to create the module icons as well as the application

215

icon. This program works directly with SVG files and can export to PNG

format.

=> DocBook

Description: a flexible XML/SGML language for writing documentation

Website: http://www.docbook.org/

Usage:

This is the format used for creating the help file, which is compatible

with the gnome help viewer (yelp). DocBook can be also converted to HTML,

LaTeX, and a number of other formats using OpenJade and other tools. The

docbook2html tool is used to create HTML help files.

216 APPENDIX B. README - ASAP MAPPING TOOL

217

Glossary

AsAP :

Acronym for Asynchronous Array of Simple Processors. A 2D-mesh parallel array architecture

designed for power efficiency while executing computationally intensive applications.

AsAP Version 1 :

This is the first implementation of the AsAP architecture which has 36 processing elements

arranged in a 6x6 array with one input in the upper-left corner and one output which can be

any one of the right edge processors. This version of the architecture uses nearest neighbor

communication exclusively.

AsAP Version 2 :

This is the second implementation of the AsAP architecture which has an array of size 13x13

with a few of the lower processors replaced by hardware-based accelerators. For this work the

array is assumed to be homogeneous with a size of 16x16. This version of the architecture

introduces a routing overlay network and also allows the input processor to be any one of the

left edge processors.

Base Number of Long-Distance Interconnects :

Only valid for tests involving Excluded Processors. This is the Minimum Number of

Long-Distance Interconnects when no processors are excluded.

Base Number of Routing Processors :

Only valid for tests involving Excluded Processors. This is the Minimum Number of

Routing Processors when no processors are excluded.

Base Rectangular Array Area :

Only valid for tests involving Excluded Processors. This is the Minimum Rectangular

Array Area when no processors are excluded.

218 APPENDIX B. README - ASAP MAPPING TOOL

Configuration Cost :

The result from the ConfigCost function, from the placement phase of the mapping algorithm,

which calculates the cost associated with a particular simulated annealing configuration. This

value is used to determine if one configuration is better than another when deciding whether

or not to accept a perturbation.

Configuration Parameters :

A collection of values, packed into one data structure, that controls what components of the

mapping algorithm get executed and how the application is optimized.

Critical Processor :

This is a processor within the target array where the maximum frequency is greater than or

equal to the maximum frequency of all other processors and the leakage current is less than

or equal to the leakage current of all other processors.

Critical Task :

This is a task within the application where the load average is greater than or equal to the

load average of all other tasks and the activity level is greater than or equal to the activity

level of all other tasks.

Current Configuration Cost :

Valid only during the placement phase of the mapping algorithm. The Configuration Cost

for the configuration currently being perturbed at intermediate points of the placement phase.

Dataflow Graph :

A series of edges and vertices that describe the structure of an application. Vertices represent

tasks within the application and edges represent dependencies between tasks.

Enclosed Array Area :

The Rectangular Array Area for a mapping ignoring processors near the perimeter which

are not enclosed by the mapping. Any empty location with less than three neighboring tasks

that is not completely surrounded by tasks is ignored.

Excluded Processor :

Sometimes called an Excluded Location. A processor at a predefined location within the

target array which is not allowed to have a task assigned to it.

219

Long-Distance Interconnects :

Sometimes called a Routing Channel. A connection between two tasks which are not nearest

neighbors that couldn’t be routed during the routing phase due to conflicts (or if the routing

phase was disabled).

Mean Number of Long-Distance Interconnects :

Only valid for tests involving Excluded Processors. The average of theMinimum Number

of Long-Distance Interconnects for each set of Excluded Processors.

Mean Number of Routing Processors :

Only valid for tests involving Excluded Processors. The average of theMinimum Number

of Routing Processors for each set of Excluded Processors.

Mean Rectangular Array Area :

Only valid for tests involving Excluded Processors. The average of the Minimum Rect-

angular Array Area for each set of Excluded Processors.

Minimum Configuration Cost :

Valid only during the placement phase of the mapping algorithm. The lowest Configuration

Cost that has been observed since the beginning of the placement phase.

Minimum Number of Long-Distance Interconnects :

This is the lowest number of Long-Distance Interconnects observed after running a number

of trials on an application using the same configuration parameters and Excluded Processors.

Minimum Number of Routing Processors :

This is the lowest number of Routing Processors observed after running a number of trials

on an application using the same configuration parameters and Excluded Processors.

Minimum Rectangular Array Area :

This is the lowest Rectangular Array Area observed after running a number of trials on an

application using the same configuration parameters and Excluded Processors.

Optimal Rectangular Array Area :

This is the smallest Rectangular Array Area that will fit every node in the graph, excluding

routing processors and ignoring data dependencies. This value is calculated by Equations 5.1,

5.2, and 5.3 on page 81.

220 APPENDIX B. README - ASAP MAPPING TOOL

Optimization Cost :

A numerical value, calculated by Equation 5.4 on page 84, that combines the various quality

metrics, communication, array area, and utilization. This value is used to quickly compare the

quality between different mappings.

Parameter, AddSpacing :

This parameter will enable or disable the spacing flag. When enabled empty space will be

inserted at the beginning of the routing phase if the spacing threshold is exceeded.

Parameter, ExpandType :

This parameter controls which type of expansion is used by the initial placement function.

When using vertical expansion processors are placed top to bottom first then left to right.

When using horizontal expansion processors are placed left to right first then top to bottom.

Parameter, InputEdge :

This parameter determines which edge to use when assigning the array input task to a pro-

cessor. Possible values for this parameter are Left, Right, Top, Bottom, or None.

Parameter, MaxRoutes :

This parameter determines the maximum number of routes that are allowed to pass through

a single Routing Processor. For AsAP this value can be no greater than two.

Parameter, NumIters :

This parameter determines the number of temperature schedules to execute during the place-

ment phase.

Parameter, OutputEdge :

This parameter determines which edge to use when assigning the array output task to a

processor. Possible values for this parameter are Left, Right, Top, Bottom, or None.

Parameter, QuickPlace :

This parameter will enable or disable the estimation flag. When enabled the placement phase

will terminate early when there appears to be little chance of improvement.

Parameter, SpaceThreshold :

This parameter determines whether or not space needs to be inserted. The threshold is the

ratio of the number of edges to the number of vertices expressed as a percentage. When the

result is above this threshold space will be inserted if enabled.

221

Parameter, UseRouting :

This parameter will enable or disable the routing flag. When disabled router insertion paths

will not be calculated during the placement phase and the routing phase will be skipped.

Rectangular Array Area :

The product of the array width and the array height for a given mapping.

Routing Processors :

Sometimes called a Router. A task or vertex added to the dataflow graph whose sole purpose

is to route data between adjacent vertices.

Trial :

One complete execution of the mapping algorithm which produces one possible mapping for an

application. Trials are usually executed in blocks using the same Configuration Parameters

but different random seeds.

222 APPENDIX B. README - ASAP MAPPING TOOL

223

Bibliography

[1] Boost C++ libraries. http://www.boost.org.

[2] GNOME: The free desktop project. http://www.gnome.org.

[3] Gnomelove Drag-N-Drop tutorial. http://live.gnome.org/GnomeLove/DragNDropTutorial.

[4] Anant Agarwal. Raw computation. Scientific American, pages 44–47, Aug 1999.

[5] Ishfaq Ahmad, Yu-Kwong Kwok, Min-You Wu, and Wei Shu. CASCH: A tool for computer-
aided scheduling. IEEE Concurrency, 8(4):21–33, Oct 2000.

[6] Ryan W. Apperson. A dual-clock FIFO for the reliable transfer of high-throughput data between
unrelated clock domains. Master’s thesis, University of California, Davis, Davis, CA, USA, Sep
2004.

[7] Bevan M. Baas. A parallel programmable energy-efficient architecture for computationally-
intensive DSP systems. In 37th Asilomar Conference on Signals, Systems and Computers, Nov
2003.

[8] Shekhar Borkar, Robert Cohn, George Cox, Sha Gleason, Thomas Gross, H. T. Kung, Monica
Lam, Brian Moore, Craig Peterson, John Pieper, Linda Rankin, P. S. Tseng, Jim Sutton, John
Urbanski, and John Webb. iWarp: An integrated solution to high-speed parallel computing. In
Supercomputing, volume 1, pages 330–339, Orlando, FL, USA, Nov 1988.

[9] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K. John, Calvin
Lin, Charles R. Moore, James Burrill, Robert G. McDonald, and William Yoder. Scaling to the
end of silicon with EDGE architectures. Computer Magazine, 37(7):44–55, Jul 2004.

[10] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford
University, Stanford, CA, USA, 1984.

[11] Tilera Corporation. The tile processor architecture: Embedded multicore for networking and
digital multimedia. In IEEE HotChips Symposium on High-Performance Chips 2007, Aug 2007.

[12] William Dally and Brian Towles. Principles and Practices of Interconnection Networks. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[13] Sabih H. Gerez. Algorithms for VLSI Design Automation. John Wiley & Sons, Inc., New York,
NY, USA, 1999.

[14] Michael I. Gordon. A stream-aware compiler for communication-exposed architectures. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, Aug 2002.

[15] Micheal I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli, Andrew A.
Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, and Saman Amarasinghe.
A stream compiler for communication-exposed architectures. In Architectural Support for Pro-
gramming Languages and Operating Systems, volume 10, pages 291–303, San Jose, CA, USA,
Oct 2002.

224 BIBLIOGRAPHY

[16] Jingcao Hu and Radu Marculescu. Energy-aware mapping for tile-based NoC architectures
under performance constraints. In Asia South Pacific Design Automation Conference, pages
233–239, Kitakyushu, Japan, Jan 2003.

[17] Ujval J. Kapasi, Peter Mattson, William J. Dally, John D. Owens, and Brian Towles. Stream
scheduling. In Proceedings of the 3rd Workshop on Media and Streaming Processors, pages
101–106, Austin, TX, USA, Dec 2001.

[18] Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Mattson, Jinyung Namkoong, John D.
Owens, Brian Towles, Andrew Chang, and Scott Rixner. Imagine: Media processing with
streams. IEEE Micro, 21(2):35–46, Mar 2001.

[19] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, May 1983.

[20] Francois Labonte, Peter Mattson, Ian Buck, Christos Kozyrakis, and Mark Horowitz. The
stream virtual machine. In 13th International Conference on Parallel Architectures and Com-

pilation Techniques, pages 267–277, Antibes Juan-les-Pins, France, Sep 2004.

[21] C. Y. Lee. An algorithm for path connections and its applications. volume EC-10, pages
346–365, Sep 1961.

[22] Guy G. Lemieux and Stephen D. Brown. A detailed routing algorithm for allocating wire
segments in field-programmable gate arrays. In ACM Physical Design Workshop, pages 215–
226, Lake Arrowhead, CA, USA, 1993.

[23] Virginia M. Lo, Sanjay Rajopadhye, Samik Gupta, David Keldsen, Moataz A. Mohamed, Bill
Nitzberg, Jan Arne Telle, and Xiaoxiong Zhong. OREGAMI: Tools for mapping parallel compu-
tations to parallel architectures. International Journal of Parallel Programming, 20(3):237–270,
1991.

[24] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark Horowitz. Smart
Memories: A modular reconfigurable architecture. In 27th Annual International Symposium on

Computer Architecture, pages 161–171, Vancouver, British Columbia, Canada, Jun 2000.

[25] Peter Mattson, William J. Dally, Scott Rixner, Ujval J. Kapasi, and John D. Owens. Com-
munication scheduling. In Proceedings of the Ninth International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 82–92, 2000.

[26] Michael J. Meeuwsen, Omar Sattari, and Bevan M. Baas. A full-rate software implementation
of an IEEE 802.11a compliant digital baseband transmitter. In IEEE Workshop on Signal

Processing Systems, volume 19, pages 297–301, Oct 2004.

[27] David R. O’Hallaron. The assign parallel program generator. In Distributed Memory Computing

Conference, pages 178–185, Portland, OR, USA, Apr 1991.

[28] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1989.

[29] Frank Rubin. The Lee path connection algorithm. IEEE Transactions on Computers, C-
23(9):907–914, Sep 1974.

[30] Madhu Saravana, Sibi Govindan, Doug Burger, Steve Keckler, and the TRIPS Team. TRIPS:
A distributed explicit data graph execution (EDGE) microprocessor. In IEEE HotChips Sym-

posium on High-Performance Chips 2007, Aug 2007.

[31] K. Shahookar and P. Mazumder. VLSI cell placement techniques. ACM Computing Surveys,
23(2):143–220, Jun 1991.

BIBLIOGRAPHY 225

[32] Aaron Smith, Jon Gibson, Bertrand Maher, Nick Nethercote, Bill Yoder, Doug Burger,
Kathryn S. McKinley, and Jim Burrill. Compiling for EDGE architectures. In International

Symposium on Code Generation and Optimization, pages 185–195, New York, NY, USA, Mar
2006.

[33] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben Green-
wald, Henry Hoffman, Paul Johnson, Walter Lee, Arvind Saraf, Nathan Shnidman, Volker
Strumpen, Saman Amarasinghe, and Anant Agarwal. A 16-issue multiple-program-counter mi-
croprocessor with point-to-point scalar operand network. In IEEE International Solid-State

Circuits Conference, pages 170–171, San Francisco, CA, USA, Feb 2003.

[34] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269, Apr 1967.

[35] Min-YouWu and Daniel D. Gajski. Hypertool: A programming aid for message-passing systems.
IEEE Transactions on Parallel and Distributed Systems, 1(3):330–343, Jul 1990.

[36] Tao Yang and Apostolos Gerasoulis. PYRROS: Static task scheduling and code generation
for message passing multiprocessors. In International Conference on Supercomputing, pages
428–437, New York, NY, USA, Jul 1992.

[37] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai, Jeremy Webb, Eric
Work, Tinoosh Mohsenin, Mandeep Singh, and Bevan Baas. An asynchronous array of simple
processors for DSP applications. In IEEE International Solid-State Circuits Conference, pages
428–429, San Francisco, CA, USA, Feb 2006.

226 BIBLIOGRAPHY

