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Abstract

The design of motion estimation accelerator (ME ACC), a dedicated-purpose

processing element, for AsAP2 platform is presented. AsAP2 platform consists of a

2-dimensional array of processing elements with a small amount of data storage. By

its inherent nature, motion estimation is one of the most computationally intensive

tasks in video encoding, and it also requires a significant amount of memory resources.

The ME ACC provides 4 KB dual ported SRAM to support the memory resources

needed. It accelerates the motion estimation process by computing up to 16 absolute

differences in one clock cycle and minimizing memory access overhead. The highly

configurable ME ACC supports programmable motion estimation parameters and

search algorithms. The independently-clocked ME ACC is the fastest programmable

architecture ever fabricated (that we know of) for motion estimation, that operates

at a maximum frequency of 938 MHz and occupies 0.67 mm2 in 65 nm CMOS tech-

nology. Multiple search algorithms are run on five benchmark video sequences using

the ME ACC. It is shown that the ME ACC allows user to adapt search algorithm

and other motion estimation parameters depending on the video characteristics in

order to achieve the best trade off between the motion estimation quality and the

computational complexity.
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Chapter 1

Introduction

Video applications in various form factors ranging from (but not limited to) life-

size TV to cell phone and other mobile devices have become an integral part of the modern

life. These video applications have varying power budgets and video quality requirements.

Plugged-in devices such as TVs can support high quality, large form factor video experiences.

On the other hand, mobile devices have limited power budgets and at the same time have

smaller form factor displays. The future trend of video applications is to support higher

quality video experiences with reduced power budgets for longer battery life of the mobile

devices. Plugged-in devices are also experiencing tighter power budgets with larger form

factors and higher quality video requirements.

Digital video is a series of still digital images called frames which, when played

back at a rate of 15 to 60 frames per second, give an illusion of a motion picture. Thus,

thousands of frames are needed even for a short video clip. Video data in raw format

needs an enormous amount of storage. Hence, the video data is stored and delivered in a

compressed form and is decompressed at the time of playback. Neighboring frames are very

similar to each other. They typically differ only by small movements of objects observed

in a fraction of a second. Hence, a very good compression can be achieved by eliminating

redundancy between the neighboring frames. The motion estimation process detects the

movements of small regions of each frame and calculates motion vectors from one frame to

another and uses that information to eliminate redundancy.
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During the process of motion estimation, a frame to be compressed and a reference

frame are divided into many non-overlapping sections called micro-blocks. Each micro-block

from the frame to be compressed is then compared against micro-blocks in the reference

frame to find the best matching micro-block in the reference frame. The computing process

for motion estimation involves performing several simple arithmetic operations, such as

addition, subtraction, and absolute value calculation on integer data, to compute sum of

the absolute differences (SAD) between the pixel data of a micro-block from the current

frame and that of a micro-block from the reference frame.

Various types of hardware platforms have been built to perform the motion esti-

mation calculations. Application Specific Integrated Circuit (ASIC) implementations are

customized to yield high performance with a specific set of motion estimation parameters

and motion vector (MV) search algorithms. They provide little flexibility to adjust the

motion estimation parameters according to the video characteristics for increased power ef-

ficiency. Fully programmable implementations like micro-processors provide the flexibility

of MV search algorithms and other motion estimation parameters, however they can not

meet the high performance requirements without high power consumption. Multi-core array

platforms can support the high performance and can also achieve the high energy efficiency

by adapting the motion estimation parameters according to the video characteristics. How-

ever, individual processing elements of the multi-core platforms typically have very limited

local memory resources. The motion estimation process needs memory resources on the

order of a few kilo-bytes. A dedicated-purpose processing element on a multi-core platform

can address the diverse needs of the motion estimation process very efficiently. It can pro-

vide large memory resources, support the flexibility of programmable processors, achieve

the high throughput comparable to that provided by an ASIC, and also meet a low power

budget.

1.1 Project Goals

This work explores the design of a dedicated-purpose processing element for mo-

tion estimation, motion estimation accelerator (ME ACC), in an asynchronous array of
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simple processors, AsAP2. The AsAP2 is a multi-core platform with 164 homogeneous

processing elements [1]. Some of the key features of the AsAP2 platform are fully pro-

grammable processing elements with independent dynamic voltage and frequency scaling

[2], high throughput, low area, energy efficient inter-processing element network [3], and

three 16 KB on-chip shared memories [4].

The main requirements for the implementation of the ME ACC are the following:

• support throughput for 1080p video compression for up to 30 frames per second with a

micro-block size of 16x16 pixels by performing more than 13×106 SAD computations

per second,

• support trade-offs between low power budget and extensive MV search,

• support for any MV search algorithm,

• programmable parameters such as micro-block size and MV search window size,

• seamless interfacing with neighboring homogeneous processing elements on AsAP2,

and

• a low overhead Input/Output (IO) protocol to access the memory and the configura-

tion registers in the motion estimation accelerator.

1.2 Contributions

The main contributions of this work are the following:

• A hybrid architecture involving an array of simple processors and a motion estima-

tion accelerator, ME ACC, is developed to perform motion vector search with high

performance and high energy efficiency. The ME ACC is a highly programmable

dedicated-purpose processing element of an array of globally asynchronous locally

synchronous (GALS) simple processors. It has the same IO interface as that of the

other simple processing elements of the array of processors.
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• A complete micro-architecture of the ME ACC, including a simple but highly efficient

IO protocol, a high performance multi-bank memory unit, and a fully pipelined SAD

computation unit is designed. The micro-architecture is implemented in Register

Transfer Level (RTL) using Verilog HDL. Numerous tests are developed to validate

the RTL implementation.

• The ME ACC RTL implementation is synthesized to 65 nm CMOS technology at

938 MHz frequency. The ME ACC in the AsAP2 chip is successfully debugged and

brought up in silicon.

• Multiple benchmark MV search algorithms are implemented on the ME ACC. These

algorithms are run on multiple benchmark video sequences to evaluate the perfor-

mance and the merits of the programmable architecture of the ME ACC. With micro-

block size of 16x16 pixels, full search algorithm achieves significantly higher MV search

quality as compared to that achieved by diamond search. However, with micro-block

size of 16x16 pixels, diamond search algorithm runs ten times faster as compared to

full search algorithm. The programmable architecture of the ME ACC allows user to

achieve trade off between computational efforts required and the MV search quality.

It is shown that using diamond search algorithm with micro-block size of 8x8 pixels,

the ME ACC can perform MV search five times faster as compared to that using full

search algorithm with micro-block size of 16x16 pixels and achieve equal or better MV

search quality.

1.3 Overview

Chapter 2 introduces theory of digital video compression. Chapter 3 discusses the

details of the motion estimation process. Chapter 4 presents previous work done on efficient

implementations of motion estimation for H.264. In Chapter 5, the ME ACC architecture

is presented. Chapter 5 also discusses the performance analysis of the ME ACC. Chapter 6

presents the physical data of the ME ACC. Chapter 7 describes MATLAB model of the

ME ACC, me acc model. In Chapter 8, simulation results with various motion vector search
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algorithms on multiple benchmark video sequences are presented. Chapter 9 summarizes

the contributions of this work and outlines ideas for future work.
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Chapter 2

Digital Video Compression

This chapter presents an introduction to digital video compression. The overview

assumes familiarity with signal processing and video processing basics. Basic concepts and

methodologies of image processing can be found in any textbook on image processing, such

as Gonzalez and Woods [13]. For in-depth knowledge on digital video processing, several

textbooks, such as those by Tekalp [14] or Bovik [15], can be consulted. Textbooks on

advanced video coding standards, such as that by Richardson and Richardson [16], present

the latest standards such as MPEG-4 Visual [17] and H.264 [18].

2.1 Digital Video

The motion picture experience works on the phenomenon of persistence of vision

of the human eye. A sequence of still photographs, when shown to a viewer at a sufficiently

high frequency (15 to 60 frames per second), gives an illusion of watching a real movement.

Digital video is a sequence of images, each of which is a two-dimensional frame of

picture elements called pixels. Associated with each pixel are two values: luminance (luma)

and chrominance (chroma). Luminance is a value proportional to the pixel’s intensity.

Chrominance is a value that represents the color of the pixel. In the YCbCr format and

its variations (sometimes called as YUV), luminance is given by the Y component and

chrominance of the pixel is represented by the color difference components: Cb and Cr [16].

The pixel value can also be represented in other formats such as RGB, where three numerical
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values give the mixture of red, green and blue components of the color.

When an analog signal is digitized, it is quantized. Quantization is a process by

which a continuous range of values from an input signal is divided into non-overlapping

discrete ranges and each range is assigned a unique symbol. In a digital video signal, the

number of bits used to represent the unique symbols is called the pixel depth. Thus, digital

video can be characterized by a few variables:

• Frame rate: The number of frames displayed per second. The illusion of motion can

be experienced at a frame rate as low as 12 frames per second. Modern cinema uses

24 frames per second, Phase Alternating Line (PAL) television uses 25 frames per

second, and high-end high-definition television (HDTV) systems use 50 or 60 frames

per second. Digital cameras capture video data at 30 frames per second.

• Frame dimensions: The width and height of the image expressed in the number of

pixels. Digital video comparable to television requires dimensions of around 640x480

pixels, National Television System Committee (NTSC) standard-definition television

(SDTV) requires dimensions of 720x480 pixels, and HDTV 1080p requires dimensions

of 1920x1080 pixels.

• Pixel depth: The number of bits per pixel. Typically 16 or 24 bits are used per pixel.

2.2 Overview of Video Compression

Table 2.1 shows the number of bytes required to store raw video data for a video

playback at 30 frames per second with pixel depth of 3 bytes. A huge amount of memory

space will be required to store the raw video data even for a normal TV format playback

for an hour. And it will need equally large bandwidth for the transmission.

A solution to this problem is to store and transmit digital video data in compressed

format and decompress it at the time of playback. Fortunately, digital video data contains

a lot of redundancy. A very good compression ratio can be achieved by eliminating redun-

dancy in the raw digital video data. Redundancy exists within a frame as well as between

successive frames. For example, in a picture with blue sky, many neighboring pixels have the
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Table 2.1: Size of uncompressed video at 30 fps with pixel depth of 24 bits in gigabytes

Length 1080p 720p DVD Common
Intermediate
Format (CIF)

(1920x1080 pixels) (1280x720 pixels) (720x480 pixels) (352x288 pixels)
1 sec 0.19 0.08 0.03 0.01
1 min 11.20 4.98 1.87 0.82
1 hour 671.85 298.60 111.97 49.27
1000 671,846.40 298,598.40 111,974.40 49,268.74
hours

n

n-1

n

Motion
Estimation

Motion
Compensation

Intra
Prediction

FILTER

Transform
Coding

Quantization

REORDER

ENTROPY
ENCODE

Inverse
Quantization

Inverse
Transform
Coding

Network
Access
Layer

n

n

Figure 2.1: H.264 Video Encoder

same blue color (i.e., same or very similar pixel values). Between two consecutive frames of

a motion picture, few objects or parts of the objects move, but most of the objects and the

back-ground remain the same, and this data is repeated in the two frames. The compression

mechanism exploits such redundancies to minimize the size of memory space required to

store digital video while minimally impacting the perceived quality of the decompressed

video.

Figure 2.1 obtained from the textbook by Richardson and Richardson [16] depicts

the major steps in the latest video compression standard, H.264. Description of the terms

used in the Figure 2.1 is as follows.



CHAPTER 2. DIGITAL VIDEO COMPRESSION 9

• Fn: Frame number n. It denotes the current frame to be encoded.

• F’n-1: Previously encoded and then decoded frame number n − 1. It denotes the

reference frame.

• F’n: Reconstructed frame number n.

• Dn: Difference frame.

• D’n: Previously encoded and then decoded difference frame.

The following paragraphs briefly describe the major steps in the H.264 standard.

Please refer to the JVT-G050 standard specification [18] for details.

A video picture frame that is being encoded is called the current frame. A region

of a frame that is coded as a unit is called a micro-block.

In the first step, the current frame undergoes either intra-frame prediction or inter-

frame prediction. In intra-frame prediction, micro-blocks of the current frame are predicted

based on previously encoded micro-blocks of the current frame. In inter-frame prediction,

micro-blocks of the current frame are predicted from previously encoded frame(s), called

reference frame(s), using block-based inter-frame motion estimation and motion compen-

sation. In the process of block-based inter-frame motion estimation, a micro-block of the

current frame is compared against many micro-blocks in the reference frame to find the

best match. Displacement of a micro-block in the current frame with respect to the best

matching block in the reference frame is called a motion vector (MV). Inter-frame motion

estimation is followed by motion compensation, where the motion vectors (MVs) are applied

to the micro-blocks of the reference frame to construct a motion compensated frame. The

motion compensated frame is subtracted from the current frame to get a residual frame.

The process of inter-frame motion estimation is described in more details in Chapter 3.

Transform coding is applied to the micro-blocks of the residual frame to reduce

its entropy. The H.264 standard allows use of Hadamard transform or a Digital Cosine

Transform (DCT)-based transform. The transform coding relies on a premise that pixels

in an image exhibit a certain level of correlation with their neighboring pixels. These

correlations can be exploited to predict the value of a pixel from its respective neighbors.
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The transform coding converts the micro-block pixel information into the frequency domain

where pixel correlation information is captured in a DC coefficient and pixel difference

information is captured in AC coefficients. Because of the high correlation between the

pixels in a micro-block, the AC coefficients normally have very small values [19].

Transform coding is followed by quantization. Quantization works mainly on a

phenomenon that human eyes are more sensitive to lower frequencies compared to higher

frequencies. Each element in a transform coded image matrix is divided by a corresponding

element in a quantization matrix to throw away the least significant bits. The divisor value

from the quantization matrix is called the quantization step. The process of quantization is

irreversible and lossy. If a higher quantization step is used, fewer number of bits are required

for entropy encoding. However, image quality loss is higher with a higher quantization step.

The final step in the video compression process is entropy coding. In this step,

input symbols are encoded into a compressed bit stream. The input symbols may include

quantized transform coefficients, MVs, and other information. The H.264 standard specifies

Context Adaptive Variable Length Coding (CAVLC) and Context-based Adaptive Binary

Arithmetic Coding (CABAC).

Context Adaptive Variable Length Coding is a form of Variable Length Coding

(VLC). In variable length coding (VLC), the input symbols are mapped onto a series of

codewords with variable length. Each symbol maps to one unique codeword. More fre-

quently appearing (high probability) symbols are represented with short codewords and

less frequently appearing symbols are represented with longer codewords, thus achieving

data compression.

A disadvantage of the VLC is that, each input symbol representation needs an

integral number of bits. In arithmetic coding, the probability of a symbol is represented in

a fractional range over the total range of 0 to 1. Each time a symbol is encoded, the range

becomes progressively smaller. At the end of a finite sequence of input symbols, we get

the final fractional range. The input symbol sequence can be represented by any fractional

number within the final fractional range in the form of a fixed point number. Thus, a single

number is used to represent the sequence of input symbols, without having the constraint of

using an integral number of bits to represent each symbol. The arithmetic coding achieves



CHAPTER 2. DIGITAL VIDEO COMPRESSION 11

higher compression efficiency but at a much higher computational complexity.
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Chapter 3

Inter-frame Motion Estimation

As mentioned in Chapter 2, during the process of inter-frame motion estimation,

micro-blocks of the current frame are compared against the micro-blocks in the search

window in the reference frame to find the best match. Figure 3.1(a) depicts a conceptual

current frame with a current micro-block for motion estimation. Figure 3.1(b) shows the

best matching position in the reference frame for the current micro-block in the current

frame. Various block matching criteria, such as Sum of Absolute Difference (SAD), Mean

Square Difference (MSD), and Pel (pixel) Difference Classification (PDC) etc., can be used

to determine the best matching block. The best matching micro-block in the reference frame

is subtracted from the corresponding current micro-block to produce a residual micro-block.

The better the motion estimation, the lesser the entropy of the residual micro-

block and hence, better the compression efficiency. The quality of motion estimation, in

terms of the entropy of the residual micro-block, depends on various factors such as search

pattern used in the MV search algorithm, search window size, and micro-block size.

Of all the MV search algorithms, the full search algorithm is the most extensive one

and hence, it achieves the highest quality motion estimation in the given search window. In

the full search algorithm, a current micro-block from a current frame is compared against ev-

ery possible position in the search window in the corresponding reference frame. Hence, the

full search algorithm has the highest computational cost. Much research has been done and

is still going on regarding the optimal MV search algorithm that achieves higher quality mo-
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Figure 3.1: Current and reference frames with micro-block motion vector
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(b) Carphone Frame 1 (Reference Frame)

Figure 3.2: Carphone Current and reference frames

A small displacement of a tree can be seen between the two frames
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tion estimation with less computational complexity. The “four step search” algorithm [20]

and the “diamond search” algorithm [21] are examples of some of the relatively simple, very

efficient, and very widely used MV search algorithms. Zhibo Chen et al. proposed the “hy-

brid Unsymmetrical-cross Multi-Hexagon-grid Search” algorithm that efficiently performs

MV search on a large search window without getting trapped into a local minima [22].

“Foreman”, “News”, and “Carphone” are some of the well known video sequences
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(a) Current frame − reference frame
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(b) Residual frame with micro-block size 16x16
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(c) Residual frame with micro-block size 8x8
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(d) Residual frame with micro-block size 4x4

Figure 3.3: Carphone residual frames

More image details can be seen in the residual frame with micro-block size of 16x16 pixels as

compared to that in the residual frames with micro-block sizes of 8x8 pixels and 4x4 pixels.
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which are widely used in research on video compression. In a fast motion video sequence

such as “Foreman”, positional displacements of micro-blocks from the reference frame to the

current frame are larger than those in a slow motion video sequence such as “News”. Hence,

a larger search window is needed to find the high quality “best” matching block for a fast

motion video sequence as compared to that needed for a slow motion video sequence [23, 24].

S. Saponara and L. Fanucci have proposed a data-adaptive motion estimation algorithm,

where the search window size is varied according to the video characteristics [25].

Better motion estimation is achieved with smaller micro-block sizes. The H.264

standard supports seven different sizes of micro-blocks: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8,

and 4x4 pixels. Figure 3.2 shows two frames from “Carphone” video sequence. Figure 3.2(a)

is the reference frame used for motion estimation and Figure 3.2(b) is the current frame

being encoded. The residual frames obtained by performing motion estimation using full

search algorithm for the frame in Figure 3.2(b) are depicted in Figure 3.3. Figure 3.3(a)

shows the difference between the reference frame in Figure 3.2(a) and the current frame

in Figure 3.2(b). As can be seen from Figure 3.3(b), (c), and (d), the residual frames

obtained by motion estimation using micro-block size of 16x16 pixels have higher energy

than those obtained using micro-block size of 8x8 pixels and the residual frames obtained

using micro-block size of 4x4 pixels have the least energy.
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Chapter 4

Related Work

Recent implementations of motion estimators for modern video compression stan-

dards not only vary in terms of how much hardware and software are used but also in terms

of the peak performance supported in terms of frame size, frame rate, power consumption,

and Peak Signal to Noise Ratio (PSNR) quality of the decoded bit-stream. At one end

of the spectrum are the ASICs designed to perform full search block motion (FSBM) es-

timation for few or all of the 41 micro-block partitions supported by the H.264 standard.

The hardware architecture proposed by Pyen, S.M. [26] and the parameterizable hardware

architecture by Nuno Roma and Leonel Sousa [27] are the examples of ASICs for FSBM

estimation. These architectures exploit the highly regular data access pattern in the full

search algorithm and employ large processing power to achieve real time encoding.

At the other end of the spectrum, processors with special instruction sets, Ap-

plication Specific Instruction-set Processors (ASIP), have been investigated. Momcilovic,

Dias, Roma, and Sousa have designed an ASIP [28] that uses specialized instructions such

as SAD16 and on-chip memory. Nikos Bellas and Malcolm Dwyer have designed a pro-

grammable vector array processor [29] with an array of Processing Elements (PEs), an

on-chip memory, and a specialized instruction set.

Reconfigurable architectures also have been investigated for motion estimation.

The reconfigurable Very Large Scale Integration (VLSI) architecture proposed by Cao Wei

et al. [30] can switch between three levels of computing complexity to achieve trade off
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between motion estimation quality and power consumption. Liang Lu et al. proposed an

architecture that implements the full search algorithm on a reconfigurable array of PEs. The

PEs can be switched on or off as per the configuration in order to save the power and achieve

performance versus power trade-off. Miguel Ribeiro and Leonel Sousa implemented a run-

time reconfigurable architecture for motion estimation on a Xilinx Field-programmable Gate

Array (FPGA), that supports programmable MV search algorithms [31].

Another paradigm for motion estimator implementation is a programmable archi-

tecture which, unlike targeted ASIC implementation, supports more than one search algo-

rithms and other motion estimation parameters. Such an architecture generally uses much

less computing power than a FSBM ASIC implementation, achieves similar or slightly infe-

rior PSNR performance than a FSBM ASIC, and is much faster than a fully programmable

ASIP implementation. Examples of programmable architectures are Horng-Dar et al. pro-

posed architecture for hierarchical algorithms [32], generic motion estimation architecture

proposed by Zhong et al. [33], and a patent claimed by Bellas and Dwyer on programmable

motion estimation module with vector array unit [34]. Horng-Dar et al. implement sub-

sampled scan and cluster scan MV search algorithms as tree search algorithms [32]. One

dimensional (1-D) array of PEs is used in the generic motion estimator by Zhong et al., to

compute pixel Mean Absolute Difference (MAD) values at the search position specified by

the checking vector. Multiple 1-D arrays of PEs can be cascaded together to increase the

throughput of the motion estimator. The architecture proposed by Bellas and Dwyer [34]

uses an array of PEs, a cross-bar switch, an on-chip memory, and a micro-controller that ex-

ecutes motion estimation specific instruction set. Mike Butts from Ambric Inc. proposed a

H.264 motion estimation implementation on a Massively Parallel Processor Array (MPPA)

using 322 processing objects and 188 memory objects [35].

Although this work, Motion Estimation Accelerator (ME ACC), is also a pro-

grammable architecture, it is designed with generic motion estimation in mind rather than

any specific video compression standard and it has inherent properties that distinguish itself

from the mentioned programmable architectures. The details of the ME ACC architecture

are discussed in the next several chapters.

The performance of motion estimation in terms of final PSNR of the decoded bit-
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stream depends on many other parameters in addition to the absolute processing power

(ability to perform N number of arithmetic/logic operations per second) of the motion

estimator implementations. Examples of such parameters are

• optimized MV search algorithms versus full search algorithm,

• number of reference frames used, and

• micro-block sizes supported.

The efficiency of a motion estimator implementation depends on its ability to

adapt one or more of these parameters according to the input video content. So, it is not

a very straight forward task to compare one implementation against the other. Table 4.1

presents a comparison of the implementations discussed in terms of physical data, motion

estimation parameters supported, and the peak performance achieved.

This work, ME ACC, supports the peak performance of 210 CIF frames per second.

It consumes 195 mW at the peak performance. The AsAP platform supports per-processor

dynamic voltage and frequency scaling [2]. The power consumption of the ME ACC and

the energy required per workload will reduce substantially at lower supply voltages.
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Chapter 5

ME ACC Architecture

The ME ACC is a programmable motion estimation accelerator module that sup-

ports a multitude of MV search algorithms. The ME ACC interfaces with neighboring

processing element, called AsAP, on the AsAP2 chip. Figure 5.1 shows the interface be-

tween the ME ACC and the neighboring AsAP elements.

Figure 5.2 illustrates constituent tasks in the MV search process. In the AsAP2

system, the task of SAD computation is performed by the ME ACC and the task of best

MV decision is handled by the controlling AsAP. Figure 5.3 indicates the distribution of the

tasks involved in the MV search process between the ME ACC and the controlling AsAP.

The ME ACC consists of six sub-modules:

1. Configuration Registers Unit,

2. Memory Unit to hold the pixel data,

3. IO Interface Unit that communicates with the neighboring AsAPs,

4. SAD computation unit,

5. Address Generation Unit, and

6. Finite-State-Machine (FSM) that acts as the central control unit.

The Memory Unit instantiates a Reference Frame Pixel Memory that holds search

window pixels from the Reference frame and a Current Frame Pixel Memory that holds
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Figure 5.1: Motion estimation accelerator interface with AsAP

a pixel micro-block from the current frame. The micro-block held in the Current Frame

Pixel Memory is referred to as Current Micro-block in the further discussion. The micro-

block in the Reference Frame Pixel Memory, against which the Current Micro-block is being

compared, is referred to as Reference Micro-block. Figure 5.4 shows the block diagram of

the ME ACC module.

Following sections describe the ME ACC sub-units in detail.

5.1 Configuration Registers

The Configuration Registers are defined in the Verilog file me registers.v

Table 5.1 through Table 5.11 describe the configuration registers of ME ACC in

detail. Table 5.12 lists all the configuration registers, the Reference Frame Pixel Memory,

and the Current Frame Pixel Memory, and their addresses. The configuration registers are

located at address from 0x8000 through 0x8556. The size of the Reference Frame Pixel

Memory is 4 KB. To keep the address decoding logic simple, the Reference Frame Pixel

Memory needs to be located at an offset that is a multiple of 4 K. Hence it is located at the

offset that is the next multiple of 4 K, i.e., 0x9000. The Reference Frame Pixel Memory

address ranges from 0x9000 to 0x9FFF. The Current Frame Pixel Memory size is 256 bytes.
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Figure 5.2: Motion vector search flow diagram
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5. Start MV search by setting ME_START = 1
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Pattern
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12. Increment idx.

13. Loop back to 7

Figure 5.3: ME ACC setup and best MV decision

Controlling processor sets up the ME ACC to perform SAD computations by programming various

registers and controls the ME ACC to start, continue or stop the MV search by making the best

MV decision based on the SAD value reported by the ME ACC. The ME ACC performs SAD

computation at the given search position and increments the search position index.
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Figure 5.4: Motion estimation accelerator block diagram

Table 5.1: Address: 0x8002, Register: BLK SZ X

Bit field Field name Description Valid values

4:0 BLK SZ X Micro-block width 4, 8, 16
in terms of no. of pixels

15:5 Unused

It is located from address 0xA000 to 0xA0FF.

The usage of these registers is described in further sections.

5.1.1 Micro-block Size

Registers BLK SZ X and BLK SZ Y hold the micro-block horizontal and vertical

dimensions respectively in terms of number of pixels. With the current implementation,

only three values are valid for micro-block dimensions. To maintain the simplicity of user

programming, these registers do not use encoded values. Table 5.1 describes the register

BLK SZ X and Table 5.2 describes the register BLK SZ Y.
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Table 5.2: Address: 0x8004, Register: BLK SZ Y

Bit field Field name Description Valid values

4:0 BLK SZ Y Micro-block height 4, 8, 16
in terms of no. of pixels

15:5 Unused

5.1.2 Current Micro-block Top-Left Corner Pixel Coordinates

Register CENTER XY specifies the Reference Frame Pixel Memory column and

row numbers that correspond to the top-left corner of the Current Micro-block. The register

CENTER XY is described in Table 5.3.

Often times, the neighboring micro-blocks of a current frame have the same or

very similar MVs. Registers MVPRED X and MVPRED Y can be programmed with MV

of the previous micro-block to increase the performance of the MV search process. The reg-

ister MVPRED X is added to the register field CENTER X to get predicted center x. The

register MVPRED Y is added to the register field CENTER Y to get predicted center y.

The predicted center x and the predicted center y are added to the search position coor-

dinates SRCH PTRN n X[i] and SRCH PTRN n Y[i] respectively to get the micro-block

position for MV search. The register MVPRED X is described in Table 5.4 and the register

MVPRED Y is described in Table 5.5.

5.1.3 Search Pattern Definitions

The ME ACC supports four programmable search patterns. Each pattern can have

up to 64 search positions. A search position is specified by a set of 2 registers, x-coordinate

register SRCH PTRN n X[i] and y-coordinate register SRCH PTRN n Y[i], where n indi-

cates the search pattern number and i gives the index of the search position in the selected

search pattern.

Table 5.6 lists the x-coordinate registers for the four search patterns. The 6 bits

field, SRCH PTRN X, in each of these registers holds a x-coordinate value for a search posi-

tion. This value is added to the predicted center x to get the Reference Frame Pixel Memory

column index for the corresponding search position. Valid values for the SRCH PTRN X
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Table 5.3: Address: 0x8552, Register: CENTER XY

Bit field Field name Description Valid values

5:0 CENTER X Pixel column number of the 0 to 63
Reference Frame Pixel Memory
that corresponds with the Current
Micro-block’s top-left
pixel column in the current frame

7:6 Unused
13:8 CENTER Y Pixel row number of the 0 to 63

Reference Frame Pixel Memory
that corresponds with the Current
Micro-block’s top-left
pixel row in the current frame

15:14 Unused

Table 5.4: Address: 0x8010, Register: MVPRED X

Bit field Field name Description Valid values

5:0 MVPRED X X-axis motion vector predictor −32 to +31.
This offset is added to CENTER X 2’s complement
to get the predicted center x in the
reference frame search window

15:6 Unused

Table 5.5: Address: 0x8020, Register: MVPRED Y

Bit field Field name Description Valid values

5:0 MVPRED Y Y-axis motion vector predictor −32 to +31,
This offset is added to CENTER Y 2’s complement
to get the predicted center y in the
reference frame search window

15:6 Unused
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Table 5.6: Search pattern x-coordinate registers

Address Register Register Bit Field name
range set name set size field

0x8100- SRCH PTRN 0 X 64 5:0 SRCH PTRN X
0x813F 15:6 Unused
0x8140- SRCH PTRN 1 X 64 5:0 SRCH PTRN X
0x817F 15:6 Unused
0x8180- SRCH PTRN 2 X 64 5:0 SRCH PTRN X
0x81BF 15:6 Unused
0x81C0- SRCH PTRN 3 X 64 5:0 SRCH PTRN X
0x81FF 15:6 Unused

Table 5.7: Search pattern y-coordinate registers

Address Register Register Bit Field name
range set name set size field

0x8300- SRCH PTRN 0 Y 64 5:0 SRCH PTRN Y
0x833F 15:6 Unused
0x8340- SRCH PTRN 1 Y 64 5:0 SRCH PTRN Y
0x837F 15:6 Unused
0x8380- SRCH PTRN 2 Y 64 5:0 SRCH PTRN Y
0x83BF 15:6 Unused
0x83C0- SRCH PTRN 3 Y 64 5:0 SRCH PTRN Y
0x83FF 15:6 Unused

field range from -32 to +31, represented in 2’s complement form.

Table 5.7 lists the y-coordinate registers for the four search patterns. The 6 bits

field, SRCH PTRN Y, in each of these registers holds a y-coordinate value for a search posi-

tion. This value is added to the predicted center y to get the Reference Frame Pixel Memory

row index for the corresponding search position. Valid values for the SRCH PTRN Y field

range from -32 to +31, represented in 2’s complement form.

5.1.4 Search Pattern Selection

One of the four search patterns is selected by register SRCH PTRN CNT. Table 5.8

gives the bit field description of the register SRCH PTRN CNT.
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Table 5.8: Address: 0x8540, Register: SRCH PTRN CNT

Bit Field Field name Description Valid values

2:0 SRCH PTRN CNT Selects one of the 4 search patterns. 0, 1, 2, 3
15:3 Unused

Table 5.9: Address: 0x8550, Register : START ME

Bit Field Field name Description Valid values

0 START ME If START ME = “1” 1, 0
Start SAD computation at the
search position given by SRCH PTRN n X[0],
SRCH PTRN n Y[0], where n is
given by SRCH PTRN CNT.
If START ME = “0”
Unused

15:1 Unused

5.1.5 ME ACC Control Registers

Three registers, START ME, CONT ME, and ABNDN ME, are provided to con-

trol the operation of the ME ACC. Table 5.9 describes the register START ME, Table 5.10

describes the register CONT ME, and Table 5.11 describes the register ABNDN ME.

Table 5.10: Address: 0x8554, Register: CONT ME

Bit Field Field name Description Valid values

0 CONT ME If CONT ME = “1” 1, 0
Increment the search position index
to the selected SRCH PTRN
and continue the SAD computation.
If CONT ME = “0”
Unused

15:1 Unused
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Table 5.11: Address: 0x8556, Register: ABNDN ME

Bit Field Field name Description Valid values

0 ABNDN ME If ABNDN ME = “1” 1, 0
Reset the search position index
to 0 and terminate the SAD computation.
If ABNDN ME = “0”
Unused

15:1 Unused
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Table 5.12: Register List. The Configuration registers

range from address 0x8000 to address 0x8556, Reference

Frame Pixel Memory ranges from address 0x9000 to address

0x9FFF, and Current Frame Pixel Memory ranges from ad-

dress 0xA000 to address 0xA0FF.

Address Name

0x8000 Unused

0x8002 BLK SZ X

0x8004 BLK SZ Y

0x8006-0x800F Unused

0x8010 MVPRED X

0x8012-0x801F Unused

0x8020 MVPRED Y

0x8022-0x80FF Unused

0x8100-0x813F SRCH PTRN 0 X [0:63]

0x8140-0x817F SRCH PTRN 1 X [0:63]

0x8180-0x81BF SRCH PTRN 2 X [0:63]

0x81C0-0x81FF SRCH PTRN 3 X [0:63]

0x8200-0x82FF Unused

0x8300-0x833F SRCH PTRN 0 Y [0:63]

0x8340-0x837F SRCH PTRN 1 Y [0:63]

0x8380-0x83BF SRCH PTRN 2 Y [0:63]

0x83C0-0x83FF SRCH PTRN 3 Y [0:63]

0x8400-0x843F Unused

0x8540 SRCH PTRN CNT
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Table 5.12: Register List. The Configuration registers

range from address 0x8000 to address 0x8556, Reference

Frame Pixel Memory ranges from address 0x9000 to address

0x9FFF, and Current Frame Pixel Memory ranges from ad-

dress 0xA000 to address 0xA0FF.

Address Name

0x8542-0x854F Unused

0x8550 START ME

0x8552 CENTER XY

0x8554 CONT ME

0x8556 ABNDN ME

0x9000-0x9FFF Reference Frame Pixel Memory

0xA000-0xA0FF Current Frame Pixel Memory
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5.2 Memory Unit

The Memory Unit instantiates Reference Frame Pixel Memory and Current Frame

Pixel Memory. This module is implemented in the Verilog file me mem.v

The Reference Frame Pixel Memory comprises 8 banks, refblk bnk[i], where i, the

Bank Index, ranges from 0 to 7. Each bank is a dual-ported, 64 bits wide, and 64 rows

(memory locations) deep SRAM. Each refblk bnk[i] holds 8 pixel columns (i × 8) through

((i × 8) + 7) of the search window. In this design, a pixel is a 8 bits value. Hence, each

row (memory location) in a given bank holds 8 consecutive pixels in a row of the reference

frame.

The Current Frame Pixel Memory comprises 2 banks, orgblk bnk[i], where i, the

Bank Index, ranges from 0 to 1. Each bank is a dual-ported, 64 bits wide, and 16 rows

(memory locations) deep SRAM. Each orgblk bnk[i], holds 8 pixel columns (i× 8) through

((i × 8) + 7). Each row (memory location) in a given bank holds 8 consecutive pixels in a

row of the current frame.

Figure 5.5 shows logical and physical addressing of the Reference Frame Pixel

Memory. Physical address of a byte or a pixel, Ref Mem Byte Addr , in the Reference

Frame Pixel Memory is given by Equation 5.1.

Ref Mem Byte Addr = 0x9000 + (i × 512) + (j × 8) + k (5.1)

, where i is the Bank Index, j is the Row Index, and k is the Byte Offset in the given

memory location.

Figure 5.6 shows logical and physical addressing of the Current Frame Pixel Mem-

ory. Physical address of a byte or a pixel, Curr Mem Byte Addr , in the Current Frame

Pixel Memory is given by Equation 5.2.

Curr Mem Byte Addr = 0xA000 + (i × 64) + (j × 8) + k (5.2)

, where i is the Bank Index, j is the Row Index, and k is the Byte Offset in the given

memory location.

The IO Interface of the ME ACC is 16 bits wide. Hence, the Reference Frame

Pixel Memory and the Current Frame Pixel Memory can be accessed only on the 16-bits or
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Figure 5.6: Current frame pixel memory addressing

2-bytes boundary.

Table 5.13: Row-wise memory address auto-increment of reference frame pixel memory

Address bits 15:12 11:9 8:3 2:0
4’h9 Bank Index Row Index Byte Offset

The Reference Frame Pixel Memory and the Current Frame Pixel Memory can

be accessed in either row-wise or column-wise orientation by auto-incrementing the address

in row-wise or column-wise orientation, respectively. The Reference Frame Pixel Memory

index is 12 bits wide. It comprises a 3-bits Bank Index, a 6-bits Row Index, and a 3-bits Byte

Offset. Table 5.13 shows the row-wise memory addressing and Table 5.14 shows the column-

wise memory addressing of the Reference Frame Pixel Memory. Index to the Current Frame

Pixel Memory is 8 bits wide. It comprises a 1-bit Bank Index, a 4-bits Row Index, and a

3-bits Byte Offset. Table 5.15 shows the row-wise memory addressing and Table 5.16 shows

Table 5.14: Column-wise memory address auto-increment of reference frame pixel memory
Address bits 15:12 11:6 5:3 2:0

4’h9 Row Index Bank Index Byte Offset
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Table 5.15: Row-wise memory address auto-increment of current frame pixel memory

Address bits 15:8 7 6:3 2:0
8’hA0 Bank Index Row Index Byte Offset

Table 5.16: Column-wise memory address auto-increment of current frame pixel memory

Address bits 15:8 7:4 3 2:0
8’hA0 Row Index Bank Index Byte Offset

the column-wise memory addressing of the Current Frame Pixel Memory.

The only limitation on the memory access is that, the number of memory locations

accessed by every memory write transaction needs to be a multiple of 8 bytes, aligned on

8-bytes boundary. This limitation comes from the fact that, the memory banks used are 64

bits wide and memory addressing logic is kept simple in order to achieve higher throughput

under normal operating conditions. The memory access limitation however, should not

affect the performance of the MV search as the “cache line size” of the Host CPU’s cache

memory is generally a multiple of 8 bytes.

Following paragraphs describe the mapping of frame pixels in the Reference Frame

Pixel Memory and the Current Frame Pixel Memory.

Figure 5.7 shows a Current Frame with a Current Micro-block of size 16x16 pixels.

In this example, the pixel coordinates of the top-left corner of the Current Micro-block are

(48, 32). Figure 5.8 shows a reference frame with a search window of range Srch Rng X Min

to Srch Rng X Max and Srch Rng Y Min to Srch Rng Y Max, where

• Srch Rng X Min is the minimum value of the search range along X axis,

• Srch Rng X Max is the maximum value of the search range along X axis,

• Srch Rng Y Min is the minimum value of the search range along Y axis, and

• Srch Rng Y Max is the maximum value of the search range along Y axis.

In this example Srch Rng X Min = Srch Rng Y Min = −16 pixels, and

Srch Rng X Max = Srch Rng Y Max = +15 pixels. Figure 5.8 also depicts the micro-

block position corresponding to the Current Micro-block shown in Figure 5.7. The search
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Figure 5.9: Mapping of current micro-block in the current frame pixel memory

window size (Search Window Width × Search Window Height) is given by Equations 5.3

and 5.4.

Search Window Width = Srch Rng X Max − Srch Rng X Min

+ BLK SZ X + 1
(5.3)

, where Search Window Width is the search window width in terms of number of pixels

along the X axis.

Search Window Height = Srch Rng Y Max − Srch Rng Y Min

+ BLK SZ Y + 1
(5.4)

, where Search Window Height is the search window height in terms of number of pixels

along the Y axis.

Hence, in this example, the search window size is (48 × 48) pixels.

Figure 5.9 shows mapping of the Current Micro-block from the Figure 5.7 in the

Current Frame Pixel Memory. Figure 5.10 shows mapping of the search window from

the Figure 5.8 in the Reference Frame Pixel Memory. Unlike a sequential memory, the

Current Frame Pixel Memory and the Reference Frame Pixel Memory hold pixel data in
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two-dimensional arrays with pixel rows and columns corresponding to those in a picture

frame. Typically, pixel columns in a picture frame are numbered from left to right in

the increasing order. By convention, memory bytes are ordered from right to left in the

increasing order (i.e. least significant byte (LSB) at right and most significant byte (MSB)

at left). Hence, the pixel data in the Reference Frame Pixel Memory and the Current Frame

Pixel Memory appear like mirror images of pixel data in the corresponding picture frames

along the Y axis.

The Current Micro-block top-left pixel at (48, 32) in the Figure 5.7 corresponds

to the pixel at (0, 0) in the Current Frame Pixel Memory and the bottom-right corner pixel

at (63, 47) in the Figure 5.7 corresponds to the pixel at (15, 15) in the Current Frame Pixel

Memory, as shown in the Figure 5.9.

A given search window of size (Search Window Width × Search Window Height)

pixels can be loaded anywhere in the Reference Frame Pixel Memory in a contiguous memory

block of the same size as that of the search window. In this example, the search window

of size (48 × 48) pixels, shown in the Figure 5.8, is loaded at pixel rows 8 through 55

and pixel columns 8 through 55 in the Reference Frame Pixel Memory. Thus, the search

window top-left pixel at (32, 16) in the Figure 5.8 corresponds to pixel at (8, 8) in the

Reference Frame Pixel Memory, and the search window bottom-right pixel at (79, 63) in

the Figure 5.8 corresponds to pixel at (55, 55) in the Reference Frame Pixel Memory as

shown in the Figure 5.10.

The register CENTER XY gives the top-left corner coordinates of the micro-

block position corresponding to the Current Micro-block in the Reference Frame Pixel

Memory. The register fields CENTER X and CENTER Y are given by Equation 5.5 and

Equation 5.6 respectively.

CENTER X = Srch Win Top Left Pix Col − Srch Rng X Min (5.5)

, where Srch Win Top Left Pix Col is the column index of the pixel at the top-left corner

of the search window in the Reference Frame Pixel Memory.

CENTER Y = Srch Win Top Left Pix Row − Srch Rng Y Min (5.6)
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, where Srch Win Top Left Pix row is the row index of the pixel at the top-left corner of

the search window in the Reference Frame Pixel Memory.

Hence, in this example, pixel coordinates of the top-left corner of the micro-block

position corresponding to the Current Micro-block are (24, 24).

The search position coordinates, specified by a pair of registers SRCH PTRN n X[i]

and SRCH PTRN n Y[i], are relative to the pixel coordinates given by predicted center x

and predicted center y respectively. The Figure 5.10 shows four search positions: (-8, -8), (-

8, 8), (8, 8), and (8, -8). The coordinates of the pixel at a search position,

(SRCH PTRN n X[i], SRCH PTRN n Y[i]), in the Reference Frame Pixel Memory are

given by Equation 5.7 and Equation 5.8.

predicted center x = CENTER X + MVPRED X

Ref Mem Col = SRCH PTRN n X [i ] + predicted center x
(5.7)

, where Ref Mem Col is the column index of the pixel at the search position

(SRCH PTRN n X[i], SRCH PTRN n Y[i]) in the Reference Frame Pixel Memory

predicted center y = CENTER Y + MVPRED Y

Ref Mem Row = SRCH PTRN n Y [i ] + predicted center y
(5.8)

, where Ref Mem Row is the row index of the pixel at the search position

(SRCH PTRN n X[i], SRCH PTRN n Y[i]) in the Reference Frame Pixel Memory

In the above example MVPRED X = MVPRED Y = 0, and hence the Reference

Frame Pixel Memory coordinates at search position (-8, 8) are (16, 32).

Figure 5.11 shows the micro-block in the Reference Frame Pixel Memory at the

search position (-8, 8), Figure 5.12 shows the micro-block in the Reference Frame Pixel

Memory at the search position (8, 8), Figure 5.13 shows the micro-block in the Reference

Frame Pixel Memory at the search position (8, -8), and Figure 5.14 shows the micro-block

in the Reference Frame Pixel Memory at the search position (-8, -8).

The multi-bank organization of the memory offers two main advantages. The SAD

Computation Unit can access 16 pixels in a row with only one memory access to two banks

in parallel. In a normal sequential 64 bits wide memory, pixels are stored sequentially, one

double-word after another. In such an arrangement, minimum two and up to three memory
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Figure 5.11: Micro-block at search position (-8, 8)
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Figure 5.12: Micro-block at search position (8, 8)
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Figure 5.13: Micro-block at search position (8, -8)
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Figure 5.14: Micro-block at search position (-8, -8)
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accesses are required to access 16 consecutive pixels from a row. Another advantage is

that, the multi-bank organization of dual ported SRAM allows concurrent access to the

SRAM by both the neighboring AsAP and the SAD Computation Unit. Thus, it enables

us to exploit the task parallelism capability provided by the AsAP to minimize the memory

access time. The IO Interface Unit supports memory access while ME ACC is performing

the SAD computation.
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5.3 IO Interface Unit

The IO interface unit communicates with the neighboring AsAPs using 16 bits

wide DATA IN and DATA OUT buses.

This module is implemented in the Verilog file me regmem config.v

Table 5.17: ME ACC signal interface

Signal name I/O Description

DATA IN [15:0] Input Data input from AsAP.
DATA IN VLD Input DATA IN valid signal from AsAP.

This is an active high signal.
DATA IN REQ Output DATA IN request to AsAP.

This is an active high signal.
AsAP drives DATA IN VLD “1”
only when DATA IN REQ is “1”.

DATA OUT [15:0] Output Data output to AsAP.
DATA OUT REQ Input Data output request from AsAP.

This is an active high signal.
ME ACC drives DATA OUT VLD “1”
only when DATA OUT REQ is “1”.

DATA OUT VLD Output Data output valid signal to AsAP.
This is an active high signal.

CLK Input Clock Input.
RST Input Active low asynchronous reset input.

Table 5.17 summarizes the IO Interface signals. The neighboring AsAP drives IO

interface to access various registers in the Configuration Registers Unit and to access the

Reference Frame Pixel Memory and the Current Frame Pixel Memory in the Memory Unit.

Input Bus Protocol consists of two control words followed by address and data

words. Table 5.18 describes the fields of the Input Bus Protocol. Figure 5.15 illustrates the

write transaction to multiple consecutive memory locations in the Memory Unit. Table 5.19

gives an example of a sequence of data words to be driven on DATA IN bus in order to write

to 4 consecutive memory locations. Figure 5.16 illustrates the write transaction to multiple

registers with non-consecutive addresses in the Configuration Registers Unit. Table 5.20

gives an example of a sequence of data words to be driven on DATA IN bus in order to
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Figure 5.15: Multiple memory locations write transaction

write to 4 configuration registers.

The Input Bus Protocol is devised to minimize the number of clock cycles required

for programming the registers and loading the frame pixel memories. It allows the user to

program multiple discrete registers in a single transaction, thus minimizing the overhead

of transferring control words. For memory programming, only the address of the start

location and the number of locations need to be specified. This reduces the overhead of

specifying address for every location. The Input Bus Protocol also lets the user load the

Reference Frame Pixel Memory and the Current Frame Pixel Memory in either row-wise

or column-wise mode. This feature further reduces the overhead of specifying the address,

when only few columns in all the rows or few rows in all the columns need to be reloaded

to take advantage of memory-reuse.

The IO Interface unit returns two types of Output Responses on the Output Bus

to the neighboring AsAP using the Output Bus Protocol:

1. Response to SAD Compute Request. The SAD Compute Request is initiated by

• Writing “1” to START ME Register or

• Writing “1” to CONT ME Register

2. Response to Read Request
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Table 5.18: Input bus protocol bit field description

Word Bit field Description

Control Word 0 15 if Control Word 0 [15] = “1”
Start a transaction.
if Control Word 0 [15] = “0”
Ignore the data.

14 if Control Word 0 [14] = “1”
This is a read transaction.
if Control Word 0 [14] = “0”
This is a write transaction.

13:12 if Control Word 0 [13:12] = “01”
This is a register access transaction.
if Control Word 0 [13:12] = “10”
This is a row-wise memory access transaction,
where address auto-increment is done in
row-wise orientation.
if Control Word 0 [13:12] = “11”
This is a column-wise memory access transaction,
where address auto-increment is done in
column-wise orientation.
if Control Word 0 [13:12] = “00”
Unused

11:0 Number of registers or memory
locations to be accessed.

Control Word 1 15:0 if Control Word 0 [13] = “1”
Control Word 1 specifies
memory access start address.
if Control Word 0 [13] = “0”
Control Word 1 = 16’h0000.

Word 0 15:0 if Control Word 0 [13] = “1”
Word 0 specifies memory write data.
if Control Word 0 [13] = “0”
Word 0 specifies register address.

Word 1 15:0 if Control Word 0 [13] = “1”
Word 1 specifies memory write data for next location.
if Control Word 0 [13] = “0”
Word 1 specifies register write data.
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Table 5.19: Example of write to four consecutive memory locations

Word index Value Description

i 0xA004 Control Word 0
bit[15] = 1: Start a transaction
bit[14] = 0: Write transaction
bit[13:12] = 2’b10: Row-wise memory access
bit[11:0] = 12’h004: Number of memory locations
accessed is 4

i + 1 0x9100 Control Word 1
Memory access start address in the reference
frame pixel memory

i + 2 0x5577 2 bytes data to be written at word address 0x9100
i + 3 0xAABB 2 bytes data to be written at word address 0x9102
i + 4 0xCCDD 2 bytes data to be written at word address 0x9104
i + 5 0xEEFF 2 bytes data to be written at word address 0x9106

Figure 5.16: Multiple registers write transaction
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Table 5.20: Example of write to four registers

Word index Value Description

i 0x9004 Control Word 0
bit[15] = 1: Start a transaction
bit[14] = 0: Write transaction
bit[13:12] = 2’b01: Register access
bit[11:0] = 12’h004: Number of memory locations
accessed is 4

i + 1 0x0000 Control Word 1
i + 2 0x8002 Address of register BLK SZ X
i + 3 0x0010 Data to be written at register BLK SZ X
i + 4 0x8004 Address of register BLK SZ Y
i + 5 0x0010 Data to be written at register BLK SZ X
i + 6 0x8100 Address of register SRCH PTRN 0 X[0]
i + 7 0x0002 Data to be written at register SRCH PTRN 0 X[0]
i + 8 0x8300 Address of register SRCH PTRN 0 Y[0]
i + 9 0x0001 Data to be written at register SRCH PTRN 0 Y[0]

The Output Bus Protocol consists of one control word followed by one or more

data words. The bit-field description for the output response to a SAD Compute Request is

given in Table 5.21. Figure 5.17 illustrates the output response to a SAD Compute Request.

Table 5.22 describes bit-fields for the output response to Read Request. Figure 5.18 shows

the output response to a Read Request.

The ME ACC does not lock the IO Interface while performing SAD computation.

Hence, the neighboring AsAPs can perform the Memory/Register Write/Read accesses

safely, while ME ACC is performing SAD computation, as long as the accesses do not

conflict with the register/memory settings of the on-going best MV search. This feature

enables the neighboring AsAPs to achieve task parallelism by programming the ME ACC

for k + 1st current micro-block while the ME ACC is performing MV search for kth current

micro-block.
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Table 5.21: Bit field description for response to SAD compute request

Word name Bit field Value/ Description

Control Word 15:0 0x4000
Data Word 1 15:8 Search pattern index used for SAD compute request

7:0 Search position index within search pattern used
for SAD compute request

Data Word 2 15:0 SAD value

CLK

DATA_OUT_VLD
(from ME_ACC)

DATA_OUT [15:0]
(from ME_ACC)

Control
Word

(0x4000)
Data
Word 1

Data
Word 2

DATA_OUT_REQ
(to ME_ACC)

15:8 : Search Pattern Index used for SAD Compute Request
7:0 : Search Position Index Within Search Pattern used for SAD Compute Request

15:0 : SAD Value

Figure 5.17: Response to SAD compute request

Table 5.22: Bit field description for response to read request

Word name Bit field Value/ Description

Control Word 15:0 0x2000
Data Word 1 15:0 Memory or register read data
Data Word 2 15:0 Memory read data in case of

memory read request for more than
one memory location

Data Word 3 through N 15:0 Memory read data in case of
memory read request for N memory locations
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CLK

DATA_OUT_VLD
(from ME_ACC)

DATA_OUT [15:0]
(from ME_ACC)

Control
Word

(0x2000)
Data
Word 1

Data
Word 2

DATA_OUT_REQ
(to ME_ACC)

Figure 5.18: Response to read request

5.4 Address Generation Unit

The Address Generation Unit generates address to the Reference Frame Pixel

Memory for the SAD Computation Unit. This module is implemented in the Verilog

file me refblk adgen.v

The Address Generation Unit uses a set of configuration registers, CENTER Y,

MVPRED Y, BLK SZ Y, and SRCH PTRN n Y[i], to generate a row index to the Refer-

ence Frame Pixel Memory. The row index selects a pixel row from the available 64 pixel rows

in the 8 memory banks. Another set of configuration registers, CENTER X, MVPRED X,

BLK SZ X, and SRCH PTRN n X[i], is used to generate column indices to select 4, 8, or

16 pixels of data from the selected row.

The Pixel Multiplexer multiplexes the pixel data using the column indices gener-

ated by Address Generation Unit and passes it on to the SAD Computation Unit.

The Reference Frame Pixel Memory address decoding for IO interface is handled

in the Memory Unit.
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Figure 5.19: SAD computation pipe line

CRn: Current micro-block row n, RRn: Reference micro-block row n.

5.5 SAD Computation Unit

The SAD Computation Unit computes the sum of absolute differences between

the pixels of the Reference Micro-block and the pixels of the Current Micro-block. It is

implemented in the Verilog file me sad pipe.v.

The SAD Computation Unit receives up to sixteen pixels in a row from the Refer-

ence Frame Pixel Memory and an equal number of pixels in a row from the Current Frame

Pixel Memory every clock cycle, until all the rows in the Current Micro-block are traversed.

It uses seven stage pipeline as shown in Figure 5.19 to compute SAD between the pixels of

the Reference Micro-block and the pixels of the Current Micro-block. The SAD value is re-

turned after (Initial Latency+BLK SZ Y ) number of clock cycles, where Initial Latency

is the pipeline depth, 7. Tasks performed in each of the seven pipeline stages are described
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below.

1. Stage “CRn − RRn”: Up to 16 pixels of a given row (row index n) of the Reference

Micro-block are subtracted from the corresponding row pixels of the Current Micro-

block to generate up to 16 pixel differences, pix diff [i], where i = 0 to 15.

2. Stage “ABSRn”: Absolute pixel differences, abs diff [i], are generated from pix diff [i],

where i = 0 to 15 for a given row index n.

3. Stage “S2Rn”: Stages “S2Rn”, “S4Rn”, “S8Rn”, and “S16Rn” form the 4 stages of

the adder tree that combines up to 16 abs diff [i] values to generate “sum of absolute

differences” terms for a given row. In Stage S2Rn, pairs of abs diff [i] are combined

to generate up to 8 “sum of absolute differences” terms.

4. Stage “S4Rn”: Up to 8 “sum of absolute differences” terms, generated in the Stage

“S2Rn”, are combined to generate up to 4 “sum of absolute differences” terms.

5. Stage “S8Rn”: Up to 4 “sum of absolute differences” terms, generated in the Stage

“S4Rn”, are combined to generate up to 2 “sum of absolute differences” terms.

6. Stage “S16Rn”: Up to 2 “sum of absolute differences” terms, generated in the Stage

“S8Rn”, are combined to generate “sum of absolute differences” for the given row n.

7. Stage “SRn+1”: The “sum of absolute differences” term, generated in the Stage

“S16Rn”, for the row n + 1 is added to the accumulator, where the accumulator

is initialized with “sum of absolute differences” for row 0. The “sum of absolute

differences” terms for all the rows in the Current Micro-block are added together to

generate the SAD value at a given search position. The number of rows in the current

micro-block is given by the programmed value of the register BLK SZ Y.
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Figure 5.20: Motion estimation accelerator state machine

5.6 Control Unit

The Control Unit is implemented in Verilog file me fsm.v

The Control Unit of the ME ACC is a small state machine controlled by few

register inputs, such as START ME, CONT ME, and ABNDN ME, and a valid signal,

SAD VLD, from the SAD Computation Unit. When the register START ME is set to 1, the

ME ACC starts the best MV search by computing SAD at the search position given by the

registers SRCH PTRN n X [0] and SRCH PTRN n Y [0], where n is given by the register

SRCH PTRN CNT. When the SAD Computation Unit completes the SAD computation at

a given search position, it sets the SAD VLD signal to “1”. After receiving SAD VLD = 1,
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the Control Unit waits in State “S7”. If the Control Unit receives the register CONT SRCH

= “1”, the ME ACC continues with computing SAD after incrementing the index i to the

registers SRCH PTRN n X [i] and SRCH PTRN n Y [i]. If the Control Unit receives the

register ABNDN ME = “1”, the best MV search is terminated and the state machine

returns to the “S0” state. The state machine is depicted in Figure 5.20.

Tasks performed in each state and the state transitions are described below.

• State “S0” : This is the idle state. The state machine is initialized to state “S0” out

of reset. The state machine remains in “S0” until the register START ME is set to

“1”. When the register START ME is set to “1”, the state machine transitions to

state “S1”.

• State “S1” : The state machine remains in this state for two clock cycles. Register

decoding is performed and various parameters are set for SAD computation during

this state. After two clock cycles, the state machine transitions to state “S2”.

• State “S2” : Address generation is started for the Reference Frame Pixel Memory.

The state machine transitions to state “S3”.

• State “S3” : The state machine remains in this state until the SAD computation at a

given search position is done for the Current Micro-block. The number of clock cycles

spent in this state is equal to the register BLK SZ Y. When the SAD VLD signal

from SAD Computation Unit is set to “1”, indicating that SAD computation is done,

the state machine transitions to state “S7”.

• state “S7” : The state machine remains in this state until either the register CONT ME

or the register ABNDN ME is set to “1” by the neighboring AsAP. If the register

CONT ME is set to “1”, the state machine transitions to state “S8”. If the register

ABNDN ME is set to “1”, the state machine transitions to state “S0”.

• State “S8” : The Search Position Index i to the selected search pattern registers,

SRCH PTRN n X [i] and SRCH PTRN n Y [i], is incremented and the state machine

transitions to state “S1”.
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5.7 Performance Analysis of Constituent Tasks

Figure 5.2 illustrates the constituent tasks in the best MV search process. Fol-

lowing subsections describe the number of clock cycles taken by the ME ACC for these

tasks.

5.7.1 Load Configuration Registers

This initial setting is generally done only once for a given sequence. It includes set-

ting the registers like BLK SZ X, BLK SZ Y, SRCH PTRN n X[i], and

SRCH PTRN n Y[i] etc. It does not affect the throughput of the ME ACC engine. So, the

number of clock cycles required for initial configuration is not considered in the performance

analysis of the ME ACC.

5.7.2 Load Search Window

Consecutive memory locations of the ME ACC memory can be accessed in back-

to-back clock cycles without specifying address for every location being accessed. Using the

16 bits wide Input Bus Interface, neighboring AsAP loads 2 pixels (1 pixel = 8 bits) in one

clock cycle. Assuming search range of −16 to +15 and the micro-block size of 16x16 pixels,

the search window size is (48 × 48) pixels. It takes 1152 clock cycles to load the search

window of size (48 × 48) pixels in the Reference Frame Pixel Memory.

For the MV search for successive micro-blocks, only 16 pixel columns of new search

window data needs to be loaded in the Reference Frame Pixel Memory. It takes 384 clock

cycles to load 16×48 pixels of new search window data for successive micro-blocks in a given

micro-block row. However, as described in section 5.2, ME ACC allows memory access to

non-interfering banks concurrently with the SAD computation. Hence, when ME ACC is

performing SAD computation on micro-block N, neighboring AsAP, can load search window

data for the next micro-block N + 1 thus, completely hiding the time required for loading

search window in the Reference Frame Pixel Memory.
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Table 5.23: Clock cycles required for loading current micro-block

Micro-block size No. of clock cycles

16x16 128
16x8 64
8x16 64
8x8 32
8x4 16
4x8 32
4x4 16

5.7.3 Load Current Frame Micro-block

As the 16 bits wide Input Bus interface can load 2 pixels per clock cycles, the

number of clock cycles required can be given by number of pixels in the micro-block divided

by 2. However, there is one exception to this rule. As the memory banks in the ME ACC

are 64 bits wide, we must write all 8 pixels in each memory location using data padding

as necessary. Hence, for micro-blocks with pixel width less than 8, the number of clock

cycles to load the micro-block memory is given by number of pixel rows in the micro-block

multiplied by 4. Table 5.23 lists the number of clock cycles required to load the micro-blocks

of various sizes.

5.7.4 SAD Compute Request

The neighboring AsAP issues the SAD Compute Request by writing “1” to the

register START ME or by writing “1” to the register CONT ME. A single register write

transaction takes 4 clock cycles. It takes 2 clock cycles to decode the transaction.

5.7.5 SAD Computation

Table 5.24 gives the breakdown of the clock cycles taken by SAD Computation

process.
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Table 5.24: Number of clock cycles required for SAD computation

Task No. of clock cycles

Register decoding & Address generation 5
Memory read & Pixel multiplexing 5
Absolute difference pipe line No. of rows in the micro-block
Sum of absolute difference 6

5.7.6 Report SAD

The ME ACC takes 4 cycles to report SAD value and the associated search position

to the neighboring AsAP.

5.7.7 Best MV Decision

The neighboring AsAP receives SAD value and associated search position from

the ME ACC. The best MV decision is made by the AsAP, based on the minimum SAD

value and any other programmed factors, such as SAD threshold. The neighboring AsAP

can issue next SAD Compute Request by writing “1” to the register CONT ME without

waiting for best MV decision.
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Chapter 6

ME ACC Physical Data

The AsAP2 chip with the ME ACC was fabricated using 65 nm technology in June

2007. Figure 6.1 shows the die micro-graph of AsAP2, the 167-processor array [2]. The die

occupies 39.4 mm2 and contains 55 million transistors [1]. The square block marked with

“Mot. Est.” indicates the ME ACC in the AsAP2. Figure 6.2 shows the die plot of the

ME ACC. Data summarizing the area and preliminary measurements of the ME ACC are

reported in Table 6.1. At a supply voltage of 1.3 V, the ME ACC operates at the maximum

frequency of 938 MHz and dissipates 195 mW. The power dissipation will drop substantially

at lower supply voltages.
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Figure 6.1: Die micro-graph of AsAP2

Table 6.1: Physical parameters of ME ACC on AsAP2

Parameter name Value

Technology 65 nm
Total area 0.67 mm2

SRAM area 137,866 μm2

Block dimensions 820 μm × 820 μm
No. of combinational cells 16137
No. of Flip-flops 6248
SRAMs used 8 instances of 64 × 64 dual port SRAM

2 instances of 16 × 64 dual port SRAM
Supply voltage 1.3 V
Power 195 mW
Maximum frequency 938 MHz
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Figure 6.2: Die plot of ME ACC
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Chapter 7

Bit Accurate MATLAB Model for

ME ACC

A bit accurate model, MATLAB function named me acc model, has been devel-

oped to emulate the ME ACC functionality. It takes the same input parameters as specified

by the Input Bus Protocol of the ME ACC. It generates the same output parameters as

specified by the Output Bus Protocol of the ME ACC.

The function me acc model defines the Me ACC Reference Frame Pixel Memory,

Current Frame Pixel Memory and Configuration Registers as “persistent” variables. MAT-

LAB does not clear the “persistent” variables from memory when the function exits, so their

values are retained from one function call to the next. The function me acc model is called

for every write or read transaction to the ME ACC Configuration Registers or memory.

The function me acc model takes one more input, reset, in addition to those defined

by the Input Bus Protocol. When the function is called with the input parameter reset set to

“1”, the “persistent” variable for Reference Frame Pixel Memory, the “persistent” variable

for Current Frame Pixel Memory and the “persistent” variables for Configuration Registers

are reset to “0”.

The syntax of the function me acc model is shown in the table 7.1.
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Table 7.1: me acc model input parameters

Parameter Parameter Description
index name

1 reset If set to 1
reset all persistent variables
If set to any value other than 1
Unused

2 InputControlWord0 Corresponds to Control Word 0 of
input bus protocol of the ME ACC.
See table 5.18.

3 InputControlWord1 Corresponds to Control Word 1 of
input bus protocol of the ME ACC.
See table 5.18.

4 InputData Single dimensional matrix of 16 bit data
words. Corresponds to word 0 to
word n of input bus protocol.
See table 5.18.

7.1 Simulation Results from me acc model

To validate the me acc model, MV search was performed for two micro-blocks

of size 16x16 pixels from 2nd frame of “Carphone” quarter-CIF (QCIF) video sequence

using three step search algorithm. The results were bit matched to those generated by the

ME ACC.

The MATLAB code for the me acc model is given in Appendix A.
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Chapter 8

MV Search Algorithms Simulation

The most important feature of the ME ACC is its ability to support virtually

any search algorithm with least overhead of configuration and memory access time. This

feature is important because various efficient algorithms for best MV search consume much

less energy than that consumed by the full search algorithm and offer to achieve PSNR

close to that achieved by the full search algorithm.

We simulated four MV search algorithms, including the full search algorithm, in

order to compare the efficiency of the search algorithms and the efficiency of the ME ACC

in executing those.

The PSNR of a decoded video bit stream depends on multiple factors, such as

quantization and bit-rate in addition to the quality of best MV obtained during motion

estimation. The ME ACC module improves the performance of only motion estimation step.

Other steps such as quantization, entropy encoding etc in the video compression process

are out of the scope of this work. So, to compare the performance of MV search algorithms,

we use Mean Absolute Error (MAE) per pixel between the motion compensated frame and

the current frame. For a current frame, the MAE per pixel is given by Equation 8.1.

MAE =

∑

0≤i≤n

∑

0≤j≤m

(|current frame[i][j] − mc frame[i][j]|)

n × m
(8.1)

where, n = frame width in terms of number of pixels, m = frame height in terms of number of

pixels, current frame is the current frame, current frame[i ][j ] gives the current frame pixel



CHAPTER 8. MV SEARCH ALGORITHMS SIMULATION 67

value at coordinates (i,j), mc frame is the motion compensated frame, and mc frame[i ][j ]

gives the motion compensated frame pixel value at coordinates (i,j).

8.1 Motion Vector Search Algorithms

Following four MV search algorithms were implemented.

• Full search algorithm: This algorithm searches all 256 positions in the search window

of size −8 to +7. This gives the best possible MV for the micro-block. However, it

takes a very large number of clock cycles. For the full search algorithm using 16x16

block size and search window of size −8 to +7, 1,715,292 number of cycles are required

per QCIF frame to find the best MV. This algorithm is data-independent.

• Three step search algorithm [36]: At every step, the three step search algorithm tests

9 points, the center [cx,cy] and the 8 points around the center given by [cx−s,cy−s],

[cx − s, cy], [cx − s, cy + s], [cx, cy − s], [cx, cy], [cx, cy + s], [cx + s, cy − s],

[cx + s, cy], [cx + s, cy + s], where s is the step size. After every step, the center

is moved to the point with minimum block distortion measure, i.e., minimum SAD.

The initial step size is set to 3 and the step size decremented after every step by 1.

Thus, the algorithm is terminated after 3 steps. Figure 8.1 depicts the search patterns

in the three step search algorithm. This algorithm searches 25 locations (9 + 8 + 8)

in the search window of size −4 to +4 to find the best MV for a given micro-block.

This algorithm is data-independent and searches approximately 10% locations of that

searched by the full search algorithm. Hence, the number of clock cycles required is

also approximately 10% as that of the full search algorithm. However, Mean Absolute

Error (MAE) achieved by the three step search algorithm is moderately higher as

compared to that achieved by the full search algorithm.

• Four step search algorithm [37]: The four step search algorithm is slightly different

than the three step search algorithm. It starts with the 9 point search over the search

window of size −2 to +2. In the 2nd and 3rd step, it follows 2 different search patterns

based on the location of the point of minimum block distortion, i.e., minimum SAD.
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Figure 8.1: Three step search algorithm
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The final step uses the search window of size −1 to +1. Figure 8.2 depicts the search

patterns in the different steps of the four step search algorithm. Two different search

paths are shown in Figure 8.3. This algorithm performs the best MV search over the

search window of size −7 to +7. This search algorithm is data dependent. It takes

less number of clock cycles than those taken by the three step search algorithm and

gives similar or slightly better result in terms of MAE per pixel than that given by

the three step search algorithm.

• Diamond search algorithm [38]: The diamond search algorithm is very similar to the

four step search algorithm. It follows different search patterns in the search steps

however, the decision flow remains the same. The search patterns in the diamond

search algorithms are shown in Figure 8.4. This algorithm performs the best MV

search over the search window of size −7 to +7. It is data dependent. It takes

less number of clock cycles than those taken by the four step search algorithm and

produces result similar or better than that produced by the four step search algorithm.
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Figure 8.2: Search patterns in four step search algorithm
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Figure 8.3: Search path in four step search algorithm
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Figure 8.4: Diamond search algorithm
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Table 8.1: Percentage increase in MAE obtained by efficient algorithms with respect to
MAE obtained by full search algorithm

Video sequence Three step Four step Diamond search
search algorithm search algorithm algorithm

Carphone +2.943% +3.237% +1.372%
Coastguard +0.302% +0.313% +0.315%
Foreman +7.875% +5.481% +3.674%
Mobile +0.012% +0.012% +0.012%
News +0.125% +0.064% +0.065%

8.2 Performance of MV search algorithms

As the full search algorithm is the most extensive search algorithm, it returns the

highest quality best MV (least MAE). The performance of 3 MV search algorithms with

respect to that of the full search algorithm is presented in Table 8.1 as a percentage increase

in the MAE over the MAE achieved by the full search algorithm. The MAE values given in

the Table 8.1 are the average of MAE per pixel values computed over first 20 frames of the

corresponding QCIF sequence. The micro-block size of 16x16 pixels was used for the best

MV search.

The full search algorithm performs the most extensive search and hence, requires

the maximum number of clock cycles. The efficient search algorithms require a lot less

number of clock cycles and their performances are similar or slightly inferior than that of

the full search algorithm. As shown in the Table 8.1, the quality of the best MV obtained

by efficient algorithms is inferior by less than 10% as compared to that obtained by the full

search algorithm. Table 8.2 presents the number of clock cycles required for the 3 MV search

algorithms as a percentage of number of clock cycles required for the full search algorithm.

The percentage of the number of clock cycles is computed over the first 20 frames of the

respective QCIF video sequence. Figures 8.5, 8.6, 8.7, 8.8, and 8.9 illustrate the number of

clock cycles required and the MAE per pixel for five QCIF video sequences: “Carphone”,

“Coastguard”, “Foreman”, “Mobile”, and “News”.

Various factors such as the micro-block size and the search algorithm itself affect

the quality of the best MV and the computational effort required to achieve it. The perfor-
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Table 8.2: Number of clock cycles taken by efficient algorithms per frame as a percentage
of that taken by full search algorithm

Video sequence Three step Four step Diamond search
search algorithm search algorithm algorithm

Carphone 10.178% 7.259% 5.938%
Coastguard 10.177% 6.997% 5.469%
Foreman 10.177% 7.476% 6.162%
Mobile 10.177% 6.941% 5.395%
News 10.177% 6.920% 5.369%

mance of a MV search algorithm depends on the motion and texture characteristics of the

video sequence. For a low-motion/low-texture sequence like “News”, the least expensive

search (diamond search with micro-block size of 16x16 pixels) gives MV quality that is very

close to that achieved by the most expensive search (full search with micro-block size of 8x8

pixels). However, for a high-motion/high-texture video sequence like “Foreman”, the MV

search quality deteriorates significantly with a less expensive search algorithm. The most

significant advantage of the ME ACC is that, user can adapt search algorithm and other

motion estimation parameters, such as micro-block size and search window size, depending

on the video characteristics to achieve the best trade off between the MV search quality

and the computational complexity. The distinctive advantage of the programmable features

of the ME ACC is highlighted by Tables 8.3, 8.4, 8.5, 8.6, and 8.7. It can be clearly seen

that, with micro-block size of 8x8, efficient algorithms can achieve better MV search and

use less number of clock cycles as compared to those used by the full search algorithm with

micro-block size of 16x16.
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Table 8.3: Carphone: Motion vector search performance with varying micro-block size

Micro-block Search MAE # Clock cycles
size algorithm per pixel per QCIF frame

16x16 Full search 4.301 1,715,292
16x16 Three step search algorithm 4.428 174,582
16x16 Four step search algorithm 4.441 124,510
16x16 Diamond search algorithm 4.360 101,860
8x8 Full search algorithm 3.909 5,558,640
8x8 Three step search algorithm 4.136 571,128
8x8 Four step search algorithm 4.147 425,553
8x8 Diamond search algorithm 4.024 358,725

Table 8.4: Coastguard: Motion vector search performance with varying micro-block size

Micro-block Search MAE # Clock cycles
size algorithm per pixel per QCIF frame

16x16 Full search 3.885 1,715,292
16x16 Three step search algorithm 3.896 174,582
16x16 Four step search algorithm 3.897 120,010
16x16 Diamond search algorithm 3.897 93,810
8x8 Full search algorithm 3.652 5,558,640
8x8 Three step search algorithm 3.682 571,128
8x8 Four step search algorithm 3.687 405,038
8x8 Diamond search algorithm 3.678 325,350

Table 8.5: Foreman: motion vector search performance with varying micro-block size

Micro-block Search MAE # Clock cycles
size algorithm per pixel per QCIF frame

16x16 Full search 4.910 1,715,292
16x16 Three step search algorithm 5.297 174,582
16x16 Four step search algorithm 5.179 128,234
16x16 Diamond search algorithm 5.091 105,702
8x8 Full search algorithm 4.486 5,558,640
8x8 Three step search algorithm 5.092 571,128
8x8 Four step search algorithm 4.929 435,108
8x8 Diamond search algorithm 4.772 363,538
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Table 8.6: Mobile: Motion vector search performance with varying micro-block size

Micro-block Search MAE # Clock cycles
size algorithm per pixel per QCIF frame

16x16 Full search 10.164 1,715,292
16x16 Three step search algorithm 10.165 174,582
16x16 Three step search algorithm 10.165 119,059
16x16 Diamond search algorithm 10.165 92,544
8x8 Full search algorithm 9.860 5,558,640
8x8 Three step search algorithm 9.910 571,128
8x8 Four step search algorithm 9.891 396,185
8x8 Diamond search algorithm 9.903 313,992

Table 8.7: News: Motion vector search performance with varying micro-block size

Micro-block Search MAE # Clock cycles
size algorithm per pixel per QCIF frame

16x16 Full search 1.723 1,715,292
16x16 Three step search algorithm 1.725 174,582
16x16 Four step search algorithm 1.724 118,704
16x16 Diamond search algorithm 1.724 92,086
8x8 Full search algorithm 1.617 5,558,640
8x8 Three step search algorithm 1.639 571,128
8x8 Four step search algorithm 1.636 396,604
8x8 Diamond search algorithm 1.630 315,018
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Figure 8.5: Carphone MV search using different algorithms



CHAPTER 8. MV SEARCH ALGORITHMS SIMULATION 78

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18
x 105

Frame Number

C
lo

ck
 c

yc
le

s 
fo

r B
es

t M
V

 C
om

pu
ta

tio
n

coastguard : Number Clock Cycles for SAD Computation

FullSearch
ThreeStepSearch
FourStepSearch
DiamondSearch

(a) No. of clock cycles for Coastguard MV search

2 4 6 8 10 12 14 16 18 20
5

6

7

8

9

10

11

Frame Number

P
re

cn
et

ag
e 

C
lo

ck
 C

yc
le

s 
fo

fr 
B

es
t M

V
 S

ea
rc

h

coastguard : Clock Cycles for SAD Computation as a 
 Percentage of Clock Cycles for FullSearch

ThreeStepSearch
FourStepSearch
DiamondSearch

(b) No. of clock cycles for MV search as percent-

age of full search

2 4 6 8 10 12 14 16 18 20
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Frame Number

A
bs

ol
ut

e 
E

rr
or

 P
er

 P
ix

el

coastguard : Mean Absolute Error

FullSearch
ThreeStepSearch
FourStepSearch
DiamondSearch

(c) Mean absolute error from Coastguard MV

search

Figure 8.6: Coastguard MV search using different algorithms
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Figure 8.7: Foreman MV search using different algorithms
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Figure 8.8: Mobile MV search using different algorithms
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Figure 8.9: News MV search using different algorithms
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Chapter 9

Conclusion

9.1 Contributions

The contributions of this work include architecting, RTL coding, synthesizing,

and verifying the programmable Motion Estimation Accelerator, ME ACC, that supports

a multitude of video compression standards and MV search algorithms. The ME ACC

supports programmable search window, micro-block size, and MV search algorithm and

supports a large range of frame size. It also allows flexible best MV criterion based on

SAD. Various MV search algorithms are implemented on the ME ACC during the course

of research.

9.2 Future Work

There are three primary categories where future effort can be applied to this work.

Firstly, a few modifications can be done to the implementation in order to improve the

performance of the ME ACC. Secondly, clock gating and other power saving techniques

can be to applied to reduce the power consumption of the ME ACC. And lastly, additional

features such as programmable interpolation filter can be implemented.
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9.2.1 Performance Improvement

The Finite State Machine, the Address Generation Unit, and the SAD Computa-

tion Unit are coded in such a way that the design can be synthesized to support maximum

operating frequency. It might have resulted in some logic paths with very small path de-

lays. These paths can be combined with neighboring stages in order to reduce the number of

clock cycles taken by the ME ACC for SAD computation, without affecting the maximum

operating frequency supported.

One more 16 × 16 pixel memory can be added to hold one more current frame

micro-block. This will eliminate the time required to load the current frame micro-block

as the alternate memories can be loaded with the next current frame micro-block pixels

when the ME ACC is computing SAD for previously loaded current frame micro-block. To

offset the increase in memory size, the depth of the Reference Frame Pixel memory can be

reduced from 64 to 48 without significantly affecting the performance of the ME ACC.

9.2.2 Power Saving

• Multiple power saving techniques can be applied to reduce the power consumption

of the ME ACC. Few examples are, clock gating-off the memory banks when no

read/write operation is being performed and using synthesis tool supported clock-

gating to convert data multiplexers on the D-input of the pipeline stages to clock

gates etc.

• The search pattern registers, SRCH PTRN n X and SRCH PTRN n Y, can be im-

plemented using a SRAM instead of flip-flops.

9.2.3 Feature Enhancement

The ME ACC can be enhanced to add more features.

• The addition of a programmable SAD threshold value that would allow the accelerator

to make consecutive SAD calculations without individual “Continue” commands from

the controlling processor. The basic idea is that the accelerator would continue SAD
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calculations along the search pattern path until the SAD calculation reached a value

less than the threshold.

This would decrease total power consumption since the controlling processor would

not have to check each SAD value, or issue a Continue instruction for each SAD

calculation.

It would also increase the throughput of the accelerator since it would not need to

pause and wait between SAD calculations.

• The current data-path calculates “sum of absolute differences” terms for up-to 16

pixels per row of pixels. Micro-blocks that are 4 or 8 pixels wide do not use the entire

data-path. A proposed enhancement is to compute four 4-pixel-wide blocks or two

8-pixel-wide blocks in parallel.

This enhancement would dramatically increase throughput for smaller block widths,

but would require the addition of a small amount of hardware. The largest impact

may be that carry-propagate adders would be needed for the shorter-width outputs

that may increase the critical path.

• The addition of a “mask” and offset pointer for the current frame pixel memory that

would allow different micro-blocks within the memory to be used as current blocks.

For example, the entire 16×16 pixel memory could be filled and SAD values for the

four micro-blocks of size 8x8 pixels could be calculated without reloading the memory,

by only changing the offset pointer value.

• Programmable sub-pixel interpolater to support half-pixel and quarter-pixel motion

estimation.

• Save intermediate 4x4 micro-block SAD values for any given micro-block size and

report to neighboring AsAP, if requested. This will add performance improvement to

the search algorithms employing dynamic mode selection

• Save the motion-compensated pixel values for the micro-block and report to neighbor-

ing AsAP if requested. When neighboring AsAP determines the best motion vector, it
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can simply read out the motion-compensated micro-block and pass it on to transform

coding. A lot of redundant computations of the neighboring AsAP will be eliminated.
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Appendix A

Matlab Code for ME ACC Model

%--------------------------------------------------------------------------
% Description :
% Function to model behavior of the Motion Estimation Accelerator, ME\_ACC,
%on AsAP2
% The inputs parameters to the model are same as the input data dirven by
% neighboring AsAP to ME\_ACC. One extra input parameter ‘‘reset’’, is used
% to reset the values of persistent variables.
% Configuration registers of the ME\_ACC are modeled by using persistent
% variables
%-------------------------------------------------------------------------
% Revision History : Rev 1.0 05/15/2009
%-------------------------------------------------------------------------

function [OutputControlWord, OutputData] =
me_acc_model (reset, InputControlWord0, InputControlWord1, InputData)

% Variable Declarations

%OutputData = zeros(1, 2048);

% ME_ACC Configuration Registers

persistent blk_sz_x;
if ((isempty(blk_sz_x)) || (reset==1))

blk_sz_x = zeros(1,1);
end

persistent blk_sz_y;
if ((isempty(blk_sz_y)) || (reset==1))

blk_sz_y = zeros(1,1);
end
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persistent srch_pos_cnt_array;
if ((isempty(srch_pos_cnt_array)) || (reset==1))

srch_pos_cnt_array = zeros(1,4);
end

persistent srch_ptrn_cnt;
if ((isempty(srch_ptrn_cnt)) || (reset==1))

srch_ptrn_cnt = zeros(1,1);
end

persistent center_x;
if ((isempty(center_x)) || (reset==1))

center_x = zeros(1,1);
end

persistent center_y;
if ((isempty(center_y)) || (reset==1))

center_y = zeros(1,1);
end

persistent srch_ptrn_x_array;
if ((isempty(srch_ptrn_x_array)) || (reset==1))

srch_ptrn_x_array = zeros(4,64);
end

persistent srch_ptrn_y_array;
if ((isempty (srch_ptrn_y_array)) || (reset==1))

srch_ptrn_y_array = zeros(4, 64);
end

persistent ref_blk_mem;
if ((isempty(ref_blk_mem)) || (reset==1))

ref_blk_mem = zeros(64, 64);
end

persistent org_blk_mem;
if ((isempty(org_blk_mem)) || (reset==1))

org_blk_mem = zeros(16, 16);
end

% Single Pulse Registers
start_me = 0;
cont_me = 0;
abndn_me = 0;

% Local Variables
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%persistent srch_ptrn_idx;
%if ((isempty(srch_ptrn_idx)) || (reset==1))
% srch_ptrn_idx = 0;
%end

persistent srch_pos_idx;
if ((isempty(srch_pos_idx)) || (reset==1))

srch_pos_idx = 0;
end

srch_pos_x = 0;
srch_pos_y = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Register Read Write Operation Logic
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

OutputControlWord = 0;
InCtrlWd0 = InputControlWord0;
InCtrlWd1 = InputControlWord1;

InData = InputData;

% Bit 15 of InputControlWord0 indicates valid transaction
InCtrlWd0_Bit15 = bitand(InCtrlWd0, 2.^15)/ 2.^15;

% Bit 14 of InputControlWord0 inidicates
% (0=write, 1=read) operation
InCtrlWd0_Bit14 = bitand(InCtrlWd0, 2.^14)/ 2.^14;

% Bit 13 of InputControlWord0 indicates
% (1=Mem Aceess, 0= Reg Access) operation
InCtrlWd0_Bit13 = bitand(InCtrlWd0, 2.^13)/ 2.^13;

% Bit 12 of InputControlWord0 indicates
% (1=Columnwise memory access, 0=Rowwise memory access)
InCtrlWd0_Bit12 = bitand(InCtrlWd0, 2.^12)/ 2.^12;

% Bits [11:0] of InputControlWord0 indicate
%Transfer Length
TransferLength = bitand(InCtrlWd0, (2.^12)-1);

if (InCtrlWd0_Bit13 == 1)
Mem_Acc_St_Addr = InputControlWord1;

end
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[m,n] = size(InputData);

if (m ~= 1)
error(’InputData must be a One Dimentional Array’)

end

DataWordcnt = 1;
EightPixelRow = zeros(1,8);
EightPixelColumn = zeros(8,1);

if (InCtrlWd0_Bit15 == 1) % Valid Input Control Word0
if (InCtrlWd0_Bit14 == 0) % Write Operation
if (InCtrlWd0_Bit13 == 1) % Memory Write

OutputControlWord = 0;

for DataWordCnt=1:TransferLength
mem_addr = Mem_Acc_St_Addr + ((DataWordCnt-1) * 2);
mem_addr_bit15 = bitand(mem_addr, 2.^15)/2.^15;
mem_addr_bit2_1 = bitand(mem_addr, 2.^2+2.^1)/2.^1;
bank_sel = bitand(mem_addr, (2.^11+2.^10+2.^9))/2.^9;
row_sel = bitand(mem_addr,

(2.^8+2.^7+2.^6+2.^5+2.^4+2.^3))/2.^3;

DataByte1 = bitand(InputData(DataWordCnt),
(2.^8)-1);

DataByte2 = bitand(InputData(DataWordCnt),
((2.^16)-1) - ((2.^8)-1))/2.^8;

switch mem_addr_bit2_1
case 0

EightPixelRow(1) = DataByte1;
EightPixelRow(2) = DataByte2;

case 1
EightPixelRow(3) = DataByte1;
EightPixelRow(4) = DataByte2;

case 2
EightPixelRow(5) = DataByte1;
EightPixelRow(6) = DataByte2;

case 3
EightPixelRow(7) = DataByte1;
EightPixelRow(8) = DataByte2;

end

% Valid memory address
if (mem_addr_bit15 == 1)
mem_addr_bit13_12 = bitand(mem_addr, (2.^13+2.^12))/2.^12;
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% RefBlk memory address
if (mem_addr_bit13_12 == 1)
% Write to memory after receving
% all 8 pixels in the bank location
if (mem_addr_bit2_1 == 3)
ref_blk_mem(row_sel+1, (bank_sel*8)+1:(bank_sel*8)+8) =

EightPixelRow;
else
end
else
% OrgBlk memory address
if (mem_addr_bit13_12 == 2)
% Write to memory after receving all 8 pixels in
% the bank location
if (mem_addr_bit2_1 == 3)
org_blk_mem(row_sel+1, (bank_sel*8)+1:(bank_sel*8)+8) =

EightPixelRow;
else
end
else % Invalid Address
end
end

else % Invalid memory address
end
end
% Temporary code to confirm memory is loaded correctly

if (mem_addr_bit13_12 == 1) % RefBlk memory address

fr_x_offset = 0;
fr_y_offset = 0;
seq_name = ’qcif/carphone’;
color_idx = 1;
ref_fr_idx = 0;
color_name = [’Y’ ’U’ ’V’];

ref_fr_name = sprintf(’..\\..\\BAAS_LINUX.tar\\BAAS_LINUX\\work1\\
me_acc\\dv3\\sequences\\matlab\\%s\\Fr%s_%d.m’,
seq_name, color_name(color_idx), ref_fr_idx);

ref_fr = dlmread(ref_fr_name);

if(bank_sel == 5)
if (ref_blk_mem(1:48, 1:48) ==

ref_fr(fr_x_offset+1:fr_x_offset+48,
fr_y_offset+1 : fr_y_offset+48))

disp(’ref_blk_mem loaded correctly’);
else
disp(’Error ! ref_blk_mem not loaded correctly’);
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end
end
end

if (mem_addr_bit13_12 == 2) % OrgBlk memory address

fr_x_offset = 0;
fr_y_offset = 0;
seq_name = ’qcif/carphone’;
color_idx = 1;
fr_idx = 1;
color_name = [’Y’ ’U’ ’V’];

fr_name = sprintf(’..\\..\\BAAS_LINUX.tar\\BAAS_LINUX\\work1\\
me_acc\\dv3\\sequences\\matlab\\%s\\Fr%s_%d.m’,
seq_name, color_name(color_idx), fr_idx);

fr = dlmread(fr_name);

if(bank_sel == 1)
if (org_blk_mem(1:16, 1:16) ==

fr(fr_x_offset+1:fr_x_offset+16,
fr_y_offset+1 : fr_y_offset+16))

disp(’org_blk_mem loaded correctly’);
else

disp(’Error ! org_blk_mem not loaded correctly’);
end

end
end

else % Register Write
OutputControlWord = 0;
for DataWordCnt=1:TransferLength
reg_addr = InputData(((DataWordCnt-1)*2)+1);
reg_data = InputData(DataWordCnt*2);
reg_addr_bit15_12 = bitand(reg_addr,

(2.^15 + 2.^14 + 2.^13 + 2.^12))/2.^12;
reg_addr_bit11_0 = bitand(reg_addr,

((2.^16-1) - (2.^15 + 2.^14 + 2.^13 + 2.^12)));
array8_idx = bitand(reg_addr, (2.^3 + 2.^2 + 2.^1))/ 2.^1;
array16_idx = bitand(reg_addr, (2.^4 + 2.^3 + 2.^2 + 2.^1))/2.^1;
array256_idx = bitand(reg_addr,

(2.^7 + 2.^6 + 2.^5 + 2.^4 + 2.^3 + 2.^2 + 2.^1 + 2.^0));
if (reg_addr_bit15_12 == 8)

if (reg_addr_bit11_0 == 2)
blk_sz_x = reg_data;
end
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if (reg_addr_bit11_0 == 4)
blk_sz_y = reg_data;
end

if ((reg_addr_bit11_0 >= 256) && (reg_addr_bit11_0 <= 511))
ptrn_sel = bitand(reg_addr, (2.^7 + 2.^6))/2.^6;
pos_idx = bitand(reg_addr,

(2.^5 + 2.^4 + 2.^3 + 2.^2 + 2.^1 + 2.^0));
srch_ptrn_x_array(ptrn_sel+1, pos_idx+1) = reg_data;
end

if ((reg_addr_bit11_0 >= 768) && (reg_addr_bit11_0 <= 1023))
ptrn_sel = bitand(reg_addr, (2.^7 + 2.^6))/2.^6;
pos_idx = bitand(reg_addr,

(2.^5 + 2.^4 + 2.^3 + 2.^2 + 2.^1 + 2.^0));
srch_ptrn_y_array(ptrn_sel+1, pos_idx+1) = reg_data;
end

if ((reg_addr_bit11_0 >= 1280) && (reg_addr_bit11_0 <= 1295))
srch_pos_cnt_array(array8_idx+1) = reg_data;
end

if (reg_addr_bit11_0 == 1344)
srch_ptrn_cnt = reg_data;
end

if (reg_addr_bit11_0 == 1362)
center_x = bitand(reg_data, 255);
center_y = bitand(reg_data, 65280)/2.^8;
end

if (reg_addr_bit11_0 == 1360)
start_me = reg_data;
end

if (reg_addr_bit11_0 == 1364)
cont_me = reg_data;
end

if (reg_addr_bit11_0 == 1366)
abndn_me = reg_data;

end

end

end
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end
else % Read Operation
OutputControlWord = 8192;
if (InCtrlWd0_Bit13 == 1) % Memory Read
for DataWordCnt=1:TransferLength
mem_addr = Mem_Acc_St_Addr + ((DataWordCnt-1) * 2);
mem_addr_bit15 = bitand(mem_addr, 2.^15)/2.^15;
mem_addr_bit13_12 = bitand(mem_addr, (2.^13+2.^12))/2.^12;
mem_addr_bit2_1 = bitand(mem_addr, 2.^2+2.^1)/2.^1;
bank_sel = bitand(mem_addr, (2.^11+2.^10+2.^9))/2.^9;
row_sel = bitand(mem_addr, (2.^8+2.^7+2.^6+2.^5+2.^4+2.^3))/2.^3;
word_sel = bitand(mem_addr, 2.^2+2.^1)/2.^1;
if (mem_addr_bit15 == 1) % Valid memory address
if (mem_addr_bit13_12 == 1) % RefBlk memory address
ReadDataByte1 = ref_blk_mem(row_sel+1,

(bank_sel*8)+1+(word_sel*2));
ReadDataByte2 = ref_blk_mem(row_sel+1,

(bank_sel*8)+1+(word_sel*2)+1);
OutputData(DataWordCnt) = (ReadDataByte2* 2.^8) +

ReadDataByte1;
else
ReadDataByte1 = org_blk_mem(row_sel+1, (bank_sel*8)+1+word_sel);
ReadDataByte2 = org_blk_mem(row_sel+1, (bank_sel*8)+1+word_sel+1);
OutputData(DataWordCnt) = (ReadDataByte2* 2.^8) + ReadDataByte1;
end

end
end

else % Register Read
for DataWordCnt=1:TransferLength
reg_addr = InputData(((DataWordCnt-1)*2)+1);
reg_data = InputData(DataWordCnt*2);
reg_addr_bit15_12 = bitand(reag_addr,

(2.^15 + 2.^14 + 2.^13 + 2.^12))/2.^12;
reg_addr_bit11_0 = bitand(reg_addr,

((2.^16-1) - (2.^15 + 2.^14 + 2.^13 + 2.^12)));
array8_idx = bitand(reg_addr, (2.^3 + 2.^2 + 2.^1));
array16_idx = bitand(reg_addr, (2.^4 + 2.^3 + 2.^2 + 2.^1));
array256_idx = bitand(reg_addr,

(2.^7 + 2.^6 + 2.^5 + 2.^4 + 2.^3 + 2.^2 + 2.^1 + 2.^0));
if (reg_addr_bit15_12 == 8)

if (reg_addr_bit11_0 == 2)
ReadRegData = blk_sz_x;
end

if (reg_addr_bit11_0 == 4)
ReadRegData = blk_sz_y;
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end

if ((reg_addr_bit11_0 >= 256) && (reg_addr_bit11_0 <= 511))
ptrn_sel = bitand(reg_addr, (2.^7 + 2.^6))/2.^6;
pos_idx = bitand(reg_addr,

(2.^5 + 2.^4 + 2.^3 + 2.^2 + 2.^1 + 2.^0));
ReadRegData = srch_ptrn_x_array(ptrn_sel, pos_idx);
end

if ((reg_addr_bit11_0 >= 768) && (reg_addr_bit11_0 <= 1023))
ptrn_sel = bitand(reg_addr, (2.^7 + 2.^6))/2.^6;
pos_idx = bitand(reg_addr,

(2.^5 + 2.^4 + 2.^3 + 2.^2 + 2.^1 + 2.^0));
ReadRegData = srch_ptrn_y_array(ptrn_sel, pos_idx);
end

if ((reg_addr_bit11_0 >= 1280) && (reg_addr_bit11_0 <= 1295))
ReadRegData = srch_pos_cnt_array(array8_idx);
end

if (reg_addr_bit11_0 == 1344)
ReadRegData = srch_ptrn_cnt;
end

if (reg_addr_bit11_0 == 1362)
ReadRegData = (center_y * 2.^8) + center_x;
end

end
OutputData(DataWordCnt) = ReadRegData;
end
end

end
% Invalid Input Control Word 0, Ignore function call
else

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% SAD Computation Logic
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set appropriate registers and variables if start_me
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (start_me == 1)
srch_pos_idx = 0;
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set appropriate registers and variables if con_me
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (cont_me == 1)

% Go to next search position in the search pattern
srch_pos_idx = srch_pos_idx + 1;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Perforam SAD computation and return
%% appropriate results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if ((start_me == 1) || (cont_me == 1))
% All counters/array-indices in verilog start from 0
% All counters/array-incdices in matlab start from 1
% Adding 1 at appropriate places to make the results consistent
srch_pos_x = srch_ptrn_x_array(srch_ptrn_cnt+1, srch_pos_idx +1);
srch_pos_y = srch_ptrn_y_array(srch_ptrn_cnt+1, srch_pos_idx +1);
ref_blk_x_top_left = center_x + srch_pos_x + 1;

ref_blk_x_top_left = center_x + srch_pos_x;
ref_blk_mem_x_wrap_around = zeros(64,64);
ref_blk_mem_xy_wrap_around = zeros(64,64);

if (ref_blk_x_top_left < 0)
ref_blk_mem_x_wrap_around(1:64, 1:abs(ref_blk_x_top_left)) =

ref_blk_mem(1:64, 64 - abs(ref_blk_x_top_left)+1:64);
ref_blk_mem_x_wrap_around(1:64, abs(ref_blk_x_top_left) +1 : 64) =

ref_blk_mem(1:64, 1:64- abs(ref_blk_x_top_left));
center_x_adj = center_x + abs(srch_pos_x);

else
ref_blk_mem_x_wrap_around = ref_blk_mem;
center_x_adj = center_x;

end

ref_blk_y_top_left = center_y + srch_pos_y + 1;
ref_blk_y_top_left = center_y + srch_pos_y;
if (ref_blk_y_top_left < 0)

ref_blk_mem_xy_wrap_around(1:abs(ref_blk_y_top_left), 1:64) =
ref_blk_mem_x_wrap_around(64 - abs(ref_blk_y_top_left)+1:64, 1:64);

ref_blk_mem_xy_wrap_around(abs(ref_blk_y_top_left) +1 : 64, 1:64) =
ref_blk_mem_x_wrap_around(1:64- abs(ref_blk_y_top_left), 1:64);

center_y_adj = center_y + abs(srch_pos_y);
else

ref_blk_mem_xy_wrap_around = ref_blk_mem_x_wrap_around;
center_y_adj = center_y;
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end

ref_blk_x_top_left = center_x_adj + srch_pos_x;
ref_blk_y_top_left = center_y_adj + srch_pos_y;

diff_blk(1:blk_sz_y, 1:blk_sz_x) =
ref_blk_mem_xy_wrap_around(ref_blk_y_top_left+1 :

ref_blk_y_top_left+blk_sz_y, ref_blk_x_top_left+1 :
ref_blk_x_top_left+blk_sz_x) -

org_blk_mem(1:blk_sz_y, 1:blk_sz_x);

SAD = sum(sum(abs(diff_blk(1:blk_sz_y, 1:blk_sz_x))));

OutputControlWord = 16384;
OutputData(1) = (srch_ptrn_cnt *2.^8) + srch_pos_idx;
OutputData(2) = SAD;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Reset local variables and return if abndn_me
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (abndn_me == 1)
srch_pos_idx = 0;

end
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Glossary

AsAP For Asynchronous Array of simple Processors. A parallel DSP processor consisting

of a 2-dimensional mesh array of very simple CPUs clocked independently with each

other.

CABAC For Context Adaptive Binary Arithmetic Coding. This is a process of loss-less

entropy coding used in Main and Higher Profile of H.264 Video Compression Standard.

CAVLC For Context Adaptive Variable Length Coding. This is a process of loss-less en-

tropy coding supported by all profiles of H.264 Video Compression Standard.

CIF For Common Intermediate Format. This is a format used to standardize the horizontal

and vertical resolutions in pixels of YCbCr sequences in video signals. CIF resolution

equals 352x288 pixels.

CMOS For Complementary metal-oxide-semiconductor.

DCT For Discrete Cosine Transform. DCT is used to transform a signal or image from

the spatial domain to the frequency domain.

DSP For digital signal processing or the processors for digital signal processing.

H.264 A standard for video compression. It is also known as MPEG-4 part 10.

HDTV For High Definition Television.

MAD For Mean Absolute Difference.

MAE For Mean Absolute Error.
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Micro-block is a region of a frame that is coded as a unit.

MPEG-4 MPEG-4 is a collection of methods defining compression of audio and visual

(AV) digital data.

MSD For Mean Square Difference.

MV For Motion Vector.

NTSC For National Television System Committee.

PAL For Phase Alternating Line. A color-encoding system used in broadcast television

systems in large parts of the world.

PSNR For Peak Signal to Noise Ratio. The ratio between the maximum possible power of

a signal and the power of corrupting noise that affects the fidelity of its representation.

Partition In H.264, luminance micro-block of size 16x16 pixels can be split in to smaller

micro-blocks of sizes: 16x8, 8x16, 8x8, 8x4, 4x8, or 4x4 pixels, defining 41 possible

pixel regions. Each of these regions is called as a Partition.

QCIF For quarter CIF. QCIF resolution equals 176x144 pixels.

SAD For Sum of Absolute Differences between the pixels of the current micro-block and

the pixels of the reference micro-block of the given size.

“sum of absolute differences” term For sum of the absolute differences between the

pixels in a row of the current micro-block and the pixels in a row of the reference

micro-block.

VLC Variable Length Code. In coding theory, a variable-length code is a code which maps

source symbols to a variable number of bits.
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