
A FINE GRAINED MANY-CORE H.264 VIDEO ENCODER

By

STEPHEN THE UY LE
B.S. (Oregon State University) March, 2007

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Chair, Dr. Bevan M. Baas

Member, Dr. Venkatesh Akella

Member, Dr. Soheil Ghiasi

Committee in charge
2010

– i –

c© Copyright by Stephen The Uy Le 2010
All Rights Reserved

Abstract

Video encoding has become an integral part for everyday computing from televisions and computers

to portable devices such as cell phones. Achieving high quality resolution over limited bandwidth

has lead to the development of the H.264 video standard providing greater encoding performance.

In this work an H.264 baseline video encoder is presented on a fine grained 167-core programmable

processor allowing for greater flexibility and parallelization. The encoderpresented is capable of

encoding QCIF-resolution video at 1.00 GHz while dissipating an average of 438 mW, and CIF-

resolution at 1.20 GHz while an average of 787 mW. The Asynchronous Array of Simple Proces-

sors (AsAP) platforms provides a new method of coding over a large number of simple processors

allowing for a higher level of parallelization than digital signal processors(DSP) while avoiding the

complexity of a fully application specific integrated circuit (ASIC).

– ii –

Acknowledgments

I would like to take this chance to thank to everyone that made this work possible. First

I would like to thank Professor Baas for his time, guidance, and support throughout my years at

Davis. The lessons that I learned here will help me for the rest of my career. I would like to thank

Professor Akella and Professor Ghiasi for their valuable support and time in reviewing my thesis.

Thank you to the University of California Davis for providing this educational institution

for learning and enrichment. Graduate school has opened many more doors for me in the future.

I would also like to thank Zhibin Xiao and Gouri Landge for their previous work on video

encoding and Dean Truong for helping me work on the AsAP chip, without your help it would have

taken me much longer to complete this project. I would also like to thank Henna Huang, Layne Miao

and all of the members of the VCL lab for their help and support throughoutmy project making it

not only a great learning experience but a great place to work.

Lastly I would like to thank my family. To my wife and daughter who put up with me

during these long months, thank you for your support and understanding on those 70+ hours of work

a week. Thank you to my parents and siblings for their encouragement andsupport throughout this

time.

This work was supported by ST Microelectronics; IntellaSys; SRC GRC Grant 1598 and

CSR Grant 1659; UC Micro; NSF Grant 0430090, CAREER Award 0546907 and Grant 0903549;

Intel; and SEM. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author and do not necessarily relect the views ofthe National Science

Foundation or any of the sponsors.

– iii –

Contents

Abstract ii

Acknowledgments iii

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Goals of Parallel Video Encoding .. 1
1.2 Project Contributions . 1
1.3 Organization . 2

2 Overview of Video Encoding and the H.264 Standard 3
2.1 General Video Encoding Concepts .. . 3

2.1.1 Digital Video . 4
2.1.2 Video Format . 5
2.1.3 Macroblock Partitioning . 7
2.1.4 Encoding Motion . 7

2.2 Overview of H.264 . 10
2.2.1 Encoding Path . 11
2.2.2 Profiles . 12
2.2.3 Intra Prediction . 12
2.2.4 Inter Prediction . 16
2.2.5 Integer Transform and Quantization . 18
2.2.6 Reference Frame Reconstruction . 23
2.2.7 Entropy Coding . 23
2.2.8 Network Abstraction Layer . 27

3 Processing Platforms Used for Video Encoding 31
3.1 Related Work in H.264 Processing .31

3.1.1 Video Encoding on General Purpose (GP) Processors 32
3.1.2 Video Encoding on Digital Signal Processors (DSP) 32
3.1.3 Video Encoding on Application Specific Integrated Circuits 33

3.2 Proposed H.264 Video Encoder Platform 33
3.2.1 General Overview of AsAP2 Architecture33
3.2.2 Dynamic Voltage and Frequency Scaling (DVFS) 34

– iv –

3.2.3 Memory Architecture . 35
3.2.4 Processor Interconnect .35
3.2.5 Motion Estimation Accelerator . 35

4 Parallel Programming Tools 41
4.1 Message Passing Interface (MPI) 41

4.1.1 Parallel C/MPI Wrapper . 41
4.1.2 AsAP Arbitrary Mapping Tool . 42

4.2 Parallel Programming . 45
4.2.1 Methodology . 45
4.2.2 Pitfalls . 49

5 Implementation 53
5.1 Parallel C Implementation . 53

5.1.1 General Overview . 53
5.1.2 Intra Prediction . 54
5.1.3 Inter Prediction . 54
5.1.4 Integer Transform & Quantization & Entropy Coding55
5.1.5 Network Abstraction Layer (NAL) . 55
5.1.6 Reference Frame Reconstruction . 56

5.2 AsAP Implementation . 56
5.2.1 General Overview . 56
5.2.2 Memory Organization . 58
5.2.3 Control Logic . 62
5.2.4 Intra Prediction . 64
5.2.5 Inter Prediction . 66
5.2.6 Integer Transform & Quantization & Entropy Coding70
5.2.7 Network Abstraction Layer (NAL) . 73
5.2.8 Reference Frame Reconstruction . 73

6 Results and Analysis 77
6.1 Metrics for Testing and Analysis .77
6.2 Performance Comparisons .79
6.3 Analysis . 82

6.3.1 Chip Utilization . 82
6.3.2 Processor Energy . 82
6.3.3 Processor Utilization . 92
6.3.4 Processor Memory Usage . 104
6.3.5 Communication . 104

7 Future Work and Conclusion 113
7.1 Architecture Enhancements for Parallel Programming 113

7.1.1 Multiple I/O Chips . 113
7.1.2 Multiple Input Processors . 113
7.1.3 Local Shared Memory . 114

7.2 Tool Enhancements for Parallel Programming 114
7.2.1 Arbitrary Mapping Tool For AsAP2 . 114
7.2.2 Analysis of I/O Traffic . 114

– v –

7.2.3 Enhanced I/O File Operations . 115
7.3 Additional Encoding Functions on AsAP .. 115
7.4 Conclusion . 116

Bibliography 117

– vi –

List of Figures

2.1 Temporal and spatial sampling . 5
2.2 Sample frame sizes . 6
2.3 Various video sampling formats [1] .8
2.4 Y component of YUV . 8
2.5 U and V Components of YUV picture . 9
2.6 Macro-block partitioning . 9
2.7 Difference between two frames .. 10
2.8 H.264 encoder path . 11
2.9 H.264 profiles . 13
2.10 Intra 16x16 modes . 14
2.11 Intra 4x4 blocks .15
2.12 Intra 4x4 modes . 16
2.13 Intra chroma modes . 16
2.14 Macroblock partition for ME .17
2.15 Sample macroblock partition for ME . 18
2.16 MV prediction from neighboring blocks [1] 19
2.17 Reorder transform blocks 20
2.18 CAVLC zig zag scan . 26

3.1 AsAP array . 34
3.2 AsAP processor architecture .. . 36
3.3 AsAP nearest neighbor communication .36
3.4 ME accelerator block diagram .37
3.5 ME Accelerator control sequence 38
3.6 ME accelerator interface .39
3.7 ME flow diagram . 39

4.1 C model of encoder in asapmap .43
4.2 Encoder processors in asapmap 44
4.3 Proposed mapping of processors by asapmap 46
4.4 Problems with more than 3 inputs per processor 48
4.5 Multiple input problem 3 . 48
4.6 Solutions for more than 2 inputs per processor 50
4.7 Multiple input solution 3 . 50

5.1 H.264 encoder path for parallel C/MPI implementation54

– vii –

5.2 FPGA-AsAP block diagram . 57
5.3 H.264 encoder path - AsAP .57
5.4 H.264 blocks on AsAP . 58
5.5 Partition of processor type on AsAP .. 59
5.6 Communication links for AsAP implementation 60
5.7 Current/reference frame on AsAP .. . 61
5.8 Macroblock storage in memory . 62
5.9 High level block diagram of intra prediction in AsAP 64
5.10 Intra prediction in AsAP . 65
5.11 Intra prediction mapping . 67
5.12 Intra chroma prediction AsAP layout .. . 68
5.13 Inter prediction in AsAP . 68
5.14 ME ACC reference macroblock partition . 69
5.15 ME diamond search . 70
5.16 Inter prediction in AsAP block diagram .. 71
5.17 Layout of inter prediction in AsAP .. 72
5.18 Block diagram of integer transform and CAVLC 72
5.19 Layout of integer transform and CAVLC on AsAP 73
5.20 Layout of header module on AsAP .. . 74
5.21 Block diagram of reconstruction module .. . 74
5.22 Layout of reconstruction module on AsAP 75

6.1 Power distribution of major blocks in intra prediction84
6.2 Power distribution for major blocks in inter prediction 84
6.3 Average power and number of encoded frames per second vs. frequency at 1.3V on

AsAP2 chip . 85
6.4 Average power and number of encoded frames per second vs. frequency at 1.2V on

AsAP2 chip . 86
6.5 Average power and number of encoded frames per second vs. frequency at 1.1V on

AsAP2 chip . 87
6.6 Average power and number of encoded frames per second vs. frequency at 1.0V on

AsAP2 chip . 88
6.7 Average power and number of encoded frames per second vs. frequency at 0.9V on

AsAP2 chip . 89
6.8 Average power and number of encoded frames per second vs. frequency at 0.8V on

AsAP2 chip . 90
6.9 Average power of prediction processors 91
6.10 Average power of reconstruction processors 93
6.11 Average power of integer transform processors 94
6.12 Average power for CAVLC processors 95
6.13 Average activity of processors used in intra prediction 96
6.14 Average Activity of processors used in inter prediction 96
6.15 Average activity of reconstruction processors 97
6.16 Average activity of integer transorm processors 98
6.17 Average activity of CAVLC processors 99
6.18 Comparison of average activty before and after frequency scaling for intra prediction 100
6.19 Frequency of intra prediction processors after frequency scaling 101
6.20 Average power of intra prediction processors after frequency and voltage scaling . 101

– viii –

6.21 Comparison of average activity before and after frequency scaling for inter prediction102
6.22 Frequency of inter prediction processors after frequency scaling 103
6.23 Average power of inter prediction processors after frequency and voltage scaling . 103
6.24 Number of instruction and data memory words used per processors. Dynamic Mem-

ory (DC Mem) is only listed for memory processors where they are used fordata
storage and computation. 105

6.25 Number of instruction memory words used per processor 106
6.26 Instruction memory usage for prediction processors 106
6.27 Number of instruction memory words used for integer transform, CAVLC, and re-

construction processors .107
6.28 Scatter plot of instruction memory vs. data memory for all processor. 108
6.29 Scatter plot of instruction and data memory for prediction processors 108
6.30 Scatter plot of instruction and data memory for integer prediction and CAVLC pro-

cessors . 109
6.31 Average and max throughput of major intra prediction communication links.Link

lenght is determined by the number of intersected processros minus 1. 110
6.32 Average and max throughput of major inter prediction communication links.Link

length is determined by the number of intersected processors minus 1. 111

– ix –

List of Tables

2.1 Frame rate . 4
2.2 Size of raw video . 4
2.3 Sample frame sizes . 5
2.4 Signed ExpGolomb code table . 24
2.5 Explicit Exp-Golomb code . 24
2.6 Prefix and suffix for codeNum .. . 24
2.7 Coded block pattern mapping . 24
2.8 CodeNum for block patterns .25
2.9 CAVLC components . 25
2.10 NALU bit field . 27
2.11 PPS fields . 28
2.12 SPS fields . 28
2.13 SH fields . 29

3.1 Encoder performance on Intel Quad Core 32
3.2 Encoder preformance on DSP platform 32
3.3 Encoder performance on ASIC Platform 33
3.4 Power measurements for various configurations on AsAP 35

5.1 Output format AsAP . 64

6.1 Performance of H.264 video encoder on AsAP2 chip 80
6.2 Comparison of H.264 Encoders * These value are interpolated from given data

based on the number of macroblocks that can be encoded per second 81
6.3 Comparison of custom layout and proposed mapping from AsAP arbitrary mapping

tool . 82
6.4 Power consumption of various AsAP instructions as measured in lab usedfor power

calculations in simulation . 83

– x –

1

Chapter 1

Introduction

1.1 Goals of Parallel Video Encoding

Demand for high quality video has become increasingly important in today’s society from

standard applications such as television broadcasting to streaming videos viacell phones. Video is

often stored or transmitted prior to use, because of bandwidth limitations however video must be

encoded for efficient transmission/storage. The computational complexity of this process has led to

many different solutions with application specific processors having great success. Programmable

solutions though flexible are not able to handle the computational load required and have focused

on smaller applications. To achieve high quality video encoding on a small programmable chip,

task and data level parallelism must be exploited at a fine grained level. The goal of this project

is to develop a real-time H.264 video encoder with performance comparable to application specific

processors and the flexibility of programmable processors.

1.2 Project Contributions

Research contributions of this project include:

• An MPI-C Baseline H.264 video encoder

• A real-time H.264 baseline video encoder on a asynchronous array of simple processors

• Thorough performance analysis for parallelization of a H.264 encoder

2 CHAPTER 1. INTRODUCTION

• Thorough processor analysis for a large fine grained application

1.3 Organization

The remainder of this paper is divided as follows. Chapter 2 provides a basic overview

of video encoding and the H.264 video standard. Chapter 3 deals with processing platforms used

for video encoding specifically the asynchronous array of simple processors proposed for this im-

plementation. Chapter 4 discusses some tools, methodologies, and pitfalls of parallel programming.

Chapter 5 presents the proposed implementation. Results, analysis, and comparisons with other

encoders are given in chapter 6. Chapter 7 concludes the paper with possibilities for future work.

3

Chapter 2

Overview of Video Encoding and the

H.264 Standard

Encoding a video sequence has always been a challenge due to the complexity of com-

pressing then reproducing an exact copy of the original file again. As the picture size increases the

problem becomes even greater, requiring more data to be compressed in thesame amount of time.

The H.264 standard [2] provides new encoding techniques yielding greater compression and higher

quality. The standard itself does not present an encoder or decoder but a syntax that must be met

to ensure that an encoded video stream can be decoded on a H.264 compliant decoder. Hence the

syntax given in the standard is defined for the decoding process and anencoder must essentially

produce that same syntax.

The H.264 Standard is a joint development of the Moving Picture Experts Group (MPEG)

and the Video Coding Experts Group (VCEG) released by the International Telecommunication

Union (ITU) Telecommunication Standardization Sector (ITU-T) as H.264 and Part 10 of MPEG-4.

2.1 General Video Encoding Concepts

Video sequences are a series of still pictures (referred to as frames from this point forward)

that are flashed at a high rate to give the impression that objects in the pictures are moving. In most

applications this requires approximately 25 frames per second (fps). Because of the high sampling

rate, the difference between each successive frame is relatively small, hence if only the difference

4 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

Frames Per Second Seconds Between Frames

(frame rate)

20 0.05

25 0.04

30 0.03

Table 2.1: Time interval for various frame rates

Video Length 1080p 720p SDTV CIF

(WxH in pixels) (1920x1080) (1280x720) (720x480) (352x288)

1sec 0.19 0.08 0.03 0.01

1 min 11.20 4.98 1.87 0.82

1 hour 671.85 298.60 111.97 49.27

Table 2.2: Size of uncompressed video in gigabytes @ 30fps and 24-bit pixel depth

between each frame is encoded the transmitted data is fairly small in comparison tothe original

video. Increasing the frame rate (number of frames per second) can provide an illusion of nearly

continuous motion but would requires greater encoder/decoder performance to provide real time

video.

2.1.1 Digital Video

Video is stored digitally then converted for viewing, however storing raw video would

require an enormous amount of space as shown in Table 2.2. To store a one hour segment of standard

definition quality video would require 47 regular DVDs! To compress videos, three parameters are

often looked at:

• temporal sampling: frame rate - how often is a frame sampled from a video sequence?

• spatial sampling: pixels - what is the number of pixels used to represent each frame?

• pixel depth: bits - how many bits are used to represent each pixel?

2.1. GENERAL VIDEO ENCODING CONCEPTS 5

Spatial Samples

Temporal Samples

Figure 2.1: Temporal and spatial sampling

Format Horizontal x Vertical Pixels per Frame Ratio of Pixels per Frame

Resolution (4:2:0 Format) Compared to SDTV

Sub-QCIF 128x96 12288 .02 : 1.0

Quarter CIF 176x144 38016 .06 : 1.0

CIF 352x288 152064 .25 : 1.0

4CIF (SDTV) 704x576 608256 1.0 : 1.0

720p 1280x720 1382400 2.3 : 1.0

1080p 1920x1080 2073600 3.4 : 1.0

Table 2.3: Sample of various frame sizes

2.1.2 Video Format

Various video formats are used depending on the quality of the video needed, smaller

formats are more compact and require less space to store but do not provide very high quality

resolution; larger formats allow for more detail but require more storage space, and consequentially

more computational power to encode. The Common Intermediate Format (CIF) and smaller ones

are commonly used for streaming type applications, such as mobile devices. 4CIF is often used

for standard definition televisions (SDTV) and DVD-videos, and 720p (720 lines of progressively

scanned data) or 1080p is commonly used for High Definition (HD) quality video. Table 2.3 and

Fig. 2.2 give a comparison of some common video formats, larger ones are ofcourse possible simply

by increasing the horizontal and vertical resolution of each frame.

6 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

Figure 2.2: Different frame sizes for digital video [1]

RGB

The pictures in Fig. 2.2 are shown in black and white where each spatial sample is rep-

resented by one value giving the brightness of the pixel. To represent color images at least three

values are required per pixel. One of the common methods of representing this color space is the

RGB format where Red, Blue, and Green are each represented by onenumber giving the brightness

desired, when combined together these three primary colors can create any other color.

YCbCr (YUV)

Another common format YCbCr(commonly referred to as YUV) takes advantage of the

fact that the human eye is more sensitive to brightness than color, that is we can notice slight changes

in light and dark easier than different shades of a color. In RGB formateach color is represented

equally, to get every pixel in color requires 3 values per pixel. In the YUVformat the bright-

ness/luminance (luma) is separated from the color (chroma) so that each can be given a different

weight. One variable (Y) determines the luminance component, and two variables U and V give the

chrominance of each pixel. The conversion between RGB and YUV formatcan be done using the

simplified equations (2.1) recommended by the ITU-R.

2.1. GENERAL VIDEO ENCODING CONCEPTS 7

R = Y + 1.402Cr

G = Y − 0.344Cb − 0.714Cr

B = Y + 1.772Cb (2.1)

Sampling Formats

Various sampling format for YUV give different weights to the luma and chroma com-

ponents. Full sampling (referred to as 4:4:4) gives equal weight to all three, similar to RGB, this

format requires 3 values to represent each pixel. The 4:2:2 format gives the chroma components

half the weight of the luma components. For each 4x4 block of luma pixels, the chroma component

is represented with the same weight in the vertical direction but half the weightin the horizontal

position, that is every other column is represented with both luma and chroma components, and the

intermediate columns are only represented by luma components. The 4:4:4 and 4:2:2 formats are

generally used for high quality color videos. The more popular 4:2:0 formatused in this paper gives

chroma one quarter the resolution of the luma component. As shown in Fig. 2.3(a), for each 4x4

block of luma pixels there is only one U and V component. Also note that the numbering scheme

for 4:2:0 does not necessarily correspond to representations and directions.

2.1.3 Macroblock Partitioning

In sampling video frames, pixels are grouped into blocks of 16x16 to form amacroblock.

Figure 2.6 shows the partition of macroblocks on a CIF video frame. Encoding is done on a mac-

roblock basis with macroblock 0 in the top left corner and the last macroblockin the bottom right.

For the 4:2:0 format, each 16x16 (256 pixels) luma macroblock corresponds to two 8x8 (64 pixels)

chroma block. Within each macroblock the pixels are ordered starting with index 0 in the top left

corner and 255 in the bottom right corner.

2.1.4 Encoding Motion

Between each successive frame there is relatively little differences in motion. Generally

it is from either the camera panning/moving or from some object/person moving,Fig. 2.7 shows

8 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

(a) 4:2:0 format (b) 4:2:2 format

(c) 4:4:4 format

Figure 2.3: Various video sampling formats [1]

Figure 2.4: Y component of YUV picture

2.1. GENERAL VIDEO ENCODING CONCEPTS 9

(a) U Component in YUV (b) V Component in YUV

Figure 2.5: U and V Components of YUV picture

Figure 2.6: Macroblocks partition of 16x16 pixels in CIF frame

10 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

(a) frame 0 (b) frame 1 (c) frame 1 - frame 0

(d) Y component of differ-

ence

(e) U component of differ-

ence

(f) V component of difference

Figure 2.7: Difference between two frames

two successive frames with the bright spots in Fig. 2.7(c) showing the difference. To determine the

difference between each frame, each macroblock (16x16 square of pixels) is compared to a similar

area in a previous frame to find the closest match. One method is to overlay the two regions then

do direct subtraction to find the sum of absolute differences (SAD) for that position, the current

macroblock is then moved one pixel in any direction and the SAD is recalculated. Once this is done

a certain number of times, the position with the minimum SAD is chosen to be encoded.Since

there is little motion between frames due to the high frame rate, the search area can generally be

limited to a small area. If two frames are uncorrelated (have no similarities) the SAD will be much

greater, this will only generate more data to be encoded but will not affectthe accuracy/quality of

the decoded picture.

2.2 Overview of H.264

The H.264 standard defines a syntax for decoding a compressed video,in this work an

encoder perspective will be taken. The encoding process should matchthe decoding process as close

as possible to ensure quality video compression and decompression. For adetailed explanation of

2.2. OVERVIEW OF H.264 11

Figure 2.8: General H.264 encoder path [1]

the decoder please refer to the standard [2].

2.2.1 Encoding Path

Figure 2.8 shows the main functional blocks that are generally included in a H.264 com-

pliant encoder. The encoder provides multiple paths for encoding depending on which mode is

chosen, for the baseline encoder only two paths are available.

The top blocks in figure 2.8 make up the forward/encoding path, while the bottom blocks

represent the reconstruction path for reference frames. The input (Fn) contains the frame to be

encoded, macro blocks to be encoded are sent to the intra or inter prediction modules. After intra or

inter prediction, a predicted macroblock (P) is formed and subtracted fromthe original input (Fn)

to form (Dn) the difference macroblock. The difference macroblock is then integer transformed and

quantize to produce a set of transform coefficients (X). The transform coefficients are then entropy

encoded and sent out.

The reconstruction path is formed from the transform coefficients (X) prior to being

entropy encoded. They are scaled and inverse transformed to produce reconstructed difference

macroblock (Dn’) which are then added to back to the prediction macroblock(P) to from the re-

constructed macroblock (uFn’). For display purposes, the reconstructed macroblock is also goes

through a filter to remove any differences introduced in the quantization andscaling process.

12 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

2.2.2 Profiles

The H.264 standard supports three types of profiles: baseline, main, andextended. In the

baseline profile intra (I) slices and inter (P) slices, entropy encoding via context-adaptive variable-

length coding (CAVLC), slice groups, and redundant slices are supported. Intra frame are produced

from data in the current frame only, inter frames are produced from previously encoded frames.

The main profile also supports B frames/slices which are predicted from bothprevious and future

frames as well as other methods for optimizing coding. The extend profiles supports switching I

and P frames for more efficient switching between frames as well as other optimization methods.

Figure 2.9 shows a visual representation of the differences and similaritiesbetween the three types

of profiles. A new commonly used set of parameters is referred to as the constrained baseline

profile which includes only the options that are overlapped between all three profiles, specifically,

I slices, P slices, and CAVLC, this allows for a simpler encoder/decoder. This work deals with the

baseline profile, specifically the constrained baseline options and will be discussed in the section

below, for a more detailed description of the main and extended please referto the standard [2] and

Richardson [1].

2.2.3 Intra Prediction

In intra prediction the current macroblock is encoded using only the previously encoded

macroblocks in the same frame. The first frame for every video sequencemust be intra coded since

there are no previous frames that can be used as reference. Intra prediction is also commonly used

when switching video sequences where there is little to no correlation betweenthe frames.

Since encoding is done in order from the top left corner to the bottom right corner, the

macroblocks directly above and to the left are generally available for comparison. Because of

the high correlation between neighboring macroblocks in a frame, a fairly accurate prediction can

be made to predict the current macroblock. Intra prediction supports 16x16 macroblock partition

and 4x4 macroblock partition for the luma components, the 16x16 modes are generally used for

homogeneous areas where there is relatively little difference such as a background, the 4x4 block

mode are used in areas of greater detail such as facial features. Both 16x16 and 4x4 prediction

are computed then compared, the best prediction (minimum SAD) mode is then sent off to be

2.2. OVERVIEW OF H.264 13

Figure 2.9: H.264 profiles [1]

14 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

Figure 2.10: Prediction modes for intra 16x16 macroblock partition [1]

encoded. A predicted value for each pixel is first determined dependingon the mode, this value is

then subtracted from the current pixel to get the residue which will be encoded.

16x16 Prediction

In intra 16x16 luma prediction, four modes are possible, vertical, horizontal, DC, and

plane. All four modes are computed to determine the closes match (least amountof residue -

minimum SAD), the best mode is then chosen for comparison with intra 4x4 luma prediction. In

vertical prediction, the predicted value is taken from the last row of the above macroblock (H),

shown in Fig. 2.10, hence for every pixel in that column the same predicted value is used. In

horizontal prediction, the predicted value is taken from the right most columnof the left neighboring

macroblock in the same row (V), as with vertical prediction, the same predictedvalue is used for

the entire row, and is subtracted from the current pixel. In DC prediction,the average of last row of

the above macroblock and the right most column of the left macroblock values(H+V)are taken to

be the predicted value, if either of above or left data is unavailable, the predicted value for that side

is take to be 2̂(bit depth-1) (for a bit depth of 8, this is 128), hence this mode can always beused for

prediction. In DC prediction mode, the same predicted number is used for the entire block. In plane

mode a linear plane function is generated from the upper and left samples (H, V) with different

predicted values depending on the location.

4x4 Prediction

In intra 4x4 luma prediction the four modes from intra 16x16 prediction are available as

well as five additional modes. The 16x16 macroblock is divided into four rows and four columns

2.2. OVERVIEW OF H.264 15

1 6 P i x e l s

1 6 P i x e l s

4 x 4B l o c k 0 4 x 4B l o c k 1 4 x 4B l o c k 2 4 x 4B l o c k 34 x 4B l o c k 4 4 x 4B l o c k 5 4 x 4B l o c k 6 4 x 4B l o c k 74 x 4B l o c k 8 4 x 4B l o c k 9 4 x 4B l o c k 1 0 4 x 4B l o c k 1 14 x 4B l o c k 1 2 4 x 4B l o c k 1 3 4 x 4B l o c k 1 4 4 x 4B l o c k 1 5
Figure 2.11: Partition for intra 4x4 macroblocks

producing 16 blocks 4 pixels tall by 4 pixels wide as shown in Fig. 2.11. The best mode for each

4x4 block is first determined, once this is done the total SAD for all 16 blocksare compared with

the 16x16 prediction mode to determine the best one. Values used for prediction are computed from

either the above and left macroblock if the current 4x4 block lies on an edge (blocks 0-3, 4, 8, or 12),

and within the same macroblock for the other 4x4 blocks. The modes available for prediction are

shown in Fig. 2.12. Vertical, horizontal, and DC modes are computed in a similar manner as intra

16x16 mode. For the remaining modes the predicted value is extrapolated fromthe top, left, and

top-right pixels. For a more detailed description of these modes please refer to the H.264 Standard.

Chroma Prediction

Intra chroma prediction is done independent of the luma prediction but with similar modes

to intra 16x16 prediction numbered differently. In DC prediction, the chromablock is divided into

a total of four 4x4 blocks and predicted in a similar manner to intra 4x4 blocks but with different

constraints on which side (H) or (V) is chosen for the prediction value. Please refer to standard for

16 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

Figure 2.12: Prediction modes for intra 4x4 macroblock partitions [1]0 (D C) 1 (H o r i z o n t a l) 2 (V e r t i c a l) 3 (P l a n e)

Figure 2.13: Intra prediction chroma modes [1]

a more detailed description of how the predicted value is determined.

Encoding Prediction Modes

The prediction mode for each macroblock and 4x4 block if used must also be sent to the

decoder in order to reproduce the current frame. In intra 4x4 prediction, there is a high probability

that the prediction modes for adjacent (above and left) blocks are similar to the current one. Based

on this the encoder and decoder can calculate the most probable mode of coding. If the predicted

mode for coding is the same as the one used, a flag is asserted and only one bit is needed to signify

this, if a different mode is used the flag is de-asserted and the encoding mode used must be sent.

2.2.4 Inter Prediction

In inter prediction macroblocks are predicted from previously encoded frame, using the

reconstructed frame data from the encoder rather than the original data toprovide the closest match

2.2. OVERVIEW OF H.264 17

(a) ME Block Partition

(b) ME Sub-Block Partition

Figure 2.14: Macroblock partitions for motion estimation [1]

to the data used by the decoder. Four macroblock partitions are available for inter prediction given

in Fig. 2.14(a), if an 8x8 block mode is chosen, each 8x8 block can be furthered partitioned as

shown in Fig. 2.14(b). An example of how different partitions may be chosen for a frame are shown

in Fig. 2.15.

Motion Estimation

In motion estimation a search window of 3x3 macroblocks (48x48 pixels) is often used,

the current block is moved within the search window to find the best match by calculating the

resulting residue. Once the best matching block is found a set of motion vectors for that block is

calculated by taking the difference in position of the current block in the frame with the position

of the chosen block in the reference frame, this provides directions for the decoder to find the best

matching position. The search is repeated for the other block modes and the best one is chosen.

18 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

Figure 2.15: Sample macroblock partition for ME [1]

Encoding Motion Vectors

Motion vectors are encoded similarly to prediction modes in intra 4x4 prediction.There

is a high correlation between neighboring blocks since objects that move generally consists of

groups/block of pixels, hence motion vectors are predicted from the above, left, and above-right

set of motion vectors. If the blocks chosen are of similar size, Fig. 2.16(a)shows which ones are

used for prediction. If the neighboring blocks are of different sizes,Fig. 2.16(b) shows which blocks

are used for prediction under certain conditions, please refer to the standard [2] as to when which

blocks are used. The neighboring motion vectors are used to generate a predicted motion vector

which is used to subtract the current motion vector from to produce a motion vector difference that

is encoded and sent.

2.2.5 Integer Transform and Quantization

To further reduce the number of bits required for representation, the difference mac-

roblock is integer transformed and quantize. Prior to the integer transformeach macroblock is

reordered and data is sent according to Fig. 2.17 regardless of what prediction mode is used. If intra

2.2. OVERVIEW OF H.264 19

(a) ME Same Size Neighbor Blocks

(b) ME Different Size Neighbor Blocks

Figure 2.16: MV prediction from neighboring blocks [1]

20 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

Figure 2.17: Block order for integer transform and CAVLC [?]

16x16 prediction is used, an additional block is sent containing the DC coefficients (first pixel of

each 4x4 block) prior to the rest of the data, hence 25 blocks are sent rather than 24 in the normal

case. In H.264, three types of transforms are used, a Hadamard for theDC coefficients used in intra

16x16 prediction, a Hadamard transform for the DC chroma coefficients inany macroblock, and

DCT based integer transform for the remaining residue data.

4x4 Residual Transform & Quantization

Blocks 0-15 and 18-25 first undergo an integer transform that uses only integer arithmetic

(additions and shifts) which allows the decoder and reconstruction path to reproduce the data with

100% accuracy. The quantization/scaling process however is not loss-less and introduces minor

errors in the reconstruction of data. The reconstruction path however isbuilt to mirror the decoding

path, thus the same error is introduced in both sides and will yield the same prediction for the

following blocks. The DC coefficients for the chroma components, blocks 16 and 17 are taken after

this transform and quantization process. The DC coefficients for intra 16x16 mode are bypassed

directly to the Hadamard transform though.

The forward integer transform is done using equation (2.2) where X represents the 4x4

2.2. OVERVIEW OF H.264 21

input block to be transformed and Y is the resulting transform. For a full derivation of this equation

please refer to Richardson [1].

Y

=

1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1

X

1 2 1 1

1 1 −1 −2

1 −1 −1 2

1 −2 1 −1

(2.2)

After the integer transformed, the coefficients are quantize to further reduce the energy

needed to send/store the residual data by rounding. The rounding is performed by equation (2.3)

whereYij is the input after the integer transformed,Zij is the resulting output, the MF (multiplica-

tion factor) is derived in tables within the H.264 standard and f is defined by equation (2.5) for inter

prediction and equation (2.6) for intra prediction. The quantization parameter (QP) in equation (2.4)

is in the range of 0-51 and the floor function is the matlab rounding function. Varying the QP varies

the resolution of the encoded values and the amount of work needed to encode the remaining data.

|Zij | = (|Yij | ∗ MFij + f) >> qbits

sign(Zij) = sign(Yij) (2.3)

qbits = 15 + floor(QP/6) (2.4)

f = 2qbits/6 :inter prediction (2.5)

f = 2qbits/3 :intra prediction (2.6)

4x4 DC Transform & Quantization

If the selected encoding mode is intra 16x16 the luma DC coefficients (first coefficients

for every 4x4 luma block) are sent directly to a Hadamard transform given by equation (2.7) and

quantize by using equation (2.8). The inputXDC is from the original 4x4 input,YDC is the

22 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

transformed output, andZDC is the quantize output. Qbits and f are defined as before andMF0,0

is the MF coefficient in the (0,0) position from the tables used in equation (2.3).

YDC

=

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

XDC

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

(2.7)

|ZDC(ij)| = (|YDC(ij)| ∗ MF0,0 + 2f) >> (qbits + 1)

sign(ZD(ij)) = sign(YD(ij)) (2.8)

2x2 Chroma DC Transform & Quantization

The chroma DC coefficients are first transformed using equation (2.2) then sent to another

Hadamard transform for further transform and quantization. The fourcoefficients for Cb and Cr

are transformed separately using equation (2.9) and are quantize using equation (2.10). Constants

MF0,0, f, and qbits are defined as before.

YC

=

1 1

1 −1

XC

1 1

1 −1

(2.9)

|ZC(ij)| = (|YC(ij)| ∗ MF0,0 + 2f) >> (qbits + 1)

sign(ZC(ij)) = sign(YC(ij)) (2.10)

2.2. OVERVIEW OF H.264 23

2.2.6 Reference Frame Reconstruction

After the forward encoding process data is passed to both the entropy encoder and ref-

erence frame reconstruction block. The chroma DC coefficients and intra16x16 DC coefficients

are first inverse transformed and re-scaled then re-inserted back intotheir respective blocks before

being inverse transformed again. For details and the equations used for reconstruction please refer

to Richardson [1]. The reconstructed data is then stored and used for both intra and inter prediction.

2.2.7 Entropy Coding

After undergoing integer transform and quantization, the residue data can be further en-

coded using a context-adaptive variable-length coding method which takesadvantage that there are

mostly zeros, the number of non zero coefficients for neighboring blocksare correlated, most of the

non-zero data is either positive or negative one, and that coefficients closer to the DC value (closer

to the beginning) are generally higher. The prediction modes (intra prediction) and motion vectors

(inter prediction) however do not have these properties and are codedusing Exp-Golomb coding.

Exp-Golomb Coding

Exp-Golomb coding is used for encoding the prediction modes in intra prediction, motion

vectors in inter prediction and the block patterns for intra and inter prediction. The following ref-

erences tables are partially shown in this text, complete tables can be found in the H.264 standard

section 9.1.1. Intra and inter prediction modes are predicted using unsignedExp-Golomb codes in

Table 2.5. Motion vectors are first mapped to code numbers using Table 2.4 then the code words are

encoded using Table 2.6.

In encoding macroblocks, some blocks after the transform and quantization process con-

tain only data with value zero, these blocks do not need to be entropy encoded using the CAVLC but

can be signaled using the coded block pattern. The coded block pattern is a6-bit field with the first

four bits used to represent an 2x2 region of the macroblock (4 8x8 blocks). If all the data within that

block is zero then the corresponding bit is set to zero else it is set to one. The last two bits are used

to show the three possibilities for both chroma blocks this is shown in Table 2.7, once the codeNum

is obtained it is coded using Table 2.8 which correspond to the bit strings in Table 2.5.

24 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

codeNum syntax element value

0 0

1 1

2 -1

3 2

4 -2

... ...

Table 2.4: Signed ExpGolomb code table

Bit string codeNum inter mode

1 0 16x16

010 1 16x8

011 2 8x16

00100 3 8x8 w/ sub partition

00101 4 8x8 w/o sub partition

...

Table 2.5: Explicit Exp-Golomb code

Bit string form Range of codeNum

1 0

0 1X0 1-2

0 0 1X1 X0 3-6

0 0 0 1X2 X1 X0 7-14

... ...

Table 2.6: Prefix and suffix for codeNum

bit field description

5:4 00: All Chroma Data 0

01: DC = 0, AC != 0

10: DC 0, AC!= 0

3 0: Block = 0

2 1: Block != 0

1

0

Table 2.7: Coded block pattern for intra4x4 modes

2.2. OVERVIEW OF H.264 25

codeNum coded block pattern

Intra4x4, Intra8x8 Inter

0 47 0

1 31 16

2 15 1

3 0 2

...

Table 2.8: CodeNum for block patterns

CAVLC Components Description

coeff toden Encodes the number of non-zero and trailing one coefficients per block

trailing onesign flag Encodes the sign of the trailing ones per block

level Encodes the magnitude and sign of the remaining non-zero coefficients

total zero Encodes the number of zero coefficients after the first non-zero number

run before Encodes the number of zeros before each non-zero coefficients

Table 2.9: CAVLC components

Context Adaptive Variable Length Coding (CAVLC)

The CAVLC process does not take data in raster scan order (top left to bottom right) but

in zig zag order as shown in Fig. 2.18, data is however encoded in the reverse order, starting at the

end and working back up. First the coefftoken (non-zero coefficients and trailing ones) for the 4x4

block is determined and encoded using tables. The sign of each trailing one (positive or negative

ones that occur at the end of the zig zag scan before any other non-zero coefficients) is then encoded

and sent. The level (sign and magnitude) of the remaining non-zero coefficients are then encoded.

Finally the number of zeros before the first non-zero coefficient and the number of zeros between

each non-zero coefficient is encoded and sent. For a more detailed description of the CAVLC along

with the tables please refer to Zhibin’s [3] research work.

Encoding coeff token

The coefftoken encodes the number of total non-zero coefficients in each 4x4 block,

this can range from 0-16. The number of trailing ones is limited to three per 4x4block, all other

trailing ones after that are considered as normal non-zero coefficients. The encoded value is based

26 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

Figure 2.18: Zig zag scan order for CAVLC [1]

on 4 look up tables depending on the number of non-zero values in the above and left blocks.

Because the decoder cannot know the number of non-zero coefficients in the current block this value

is predicted from surrounding previously encoded blocks, as the number of non-zero coefficients

increases different tables are selected.

Encoding trailing one sign flag

After integer transform and quantization, many of the remaining coefficientsare +/- 1 and

0’s. Trailing ones are counted in reverse zig-zag scan order and arethe +/- 1’s before any other

non-zero coefficients are encountered. Up to 3 +/- 1’s are counted astrailing ones and only the sign

needs to be encoded and can be done with just one bit, 0 - negative, 1 - positive.

Encoding levels

The level for each remaining non-zero coefficient (in reverse zig-zag order) is encoded in

two parts, the suffix (0-6 bits) and a prefix. The values for the prefix and suffix vary depending on

the previously encoded values for the current block. Please refer to subsection 9.2.2.1 of the H.264

standard for a detailed description of the level parsing process.

Encoding total zero

The total number of zero coefficients before the first non-zero coefficient (normal zig-zag

order) is also encoded using a table, by doing this any zeros preceding the first non-zero coefficient

2.2. OVERVIEW OF H.264 27

NAL Unit Octet (bit) Description

7:3 NAL Unit Type

2:1 NAL Reference Id (NRI)

0 Forbidden Bit, always 0

Table 2.10: Bit field for NALU

will not need to be encoded.

Encoding run before

The number of zeros before each non-zero value is also encoded in order to reconstruct

the residual data block. Starting in reverse zig-zag scan order, the number of zeros is encoded. The

encoded value changes based on the number of zeros remaining and the last run of zeros before the

last coefficient does not need to be encoded since we already know thetotal number of zeros.

2.2.8 Network Abstraction Layer

Once the residue data, prediction modes, and motion vectors have been encoded they are

added to the network abstraction layer to be sent the encoder. The network abstraction layer (NAL)

contains vital information for the decoder to decode and reproduce the original video sequence.

Each video sequence is started with a picture parameter set (PPS) that contains information for the

rest of sequence. This is followed by the sequence parameter set (SPS) which contains data on

variables specific the frames in this sequence, and finally before each frame is sent, a slice header

(SH) is sent with relevant data for the current frame. Each PPS, SPS, and SH is signaled in the bit

sequence by a NAL unit which contains a start code, block type, and data. The bit fields for the

NALU is given Table 2.10, for a complete listing of the values and function please refer to table 7-1

of the H.264 standard.

28 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

Picture Parameter Set

profile idc

constrainedset0flag

constrainedset1flag

constrainedset2flag

constrainedset3flag

reservedzero 4bits

level idc

seqparameterset id

log2 max frame num minus4

pic order cnt type

log2 max pic order cnt lsb minus4

num ref frames

gapsin frame num valueallowedflag

pic width in mbsminus1

pic height in mapunits minus1

frame mbsonly flag

direct 8x8 inferenceflag

frame croppingflag

vui parameterspresentflag

Table 2.11: PPS fields

Sequence Parameter Set

pic parameterset id

seqparameterset id

entropycodingmodeflag

pic order presentflag

num slice groupsminus1

num ref idx 10 activeminus1

num ref idx 11 activeminus1

weightedpred flag

weightedbipred idc

pic init qp minus26

pic init qs minus26

chromaqp index offset

deblockingfilter control presentflag

constrainedintra pred flag

redundantpic cnt presentflag

Table 2.12: SPS fields

2.2. OVERVIEW OF H.264 29

Slice Header

first mb in slice

slice type

pic parameterset id

frame num

idr pic id

pic order cnt lsb

no outputof prior flag

long term referenceflag

slice qp delta

Table 2.13: SH fields

30 CHAPTER 2. OVERVIEW OF VIDEO ENCODING AND THE H.264 STANDARD

31

Chapter 3

Processing Platforms Used for Video

Encoding

Various platforms have been used for video processing with varying results. The platform

spectrum ranges from general purpose computers to chips built specifically for video encoding,

depending on the application performance needed, different platforms are chosen. This chapter

looks at some the various platforms used for video encoding and presentsthe proposed platform.

3.1 Related Work in H.264 Processing

Previous implementations of H.264 video encoders have been done on nearly all levels.

Encoders on general purpose (GP) processors have been developed as the golden model for compar-

ison and development. General purpose processors however are not able to meet the constraints of

real-time video encoding and is used primarily as a reference point. Multimedia co-processors have

also been used for video encoding, these however have focused on smaller frame sizes, generally

CIF and below with high power consumptions making them not as desirable in portable applications.

ASIC have managed to provide low power real time video encoding, however since these processors

are application specific, they cannot be easily modified for future implementations or other config-

urations. Section 3.1.1 presents implementations on GP processors, section 3.1.2 presents solution

on DSP chips, and section 3.1.3 presents ASIC implementations.

32 CHAPTER 3. PROCESSING PLATFORMS USED FOR VIDEO ENCODING

GP Processing Platform

Processor Type Intel Xeon w/ HT

Number of Processors4

Threads 8

Speed 2.8GHz

L2 Cache 256 KB

L3 Cache 2 MB

Performance 4.6 frames/s (CIF)

Table 3.1: Performance of H.264 Video encoder on Intel Quad Core Processor [4]

DSP Processing Platform

Processor Intel PXA27x

Speed 624 MHz

Accelerator Intel MMX (64-bit SIMD)

Memory

Performance 49 frames/s (QCIF Average)

Table 3.2: Performance of video encoder on Intel DSP platform [5]

3.1.1 Video Encoding on General Purpose (GP) Processors

The H.264 video encoder is implemented in software for general purpose processors,

Chen and others [4] looks specifically at optimizing an encoder on Intel’s Pentium 4 processor.

Because of the complexity of the encoding process their implementation was done using proces-

sors with multi-threading capabilities using software optimization to speed up the process by 4.6x

over traditional SIMD implementations which provide approximately 1 frame/s forCIF-resolution

sequences.

3.1.2 Video Encoding on Digital Signal Processors (DSP)

Digital signal processors have provided more promising results with fasterthroughput.

Wei and others [5] has implemented a real time H.264 video encoder on an Intel PXA27x processor

used on the HP IPAQ hx4700 PDA which includes Intel’s Wireless MMX technology for multimedia

acceleration yielding an average of 49 frames/s for CIF-resolution sequences using a QP value of

28.

3.2. PROPOSED H.264 VIDEO ENCODER PLATFORM 33

ASIC Processing Platform

Technology .180 um CMOS

Voltage 1.8V

Core Area 7.68 x 4.13 mm2

SRAM 34.72 KB

Performance 81 MHz

(SD 720x480) 581 mW

Performance 108 MHz

(720p 1280x720) 785 mW

Table 3.3: Encoder performance on ASIC Platform [6]

3.1.3 Video Encoding on Application Specific Integrated Circuits

ASIC have by far provided the best performance compared to other implementations,

Huang and others [6] have implemented a chip consisting of five major blocks (Integer/Fractional

ME, Intra Prediction, Entropy Encoding, and Deblock Filtering), to perform real-time 720p encod-

ing.

3.2 Proposed H.264 Video Encoder Platform

The proposed architecture for this video encoder is an asynchronousarray of simple pro-

cessors (AsAP) [7] specifically the second generation AsAP2 developed by the VLSI computation

lab at the University of California Davis. This platform allows for a highly parallel implementation

over a small area, using little power with performance scalability.

3.2.1 General Overview of AsAP2 Architecture

The AsAP array has 167-processors, with 3 dedicated processors for FFT computation,

Viterbi coding, and motion estimation. There are also 3 shared memory banks atthe bottom of the

array each containing 16KB of memory. Some key features of the AsAP processors are:

• each processor is small, containing only 128 word of instruction and 128 words of data mem-

ory

34 CHAPTER 3. PROCESSING PLATFORMS USED FOR VIDEO ENCODING

M e m V i tM o t i o nE s t . M e m M e m
d a t ar e q u e s t

V d d H i g hV d d L o wV d d A l w a y s O nV d d O s c
D V F S O S C V d d C o r ec l o c kv a l i d d a t ar e q u e s tc l o c kv a l i d

F F T
C o r e

Figure 3.1: General layout of AsAP array

• each processor has 4 links in each direction for nearest neighbor andlong distance communi-

cation

• each processor has 2 inputs with dual-clock FIFO’s [8]

• each processor’s voltage and frequency can by dynamically scaled for optimization

3.2.2 Dynamic Voltage and Frequency Scaling (DVFS)

Each processor in the AsAP array can be independently frequency scaled from 10MHz

to 1.2GHz as well as choose from either of two voltage rails (V ddhigh andV ddlow) [9] allowing

for performance optimization and reduced energy consumption for computationally less intensive

workloads. The ability to have each processor configured independently allows for higher perfor-

mance in bottle-necks areas in the encoding path and less wasted energy onidle modules. Because

of the instruction and data memory constraints of AsAP many processors areused for routing or

long distance connections only, these processors can be set to lower frequencies and voltages to

minimize power consumption.

3.2. PROPOSED H.264 VIDEO ENCODER PLATFORM 35

Frequency Voltage Power

1.2 GHz 1.3 V 62 mW

1.07 GHz 1.2 V 47.5 mW

66 MHz .675 V .608 mW

Table 3.4: AsAP power measurements for various voltage and frequencyconfigurations

3.2.3 Memory Architecture

Each processor has 128 words of instruction memory for programming and128 word data

memory for storage, a 27 word dynamic configuration memory is also available for use as pointers

and setting input output configurations. The data memory (DMem) is a single ported SRAM 16-bits

wide by 128 words. The memory space is replicated allowing for memory access for two operands

in a single cycle. The three shared memory (16 KB each) [10] at the bottom of the processor array

can be accessed by two processor each for additional storage space. Each contains a single ported

16-bit x 8KWord SRAM with single cycle read and writes.

3.2.4 Processor Interconnect

Each processor has 8 links as shown in Figure 3.2, the links are independent of the core

so they can configured for long distance communication (bypassing the core). Two dual clock

FIFOs can connect any of the 8 links to the core for input data. The dualclock FIFO’s allow

each core to run at a separate frequency and still be able to communicate witheach other. Each

FIFO is 64 words deep with a stall signal to tell the communicating processor when it is full.

The link directions are signified by north, east, south, west, and up, down, left, right. For long

distance communication, compass direction outputs can talk to any other compassdirection, and

any direction output can be connected to another (north and connect to south but not down). The

input direction to each processor is statically configured during programming, while the output

direction can by dynamically switched during run-time.

3.2.5 Motion Estimation Accelerator

Motion estimation is a highly computational task and has been implemented as a hardware

processor on AsAP. The motion estimation accelerator (MEACC) [11] allows for communication

36 CHAPTER 3. PROCESSING PLATFORMS USED FOR VIDEO ENCODING

Figure 3.2: Major blocks in AsAP processor

Processor Processor

East In

East Out

Right Out

Right In

S
o
u

th
 O

u
t

S
o
u
th

 In

D
o

w
n

 O
u

t

D
o

w
n

 In

West Out

West In

Left out

Left In

N
o

rt
h

 I
n

N
o
rt

h
 O

u
t

U
p

 I
n

U
p

 O
u

t

Figure 3.3: Nearest neighbor communication links for AsAP processors

3.2. PROPOSED H.264 VIDEO ENCODER PLATFORM 37

Figure 3.4: block diagram ME accelerator on AsAP2

with two neighboring processors for control. The block diagram for the ME ACC is given in Fig-

ure 3.4. The accelerator has its own memory for storing the current macroblock and search window

allowing for faster computation.

General Architecture

After the ME ACC loads the required current and reference data, a set of searchpatterns

is loaded along with the block size used for prediction and the start signal. The ME ACC will then

return the SAD value for that search position to the neighboring processor, this can be continued by

sending a continue signal or abort signal once the neighboring processor determines that a sufficient

match has been found.

Dedicated Memory

The ME ACC has two dedicated memory banks one for storing the current macroblock

and one for storing the reference search window. The current macroblock memory consist of 2

banks, each 8 8-bit words wide, and with 16 rows, allowing for one 16x16 macroblock. The refer-

38 CHAPTER 3. PROCESSING PLATFORMS USED FOR VIDEO ENCODING

Figure 3.5: Steps for running ME accelerator

ence memory contains 8 banks each 8 8-bit words wide with 64 rows allowing for 16 macroblocks

(4x4 macroblocks). The extra row and column in the reference memory canbe used for pre-loading

of memory to hide latency. For a more detailed description of the memory architecture please refer

to Gouri’s thesis [11].

Programmable Search Algorithm

The search area and pattern in the MEACC are user defined allowing for different types of

searches such as full search, 4-step, diamond as well as any custom ones. The accelerator currently

allows for 4 sets of search patterns, each with 64 different programmablesearch locations. During

run time the desired search pattern is selected by writing to a register, the indexes in the search

pattern are then incremented by writing to the MECONT register.

3.2. PROPOSED H.264 VIDEO ENCODER PLATFORM 39

Figure 3.6: Interface for ME accelerator on AsAP2

Figure 3.7: Flow diagram for ME algorithm

40 CHAPTER 3. PROCESSING PLATFORMS USED FOR VIDEO ENCODING

41

Chapter 4

Parallel Programming Tools

A high level C H.264 video encoder was first developed as a referencemodel for the

AsAP implementation using the message passing interface (MPI). Due to the complexity of parallel

programming a MPI wrapper was used and is discussed in the following section. The next section

deals with issues in converting the MPI/C program to assembly for AsAP.

4.1 Message Passing Interface (MPI)

The message passing interface is a specification for an application programming interface

(API) allowing multiple computers to commute with each other while running a single program.

However, programming with the MPI syntax can be confusing and time consuming since many of

the commands required are simply for communication protocols. Two tools have been developed by

Paul and Eric [12] to make this process easier. The first is a MPI wrapper allowing the programmer

to essentially use C, and the second is a mapping tool for a visual connectionof parallel programs.

4.1.1 Parallel C/MPI Wrapper

The MPI wrapper allows the programmer to write in C with a few key words for desig-

nating different nodes such as begin, end, ibuf, and obuf. Once the Ccode is written a script goes

through and add the necessary instruction for making the code compatible for an MPI simulator.

42 CHAPTER 4. PARALLEL PROGRAMMING TOOLS

4.1.2 AsAP Arbitrary Mapping Tool

The arbitrary mapping tool allows the programmer to visually see the connections for each

parallel program block and connect them making the communication between blocks easier. The

tool also follows the AsAP model and can propose a mapping algorithm for mapping the programs

onto an AsAP chip. Here since the programs are written in C and not assembly, the primary use of

the tool was for a visual mapping of the C blocks.

Figure 4.1 shows the encoder modules in C and Fig. 4.2 shows the low level processors

that model those same processors in AsAP assembly. An example mapping of these processors to

the AsAP chip is shown in Fig. 4.3, in this implementation however a hand mapping is used for

simplicity. Because the encoder is programmed in parts, using the mapping tool, every time a new

processors is added, would require the programmer to go back and and change all the processor

coordinates by hand. A comparison of the hand mapped encoder to the proposed mapping from the

tool is given in the analysis section.

4.1.
M

E
S

S
A

G
E

P
A

S
S

IN
G

IN
T

E
R

FA
C

E
(M

P
I)

43

Figure 4.1: Communication links for reference C model in AsAP arbitrary mapping tool

44
C

H
A

P
T

E
R

4.
P

A
R

A
LLE

L
P

R
O

G
R

A
M

M
IN

G
T

O
O

LS

Figure 4.2: Communication links for AsAP processors in AsAP arbitrary mapping tool

4.2. PARALLEL PROGRAMMING 45

4.2 Parallel Programming

Because programming on AsAP is considerably different than C or traditional assembly

this section talks about the methodologies used in programming, what had to be changed and altered,

what was harder, what was improved, and what are some of the common problems/pitfalls that were

encountered in programming this video encoder.

4.2.1 Methodology

Two main differences in programming AsAP vs. other chips or using MPI is thesize of

the instruction/data memory available and the input limits per processor.

Limited Data Memory - Processors

Video encoding is a highly memory intensive process, from the sheer size of throughput

needed for standard quality video to the memory reference needed for prediction, the 128 data

memory posed as a great challenge. Because there is only 128 16-bit words of memory, even

if the macro block data is packed, it would not fit onto a single processor and would have to be

split into at least two, with the luma data packed (two pixels per word) into one processor and the

chroma data into another processor. Even so that leaves no memory left in the luma processors for

variables using in calculations, hence the memory processors would have tobe separate from the

computational processors. Data is accessed by using the dynamic configuration memory (DCMem)

to determine where in the processor the data resides and passes it along. When more data space is

needed (but significantly less than that provided by the big memories) multiple processors can be

connected in a loop to form a FIFO like buffer.

Limited Instruction Memory

The small instruction memory available for each processor is fairly adequatefor simple

tasks, however to perform more computationally intensive task, the programs had to be split up into

smaller blocks. This creates more parallelism if the program can be broken up in such a manner

that both blocks can be executed at the same time. The challenge is to find goodbreaking points in

the program where branching off to another processor would requirelittle overhead because certain

46 CHAPTER 4. PARALLEL PROGRAMMING TOOLS

Figure 4.3: Proposed mapping of processors from AsAP arbitrary mapping tool.

4.2. PARALLEL PROGRAMMING 47

control information and data would be needed by both/multiple processors. Generally it is safe to go

to a different processor once you have exited all conditional loops including if statements because

there would generally be less data overlap and only a few control values need to be passed along

with what was recently computed.

Limited Inputs

Perhaps the biggest difference in programming in AsAP is the limited number of inputs

to both the chip and each individual processors. The AsAP2 chip has only one external input and

output for off chip communication thus not suitable to control flow operationswhere the input

depends on the output. Because of the limited memory on board the current and reference frames

cannot be stored on chip and must be stored off chip in the FPGA, when a processor needed a

macroblock, it would send a request signal. Since there is only one output,the request signal and

encoded video output must both share this, requiring that control bits be sent to the FPGA for

determining where each output should be routed.

Having only two inputs per processor core posed an even greater challenge. Because of

the limited instruction memory, many of the modules had to be broken up to smaller parts, and at

some later point combined again to re-construct the data as shown in Fig. 4.4(a). A similar problem

is where each processor now also requires inputs from multiple sources as shown in Fig. 4.4(b). The

biggest challenge however is when there is data and control dependencies between the processors

as shown in Fig. 4.5, each processor not only needs to communicate with the control and memory

processors, but also pass along data amongst themselves.

In general, three different solutions were used depending which problem type was en-

countered and what conditions/constraints were needed. For problem 1the solution in Fig. 4.6(a)

is simple and sufficient, using additional processors for routing, adding the inputs together two at a

time until all of them could be combines, similar to building a multiple input AND gate fromonly

two input AND gates. The only constraint is that the data flow must be know, which input would

data appear at first and how many data points should be taken from each input to ensure proper

data flow. Solution 2 can also be used to solve either problem 1, 2, and 3. However for solving

problem 3, this method requires all the above processors to stall while waitingfor data to return for

the requesting processor below it. Interrupts cannot be used since there are only two inputs so it

48 CHAPTER 4. PARALLEL PROGRAMMING TOOLS

C o n t r o l
C o m p u t a t i o n1C o m p u t a t i o n2C o m p u t a t i o n3

(a) Multiple Input Problem 1

C o n t r o l M e m o r y
C o m p u t a t i o n1C o m p u t a t i o n2C o m p u t a t i o n3

(b) Multiple Input Problem 2

Figure 4.4: Problems with more than 3 inputs per processor

C o n t r o l M e m o r y
C o m p u t a t i o n1
C o m p u t a t i o n2
C o m p u t a t i o n3

Figure 4.5: Problems with 3 or more inputs per processor and using a feedback path

4.2. PARALLEL PROGRAMMING 49

cannot be determined if the data was requested by the current processor or one below it. Adding in

the extra word for control is possible, but now generates the problem ofextra instructions used for

checking the condition every time a new data is received. Since AsAP does not support traditional

interrupts, branch on empty FIFO conditions are used to avoid stalling. These branch instructions

must be added often throughout the program to avoid stalling other processors, this would however

require additional instruction memory which is not readily available. Solution 2 ismost useful when

a program is split between multiple processors and one must stall while waiting for data to be com-

puted by another processor that requires additional data that cannot be stored locally. An example

is when computing SAD values and the current macroblock data is stored on another processors.

The third solution provides a method for avoiding the latency of solution 2 but requires

3 times the number of processors. In Fig. 4.7 the data path up the computationalprocessor are for

passing control information along as well as conditions or complete signals. Routers 1-3 are used

for sending request for data, router 1 is the problem, requiring 3 additional routers. Since router 1

already has two inputs from the requesting processor it cannot also receive data from the memory

processor, thus requiring routers 4-6 to send back the requested data. Routers 4-6 can also be used to

passing information from computational processors 1, 2, and 3 becausedirect links are not available

as in solution 2. Since it is not known when a processor might request data, tags are also assigned

to requested data to determine which processor was the original requester.

4.2.2 Pitfalls

The bulk of debugging time in programming AsAP has been centered around several key

issues that were discussed above, primarily the program splitting and processor intercommunication.

I/O Mis-Match

Because of sheer size of the program, making sure that data is processed in the proper

order has been extremely difficult. The main processing block in video encoding is the 16x16 mac-

roblock, when data is passed between modules they must generally be senttogether, and must all

be present before continuing, however because each macroblock contains 384 words they cannot

be stored on any single processor, to reduce the number of processors used for simply storing data,

50 CHAPTER 4. PARALLEL PROGRAMMING TOOLS

C o n t r o l C o m p u t a t i o n1
C o m p u t a t i o n2C o m p u t a t i o n3

R o u t e r

(a) Multiple input solution 1

C o n t r o l
M e m o r y C o m p u t a t i o n1

C o m p u t a t i o n2
C o m p u t a t i o n3

(b) Multiple input solution 2

Figure 4.6: Solutions for more than 2 inputs per processorC o n t r o l
M e m o r y C o m p u t a t i o n1

C o m p u t a t i o n2
C o m p u t a t i o n3

R o u t e r 1
R o u t e r 2
R o u t e r 3

R o u t e r 4
R o u t e r 5
R o u t e r 6

Figure 4.7: Solution for 3 or more inputs per processor with feedback

4.2. PARALLEL PROGRAMMING 51

when data is to be compared such as in comparing SADs for different modes, the comparing pro-

cessor must wait for all other to complete before continuing, this may cause some processors to stall

in the process. To ensure that data is passed along correctly the simplest methods are often used

rather than the most efficient algorithms.

Program Splitting Overhead

As mentioned above splitting programs to blocks that would fit inside each processor

requires a certain amount of overhead. It is often tempting to try and optimize the code and try to fit

it to exactly 128 words, this however leaves no room for changes or improvements. If anything needs

to be altered, the entire code must be re-written. The simplest solution is often better, breaking up

the program while requiring additional overhead and added complexity to processor communication

allows for the most room for further improvements and additions and program scalability

Error Tracing

Error tracing in AsAP has proved to be rather difficult, because it is not often possible to

tell directly which processor is causing the problem. Errors were generally due to I/O mismatches

rather than computational problems. To solve this the program counter must be looked at for each

processor then matched to the instruction to determine the trace-back path forthe error.

52 CHAPTER 4. PARALLEL PROGRAMMING TOOLS

53

Chapter 5

Implementation

Because of the complexity of video encoding and the H.264 standard, not all aspects of

the standard are implemented in this work. Some key differences from the standard that are not

implemented in both the C model and AsAP version are sub-pixel interpolation in inter prediction,

inter prediction is limited to 1 reference frame, intra prediction is limited to 3 modes only, and

no de-block filtering is implemented. Using a programmable platform however allows for these

additional function to be added at a later time. This chapter goes into more detailof the MPI model

and AsAP implementation.

5.1 Parallel C Implementation

The parallel C implementation was developed following the guidelines from the standard

[2] and the reference software JM version 12.1. In the C programs, code is kept as simple as

possible using only standard functions and basic data elements such as integers and arrays for an

easy transition to assembly. Since there are no memory constraints in C, all current/reference frame

data is stored locally. The .h264 bitstream output of this implementation is compatible with the

reference JM decoder software and can be viewed on third party YUV viewing software.

5.1.1 General Overview

The main difference between the MPI model and the standard encoder shown in Chapter 2

is that there is no de-block filtering. Because this version is used as a reference model for developing

54 CHAPTER 5. IMPLEMENTATION

M a i nC t r l . I n t r aP r e d i c t i o n
I n t e rP r e d i c t i o n M o d eS e l e c t T r a n s f o r m /Q u a n t i z a t o i n

I n v e r s e T /S c a l i n g
C A V L C

R e f e r e n c e F r a m eF o r w a r d P a t hR e c o n s t r u c t i o n P a t h
D a t a _ I n(Y U V) D a t a _ O u t(H . 2 6 4 B i t s t r e a m)

Figure 5.1: H.264 encoder path for parallel C/MPI implementation

the AsAP implementation, it has not been optimized to exploit the parallel capabilitieson the MPI

simulator, rather the code has been keep in an efficient and easy to debug/alter manner.

5.1.2 Intra Prediction

For simplicity, only vertical, horizontal, and DC modes are used for both luma and chroma

blocks, please refer to section 2.2.3 for a more detailed description of theseprediction modes. The

best mode is chosen directly after computing the SAD for each block and prior to integer transform.

Prediction modes are computed as described before in section 2.2.3 and sent directly to the output.

Because there are no memory constraints all data is stored locally in this module and passed along

to neighboring blocks when complete. Latency is not a factor in this version so SADs for each

prediction mode are computed sequentially for easy coding.

5.1.3 Inter Prediction

Motion estimation on AsAP is done via an accelerator, since this is not modeled in C, a

simple full search algorithm is used with the smallest partition being 8x8 with no sub-partitions.

Every position within the search window is calculated and compared with the previous position to

determine the best match for that block. The MV is then saved along with its SAD for comparison

with other partition sizes. Inter prediction is done in two blocks where the firstblock computes the

the SAD and motion vectors for each block partition and the second block, motion compensation

5.1. PARALLEL C IMPLEMENTATION 55

computes the residue for each macroblock. In the motion estimation stage the residue data is not

saved due to the large amount of space needed to store every possible search position when using

the full search algorithm and is recalculated in the motion compensation stage. Prediction modes for

inter prediction are encoded at the output prior to bit-packing using a table for Exp-Golomb coding

since only a four modes are used.

Motion Vector Prediction

Once motion vectors have been computed for the current macroblock, a predicted motion

vector is computed as described in section 2.2.4 to get a difference motion vector to encode and

transmit. Motion vector prediction in this MPI model supports the 4 main block partitions used in

prediction only. Once the difference motion vector is computed, it is encodedusing Exp-Golomb

coding as described in section 2.2.7 with the range of code numbers from 0-126 allowing for mo-

tion vectors in the range of +/- 63, large enough to support any motion vectorfor a 48x48 (3x3

macroblock) search window.

5.1.4 Integer Transform & Quantization & Entropy Coding

The integer transform, quantization, and entropy coding process is implemented as de-

scribed in section 2.2.7. Because they must be the mirror image of what is usedin the decoder

little flexibility is provided in encoding options. The transform and quantization process is a direct

process where each block must wait till the preceding block is complete before continuing and is

not parallelized in this implementation.

5.1.5 Network Abstraction Layer (NAL)

The NAL for the MPI-C implementation has been mainly hard coded since only a baseline

encoder is implemented and many of the extra functions are not used. The SPS and PPS have been

entirely hardcoded with the exception of the picture width and height in the SPSwhich are computed

for every new sequence. The slice header has also been hard codedwith the exception of the slice

type, frame number, and QP value and is resent for every frame/slice. The NAL module also packs

the output data into eight bit format to be stored in the .h264 bitstream file. Data isread bitwise into

56 CHAPTER 5. IMPLEMENTATION

a large buffer, whenever the buffer contains more than 8-bits of data, the first 8-bits to be stored are

sent out one word.

5.1.6 Reference Frame Reconstruction

Because our MPI simulator does not have the ability to read and write to an open file, all

inputs must be previously stored in an data file. The reconstructed macroblocks are stored within a

module and sent to the intra/inter prediction modules when requested.

Inverse Transform & Quantization

The inverse transform and quantization process is done after the forward transform and

quantization, once complete they are re-ordered to match the original macroblock mapping and sent

to the reconstruction model. During the prediction process, the modes and residue values of the

predicted macroblock have been previously sent to the reconstruction module and are added with

the reconstructed residue values giving, a nearly duplicate copy of the original input, and exact

match the output of a decoder.

5.2 AsAP Implementation

Using the AsAP multi-core layout, the encoder can use implemented using a fine grained

sub-macroblock partition to exploit the greatest amount of parallelism. Using the MPI code as a

reference module, the modules are further partitioned to individual processes.

5.2.1 General Overview

For testing purposes and memory storage, the AsAP chip is attached to a Virtex-5 board

kit, which programs the AsAP chip upon power on and serves as main memory.All computation is

performed on AsAP however and the FPGA board is used mainly for I/O. Figure 5.3 shows a high

level diagram of the main blocks in the H.264 encoder, these are similar blocksto the MPI imple-

mentation with the exception of the inter prediction module which consists of a motion estimation

accelerator and a motion compensation module.

5.2. ASAP IMPLEMENTATION 57

D a t a _ I n(Y U V) D a t a _ O u tH . 2 6 4 B i t S t r e a mA s A PM e m F P G A
R e f e r e n c e F r a m e

Figure 5.2: Block diagram of FPGA and AsAP connections

Main

Ctrl.

Intra

Prediction

Inter

Prediction

Mode

Select
Transform/

Quantization

Inverse T/

Scaling

CAVLC

Reference Frame

Data_In

(YUV)

Data_Out

(H.264

Bitstream)

Output

Collector

Calculate

Reference MB

Data

Parser

Current Frame

Motion

Estimation

Accelerator
AsAP

FPGA

Figure 5.3: H.264 video encoder path for AsAP implementation

58 CHAPTER 5. IMPLEMENTATION

Mem Vit

Motion

Est.
Mem Mem

data

request

VddHigh

VddLow

VddAlwaysOn

VddOsc

DVFS

OSC

VddCore

clock

valid

data

request

clock

valid

FFT

Core

Figure 5.4: Partition of H.264 modules on AsAP chip

5.2.2 Memory Organization

Three memory intensive task in the H.264 encoding process are the current/reference

frame management, motion vector management, and non-zero coefficient management. They arise

from the fact that encoding is based not only on the current macroblockbut also previously encoded

ones.

Current/Reference Frame Management

Each frame being encoded must be buffered to ensure that no data is lost,because of the

size of a picture frame, this data is stored off chip in FPGA memory, this also allows for future work

on larger than 1080p resolution pictures without any changes to the AsAP programs. After each

frame is encoded, it must also be saved for motion vector prediction in the next frame. The FPGA

memory is divided into three banks as shown in Fig. 5.7. Bank 0 holds the current frame, bank 1

holds the reconstructed current frame, and bank 2 holds the previouslyreconstructed frame. After

each frame the bank pointers are incremented so that the reconstructed frame that was in bank 1

now becomes the reference frame, data is read into bank 2, and the reconstructed data is in bank 0.

5.2. ASAP IMPLEMENTATION 59

Mem Vit

Motion

Est.
Mem Mem

data

request

VddHigh

VddLow

VddAlwaysOn

VddOsc

DVFS

OSC

VddCore

clock

valid

data

request

clock

valid

FFT

Core

Figure 5.5: Partition of processors type on AsAP

60 CHAPTER 5. IMPLEMENTATION

Data

Collecotr
temp

Cb/Cr

Residue

Cb/Cr

H/V

Cb/Cr

Reorder

Cb/Cr

Temp

Main

Control
Redirect

Intra

Control

Intra

Memory

Cb/Cr

Cb/Cr

DC

1

SPS

PPS

Slice

Header
Router Router

MB

Request

Collector

Ref_Y_0

Intra Y

Memory

1

Intra Y

Memory

2

Router

Cb/Cr

DC

2

Intra

Mode

Pred.

MV

Pred

Ref_Y_2 Ref_Y_1

Intra

Memory

Control

16x16

DC
Router Router

4x4

DC

Pred

16x16

Pred 2

16x16

Pred 1
Router

Ref_Y_3 Ref_Y_4

16x16

Residue

_1

16x16

H/V
Router Router

4x4

DC

Residue

DC

Pred

4x4

Pred 1

4x4

Pred 2

Recon.

MB

Inverse

Tx

Residue

2

Ref_Y_6 Ref_Y_5

16x16

Residue

_2

4x4

Residue
Router Router

4x4

Vertical

Vertical

Pred.

Re-order

Residue

Inverse

Tx

Residue

1

Ref_Y_7 Router Router
Reorder

Residue
Router

4x4

Horiz.

Horiz.

Pred.
Router Router

Inverse

Tx

Ref_Y_8

Test

Generat

or

Residue

1

Residue

2

16x16

Dequant

2x2

Dequant

AC

Rescale

Cur_Y Ref_C_0
ITx

Start

QP

Table

4x4

ITx

Zig Zag

2

CAVLC

Scan 2

Data

Temp

Ref_C_2 Ref_C_1
4x4 AC

1

4x4 AC

2

Zig Zag

1

CAVLC

Scan 1
sign 1's

total

zero

non zero

run

Ref_C_3 Ref_C_4
Data

Request

2x2

HTx

2x2

Quant

Data

Receiver

num_co

eff
Router Router Router

Calc_MB

Req.

Inter

Control

Calc.

SAD
Calc MV

16x16

HTx

16x16

Quant.

Level

Code 1

Level

Code 2

CAVLC

Out

Luma

Pred

nnz 2

ME

Control
Calc MV

CbCr

Pred.

nnz

Luma

Pred.

nnz 1

16K Memory

ME_ACC

16K Memory16K Memory

Pred.

Val.

Residue

Output

Figure 5.6: Links for communication between AsAP processors

5.2. ASAP IMPLEMENTATION 61C u r r e n t F r a m eB a n k 0R e f e r e n c e F r a m e 0B a n k 1R e f e r e n c e F r a m e 1B a n k 2
M B D a t aM B R e q u e s t

Figure 5.7: Current/reference frame managment of AsAP implementation

Macroblock Management

Within the FPGA memory, data is stored according to macroblocks as shown in Fig. 5.8

with luma data first followed by chroma data. When a data request is make all 384 bytes of luma

and chroma data are sent at once. The only logic in the FPGA is a small memory controller for

where data should be stored. This can be implemented by using simple counter to keep track of the

start address for each macroblock.

Motion Vector Management

The H.264 standard supports sub-partitions of blocks for inter prediction, with two motion

vectors per block this becomes a possible maximum of 32 motion vectors when using the smallest

partition size(16 4x4 blocks). For motion vector prediction the preceding row of macroblock mo-

tion vectors must be saved. For 1080p-resolution, this would be a maximum of3840 words. For

simplicity all motion vectors for a macroblock are save even though only motion vectors that are on

the bottom of a macroblock are needed, hence the mode for each macroblock must also be stored

adding an additional 120 word for 1080p support. The block mode and motion vectors are stored in

BigMem with the first 500 address allocated for block mode and the remaining address for motion

vector data. The motion vector data is addressed in increment of 32 words,hence the MV for the

first macroblock is stored starting at address 500 and the MV for macroblock 2 is stored starting at

62 CHAPTER 5. IMPLEMENTATION

. . .
0 1 2 3 4 . . .

...
Y[2 5 6]C b[6 4]C r[6 4]

Figure 5.8: Orginization for macro block storage in memory

address 532 and so on.

Non-Zero Coefficient Management

Similarly to motion vectors, the number of non-zero coefficients must be predicted in

the CAVLC using the above and left previously encoded data. Because the CAVLC process is

performed on 4x4 blocks, at least 4x120 memory addresses must be reserved for a frame of 1080p

resolution requiring the use of BigMem. Because the needed address space is much smaller than the

16 KB available, all the number of non-zero coefficients for each macroblock in a frame and stored

for easy addressing.

5.2.3 Control Logic

One of the greatest challenges of partitioning a program over such a large area is control-

ling the flow of data between processors. Ensuring that data is present when needed, and buffered

when un-used is vital in preventing dead lock. Two main areas for controllogic are macroblock

control and I/O operations for AsAP.

5.2. ASAP IMPLEMENTATION 63

Macroblock Control

Video encoding is done on a macroblock basis, however to ensure that thedecoding path

produces the same data as the encoding path, prediction can only be done with previously encoded

blocks. For intra prediction this requires each macroblock to go through theintra prediction pro-

cess, integer transform, quantization, scaling, inverse transform, and reconstruction before the next

macroblock can be predicted. At each step proper control information must be present to ensure ac-

curacy. The chroma prediction process is much faster than luma prediction and the predicted value

used must be buffered prior to being sent to the reconstruction blocks to prevent a dead lock situation

at the integer transform. Because input FIFOs to each processor are only 64 words deep and chroma

data is 128 words for both Cb and Cr components, the chroma prediction processors will halt and

not send data to the integer transform while waiting the reconstruction processor to complete. How-

ever the reconstruction processor must wait for inverse transformed data before reconstructing the

reference frame thus causing a dead lock situation.

Basic macroblock and frame information is also sent along at each stage to ensure accu-

racy and increase code reuse. Parameters such as frame width, frame height, macro block width

(frame width /16), macro block number, encoding mode (intra/inter), block mode, and macNo %

macWidth (macro block number mod macro blocks width) are used at nearly every stage and trans-

mitted to save limited IMEM having to used to recompute these values. Many processors can start

some initial computation without all of the current data being present, this however requires that the

control information be broadcasted to many processors via long distance interconnects creating an

additional mapping issue.

External Memory Request & NAL

Because AsAP has only one input and one output link for communication with the FPGA,

both macroblock requests and the encoded .h264 bitstream must come from the same output. For

this the protocol in Table 5.1 is used. On the FPGA side a small block must also bepresent to parse

the data depending on the control bits, this however is rather simple and can be done in a few lines

of code. The protocol given will work with frame sizes up to 1080p, beyond this however each

request will need to consist of multiple 16-bit words in order to provide addressing for a greater

64 CHAPTER 5. IMPLEMENTATION

Bit Field Field Name Description

15:14 Control Bits 00: Write to output, payload contains H.264 output

01: Read from memory bank 0

payload contains macroblock number requested

10: Read from memory bank 1

payload contains macroblock number requested

11: Write to memory bank 2, payload contains pixel data

13:0 Payload For control bits 00 and 11: only bits 7:0 are used

For control bits 01 and 10

13:0 are used to request up to macroblock number 1023

Table 5.1: Output format for AsAP H.264 video encoder

I n t r aP r e d i c t i o nD a t a _ I nC o n t r o l _ I nR e q u e s t /C o m p l e t e M B
R e s d uP r e d i c t e dM B

Figure 5.9: High level diagram of intra prediction in AsAP

number of macroblocks.

5.2.4 Intra Prediction

The intra prediction process although generally used only once per sequence constitutes

a rather large amount of computation. Figure 5.9 shows a high level block diagram for the intra

prediction module. Datain and controlin contain information for the current macroblock being

predicted, the requestMB signal is for requesting neighboring macroblock used for prediction.The

residue output goes to a re-ordering processor for the integer transform process and the predicted

macroblock goes to the reconstruction processor to be added to the reconstructed residue data.

5.2. ASAP IMPLEMENTATION 65

I n t r aC o n t r o l
C h r o m aD a t a

L u m aD a t a

C h r o m aD CC h r o m aH o r z . / V e r t
4 x 4D C4 x 4V e r t i c a l4 x 4H o r i z o n t a l1 6 x 1 6D C1 6 x 1 6H o r z . / V e r t .

C h r o m aR e s d u&P r e d i c t e dV a l u e

L u m aR e s d u&P r e d i c t e dV a l u e
Figure 5.10: Block diagram of Intra prediction in AsAP

Parallelized Luma Prediction

Luma prediction can be done for both 16x16 and 4x4 blocks modes at the same time,

furthermore each prediction mode can also be done in parallel. In this implementation a processor

holds the current data to be predicted which is read by all processors doing prediction. Figure 5.10

shows how these blocks can be divided into parallel task. Each processor has a local copy of the

above and left macroblock and accesses the current data through a shared network.

When mapped to individual processors, half the processors are usedfor routing as shown

in Fig. 5.11. As explained in chapter four these routing processors are required to over come the

input limitation of each processor and to limit the number of processors being used for memory

storage. Here two processors are used to store luma data (256 8-bit words), this can be done in

one processor if data is compacted to 16-bit words, however two processors are used to reduce

66 CHAPTER 5. IMPLEMENTATION

addressing complexity.

Parallelized Chroma Prediction

Similar to luma prediction chroma prediction can also be parallelized as shown in Fig. 5.10.

Because there are only 64 Cb and 64 Cr data only one processor is needed for storage while 3 are

used for computation. To reduce the number of routing processors needed, data is automatically

sent to the DC mode computation processors for computing the SAD for each mode and requested

individually on the second pass for computing residue. In the first pass only Cb data is used for

computing the prediction mode. In the second pass both Cb and Cr are used for residue calculation.

Since chroma prediction is much smaller and faster than luma prediction the extra timeused by the

chroma prediction processors to compute the SAD first then residue the second time is acceptable.

5.2.5 Inter Prediction

Inter prediction is a computationally intensive task that is done on the majority of frames/slices.

To provide higher throughput AsAP uses a programmable motion estimation accelerator for this. A

high level diagram of the MEACC interface with neighboring processors is shown in Fig. 5.13.

Search Window Management

The ME ACC is capable of holding a 4x4 macroblock region for the search window.To

speed up the prediction process however only a 3x3 search window is used. The fourth column

can be used to pre-load data for the next prediction cycle, however the addressing scheme for this

becomes rather complex and is not easily done in a single processor. Herea new search window

is loaded from main memory for every macroblock. Although this is time consuming,it allows for

much simpler code. Each macroblock when read into the MEACC is also stored locally on one of

11 processors so that only 3 new macroblocks need to be read in from mainmemory.

Diamond Search Algorithm

A modified diamond search algorithm is use for all block sizes. The modified algorithm

uses only 5 search points as opposed to the nine points generally tested, and is repeated 4 times

5.2. ASAP IMPLEMENTATION 67

M e m o r y1 M e m o r y2 R o u t e r 1
R o u t e r 2

R o u t e r 3
R o u t e r 4

R o u t e r 5 4 x 4 D CP r e d i c t i o n
4 x 4 D CR e s d u

4 x 4V e r t i c a l
4 x 4H o r i z o n t a l

R o u t e r 6
R o u t e r 7
R o u t e r 8

1 6 x 1 6D C
1 6 x 1 6H o r i z o n t a lV e r t i c a l

4 x 4R e s d u
1 6 x 1 6R e s d u 1
1 6 x 1 6R e s d u 2

M e m o r yC o n t r o l

R e � O r d e rR e s d uR o u t e r 9
Figure 5.11: Processor mapping for intra prediction in AsAP

68 CHAPTER 5. IMPLEMENTATION

Cb/Cr

Memory

Cb/Cr

Residue

Horz/Vert

Prediction

DC

Prediction

1

DC

Prediction

2

Luma

Prediction

Luma

Prediction

data/ctrl_in

Figure 5.12: Layout of intra chroma prediction processors on AsAP

Inter

Prediction

Data

Control

Request/

Complete MB

Residue

Predicted MB

Motion Vector

ME_ACC

Figure 5.13: High level diagram of inter prediction in AsAP

5.2. ASAP IMPLEMENTATION 69

m a c Bm a c Cm a c D

m a c Am a c Em a c Fm a c Gm a c H

m a c Im a c Jm a c Km a c L

m a c Mm a c Nm a c Om a c P

B a n k _ 0B a n k _ 1B a n k _ 2B a n k _ 3B a n k _ 4B a n k _ 5B a n k _ 6B a n k _ 7 S e a r c h W i n d o w

P r e K L o a d e d R o w
P r e K L o a d e d C o l u m n

Figure 5.14: Reference frame macroblock allocation in MEACC

70 CHAPTER 5. IMPLEMENTATION

1 1 11111 1 1
222
3
3 3 334 44 4

Figure 5.15: Diamond search pattern for motion estimation

to find the best match. Although this process is not as accurate as a full diamond search the only

drawback would be slightly higher entropy values to be encoded. This is generally not significant

unless there is a great difference in motion between frames, generally the majority of a frame is

constant or near constant.

Residue Calculations

Once the best set of motion vectors are computed, they are sent to a residue calculation

processor. The data used for this prediction is read from the 11 processors that hold a mirror copy

of the ME ACC memory. A block diagram of this can be seen in Fig. 5.16 along with the AsAP

layout is shown in Fig. 5.17.

5.2.6 Integer Transform & Quantization & Entropy Coding

Integer transform and quantization are done in similar fashion to the MPI-C model with

the exception that the integer transform path is replicated once with each pathtaking half of the

blocks to be encoded. Figure 5.18 shows the block diagram for this and Fig. 5.19 shows the proces-

sor layout.

5.2. ASAP IMPLEMENTATION 71

AsAP Processor Memory

Inter

Pred

Control

Calculate

SAD

Calc.

Residue

Predict

MV

ME_ACC

ME_ACC

Ctrl

data_in

ctrl_in

mb_request

residue_out

mvd_out

Figure 5.16: Block diagram of inter prediction module in AsAP

72 CHAPTER 5. IMPLEMENTATION

Figure 5.17: Layout of inter prediction module in AsAP

Tx

Ctrl
ITx

4x4 AC

2x2

Hadamard/

Quant

4x4

Hadamard/

Quant

CAVLC

Ctrl

sign_1's

level

total_zero

zero_run

CAVLC

out
num_coeff

CAVLC_outresidue_in

Figure 5.18: Block diagram of integer transform and CAVLC

5.2. ASAP IMPLEMENTATION 73

data_in
QP table

4x4 ITx

4x4 AC 4x4 AC

chroma
DC_HT

chroma
quant

16x16
DC_HT

16x16
quant

zig_zag
1

data
receiver

chroma
nnz

CAVLC
scan 1

num_
coeff

zig_zag
2

CAVLC
scan 2

luma
nnz 1

sign 1's

router

level
code 1

total_zer
o

router

level
code 2

zero_run

router

CAVLC
out

luma
nnz 2

residue_in

CAVLC_out

Figure 5.19: Layout of integer transform and CAVLC modules on AsAP

5.2.7 Network Abstraction Layer (NAL)

The NAL layer is handled by the processor network in Fig. 5.20. The algorithm for each is

again similar to the MPI-C model with the exception of the final processor whichmust also handle

macroblock request signals.

5.2.8 Reference Frame Reconstruction

Reference frame reconstruction is done similarly to the reference MPI-C model, predicted

data is added to re-scaled transformed data and sent to main memory for storage. Figure 5.21 shows

the high level block diagram where Fig. 5.22 shows the AsAP layout.

74 CHAPTER 5. IMPLEMENTATION

SPS

PPS
SH Router Out

Intra

Mode

Coding

MV

Coding
Router

Ctrl_In

Reconstructed

Data
CAVLC

Data

output

Figure 5.20: Layout of header module on AsAP

AC

Rescaling

Cb/Cr

Dequant

16x16 DC

Dequant

ITx Reconstruct

predicted MB

AC_in

Cb/Cr_in

DC_in

reconstructed

MB

Figure 5.21: Block diagram of reconstruction module

5.2. ASAP IMPLEMENTATION 75

16x16

dequant

Cb/Cb

dequant

AC

rescaling

router router ITx

Reorder memory

memoryreconstruct

predicted MB

reconstructed MB

AC data_in

16x16_in

2x2_in

Figure 5.22: Layout of reconstruction module on AsAP

76 CHAPTER 5. IMPLEMENTATION

77

Chapter 6

Results and Analysis

Initial results for the implemented H.264 encoder are gathered from simulation of the

AsAP chip in SimVision and NCVerilog. Results and data for analysis are gathered using assembler

functions that were able to measure the energy, traffic, and activity of each processor. Section 6.1

presents the metrics used for testing and analysis, section 6.2 gives a comparison of the encoder

with other implementations, and section 6.3 gives an analysis of the encoder onthe AsAP chip.

6.1 Metrics for Testing and Analysis

For an accurate analysis of the encoder on the AsAP chip, the following metrics have been

considered:

• Program Size: The program size (instruction memory) and data memory of each computa-

tional and routing processor has been collected for analysis. Processors which are solely used

for long distance interconnects have been ignored.

• Energy: The energy of each processors is measured. The energy measurements consists of

the average power per cycle of the MAC, ALU, Branch, FIFO read/write, and NOP/stall as

measured in lab. In simulation, as each instruction is processed, the corresponding average

energy is added to the total. The activity of each processor is also recorded, and used for an

estimate of the energy consumption.

• Speed: The speed of each processors is initially set to the maximum frequency to get the

78 CHAPTER 6. RESULTS AND ANALYSIS

highest performance. For minimum energy consumption, the energy of each processor can be

scaled later.

• Communication: Links between every processors will be analyzed for theircommunication

distance and average throughput.

Accuracy

The encoded data is compared to the reference output of the MPI-C output for accuracy.

For smaller frame sizes the .h264 output bitstream can also be decoded usingthe reference software

JM, and compared using Elecard YUV viewer. Because of the encoding algorithm implemented,

the encoder is nearly data independent. In intra prediction regardless ofthe input data, all processors

doing prediction will execute the same set of instructions except for the processor calculating the

chosen prediction will repeat its calculation again. Although a different mode may be chosen every

time, the number of instruction repeated in any of the processors is very similarand will yield

the same approximate power. In inter prediction, the MEACC will undergo the same number of

iterations every time, the only variance will be in the motion vector prediction. In the motion vector

prediction depending on the mode, different conditions are taken but the number of instructions

per condition is approximately equal and will have little effect on the overall accuracy. Simulation

setup time is not a factor for intra prediction, at the start of every macroblock the pipeline will be

empty because prediction cannot start until the previous prediction is complete, essentially starting

over every time. In inter prediction, the only overlap of computation between macroblocks is in the

integer transform and CAVLC phases, both of which are much shorter and less power consuming

than the prediction process thus will not have a significant effect on results. To account for this

though a much longer simulation time is used so that this small factor can be averaged out.

Video Sequences (Size and Length)

Because of the limitation of the simulator, representative macroblocks are chosen and

the results are interpolated for the entire frame. The average time for a macroblock to be encoded

is calculated from the time it is requested to the time the reference frame is completedin intra

prediction and from the time requested to when the MEACC completes the search pattern for inter

6.2. PERFORMANCE COMPARISONS 79

prediction. This is then multiplied by the number of macroblocks per frame to determining the

number of frames per second the encoder is capable of for the given frequency and voltage.

6.2 Performance Comparisons

Performance comparison is broken down into two categories, intra frames and inter frames,

in each situation the simulated results of a few macroblock are used to interpolatethe data for each

frame. Two different comparison are given depending on the frame sizes, general purpose and pro-

grammable processors are compared for smaller frame sizes only since the performance of these

types of platforms do not allow for encoding of larger frame sizes. Since data is only presented for

a few frame sizes, the number of frames per second has been interpolatedfor various other frame

sizes for comparison based on the number of macroblocks that can be encoded per second. The

operation frequency has been kept the same as in the original implementation.Since ASICs are

built specifically for encoding and have been optimized only, know data is presented. The reported

memory size is for internal memory only, depending on the platform, the encoders may also use

additional off-chip memory, please refer for the references for a moredetailed description of each.

Power is also only reported for larger frame sizes since no power/energy data is given in other

implementations for small frame sizes for comparison.

The encoder has also been implemented on the AsAP chip with bit accurate values as

compared to AsAP simulation and MPI simulation. Table 6.1 gives the maximum frequency and

encoded frames per second achieved with each given voltage and the corresponding power values.

Results of the encoder implementation on-chip is consistent with per-processor performance of the

AsAP2 chip as presented in the IEEE Journal of Solid-State Circuits with a few minor exceptions

[7]. The single processor speed when running at .675 V was 66 MHz and 1.2 GHz at 1.3 V. The

performance increase is not linear though, at speeds beyond 1 GHz, the performance increase begins

to level off, possibly due to power grid noise and velocity saturation in the device. The max speed

achieved in the H.264 encoder at 1.3 V was about 800 MHz, approximately a30% reduction in speed

but with linear increases in performance as voltage is increased. Variousfactors may be contributing

to the lower performance, most notably the stress on the power grid from running 115 processors

simultaneously as opposed to a single processor. The encoder performance and behavior though are

80 CHAPTER 6. RESULTS AND ANALYSIS

Voltage Max Frequncy Intra Inter Power Power

(V) (MHz) fps (QCIF) fps (QCIF) Intra (mW) Inter (mW)

0.8 172 19 95 108.8 365.1

0.9 295 33 160 213.6 452.6

1.0 410 49 233 419.0 662.3

1.1 539 66 324 696.3 908.4

1.2 651 82 427 802.7 1059

1.3 798 96 478 947.5 1189

Table 6.1: Performance of H.264 video encoder on AsAP2 chip

expected and consistent with single processor measurements. The maximum frequency achieved

increases linearly with increases in voltage as seen in the single processortest for frequencies below

1 GHz. The power measurements for the encoder are also within 30% of the expected power when

the measured per-processor power is multiplied by the number of active processors in the encoder.

6.2.
P

E
R

F
O

R
M

A
N

C
E

C
O

M
P

A
R

IS
O

N
S

81

Platform Intel Xeon [4] Intel PXA27x [5] ADSP-BF561 [13] ARM [14] ASIC [15] ASIC [6] AsAP AsAP

(4 cores) (2 cores) 1136J-S intra inter

Technology (CMOS) 90nm - - - 180nm 180nm 65nm 65nm

Area (mm2) - 26.78 - - 31.72 27.1 18.87 19.2

Internal (KB) 256 KB (L2) - 328 - 34.7 64000 16 32

Memory 2MB (L3)

QCIF (fps) 18.4 * 49 218 * 15 - - 41 216

Frequency 2.8 GHz 624 MHz 600 MHz 69 MHz - - 1.2 GHz 1.2 GHz

CIF (fps) 4.6 12.25 * 54 * 3.75 * - - 10 54

Frequency 2.8 GHz 624 MHz 600 MHz 69 MHz - - 1.2 GHz 1.2 GHz

4CIF (fps) - - 13.6 * - 30 - 2 13.5

Frequency - - 600 MHz - 81 MHz - 1.2 GHz 1.2 GHz

Power (mW) - - - - 581 - 702 955

720p (fps) - - 6 * - 30 - - 5.94

Frequency - - 600 MHz - 108 MHz - - 1.2 GHz

Power (mW) - - - - 785 - - 955

1080p (fps) - - 2.7 * - - 25 - 2.64

Frequency - - 600 MHz - - 200 MHz - 1.2 GHz

Power (mW) - - - - - 1219 - 955

Table 6.2: Comparison of H.264 Encoders * These value are interpolated from given data based on the number of macroblocks that can be encoded
per second

82 CHAPTER 6. RESULTS AND ANALYSIS

Custom Layout Mapping Tool

Number of Processors 115 147

Number of Memory Proc. 33 33

Number of Routers 21 53

Computational Proc. 61 61

Long Distance Links 48 52

Table 6.3: Comparison of custom layout and proposed mapping from AsAParbitrary mapping tool

6.3 Analysis

6.3.1 Chip Utilization

The current implementation uses 115 processors, 2 shared memories, and the motion

estimation accelerator. The 115 processors do not include those used only for long distance com-

munication. Table 6.3 gives a comparison of overall processor numbers,routers, and long distance

communication links between the current implementation and the proposed mappingusing the ar-

bitrary mapping tool. Memory processors are counted as those that are only used for storing data,

the only computational instructions within them are for address decoding only, this number is the

same for both implementations and listed here for reference only.

6.3.2 Processor Energy

This section breaks down the energy used by the main blocks in the H.264 encoder in the

intra and inter prediction process: prediction, integer transform, reference macroblock reconstruc-

tion, and CAVLC. The power numbers reported is the average energy per cycle for each processors.

Based on this information it can be determined which modules should be focused on for optimiza-

tion. Power estimates are based on the activity and average power per processor when running at

full speed as found in the AsAP2 JSSC paper [7]. The average powerfor each instruction is measure

in lab, in simulation, at every cycle the average power for instruction in the pipeline are added up

and reported. The measurements are taken from the start of simulation afterconfiguration time till

the end simulation.

The majority of power consumed during the encoding process is from the prediction pro-

cess, constituting approximately 60% of the total power.

6.3. ANALYSIS 83

Operation Power (mW)

FIFO Read/Write 4.6

DMEM Read 13.0

DMEM Write 9.1

Nearest Neighbor Comm. 5.9

Long-distance comm. 12.1

Branch 27.2

MAC 53.3

ALU 48.5

NOP/stall 31.0

Table 6.4: Power consumption of various AsAP instructions as measured in lab used for power
calculations in simulation

In intra prediction the majority of power is consumed in the routing processorsdue to the

use of branch on empty FIFO instructions. During periods where no data ispresent, the program

counter continuously jumps between to instructions keeping the oscillator running. In other pro-

cessors, when idle and waiting for data, the oscillator is halted after a certainnumber of cycles and

energy is saved.

In inter prediction the power is consumed in the memory processors and motion estima-

tion unit. Data is directly passed to the MEACC for SAD computation but is also stored locally

in processors for residue calculation. Each processors holds data that is packed to 16-bits. In the

chain of memory processors, the first processors stores the first 256luma data and passes every-

thing else along, the second processors stores the second set of luma data and passes everything else

along. Because of this, the earlier processors experience a heavier workload and thus more power.

Power for memory processors are generally constant across different macroblocks because the same

number of writes and reads must be done every time. The residue calculationprocessors consume

relatively little power as compared to the memory processors because they must only compute the

index for where data is stored and do simple addition, however depending on the data and mode

chosen the activity and power consumption may be different. These processors are also idle most of

the time since the majority of time is spent in loading of the MEACC and the clocks can be halted.

Intra prediction has been parallelized for performance resulting in 9 processors for the

6 prediction modes computed. Since all luma prediction processors share a common set of data,

request are constantly made to the memory processors keeping the routersand memory control

84 CHAPTER 6. RESULTS AND ANALYSIS

C o n t r o l1 3 %
i o n

I n t e g e r6 %
C A V L C1 0 %O t h e r2 9 % C o n t r o l1 3 %

I n t r a P r e d i c t i o n5 8 %I n t e g e r T x6 % C A V L C1 0 %
R e c o n s t r u c t i o n1 2 % B i g M e m1 %

Figure 6.1: Power distribution of major blocks in intra prediction

Figure 6.2: Power distribution for major blocks in inter prediction

6.3. ANALYSIS 85

01 0 02 0 03 0 04 0 05 0 06 0 07 0 08 0 09 0 01 0 0 0
2 4 . 8 4 9 . 5 9 8 . 2 1 9 6 3 9 7 7 9 8P ower(mW)

F r e q u e n c y (M H z)
(a) Average power vs. frequency

02 04 06 08 01 0 01 2 0
2 4 . 8 4 9 . 5 9 8 . 2 1 9 6 3 9 7 7 9 8f ramespersecond

F r e q u e n c y (M H z)
(b) Encoded frames per second vs. frequency

Figure 6.3: Average power and number of encoded frames per secondvs. frequency at 1.3V on
AsAP2 chip

processor router active most of the time. Data is requested twice for the 16x16 and 4x4 modes,

once to determine the SAD for each mode than again to compute the actual SAD. This was done

because the data memory for each processors is only 128 word and cannot store both the current

data, variables needed for prediction, and the predicted data. It is not know which block/mode will

be chosen till all blocks/mode are computed, saving the predicted value for each would consume

too much memory space.

Figure 6.10 shows the average power for processors in the reconstruction module for both

intra and inter prediction, one of the processors is shown as using no power because it is only used

for intra 16x16 prediction (the test case here uses intra 4x4 prediction, hence this block is not used

and only passes data which consumes very little power compared to other processors). In inter

prediction, because the prediction can continue once the SAD for each macroblock is computed, the

reconstruction module is used more often, however because data comes from one source only, few

86 CHAPTER 6. RESULTS AND ANALYSIS

01 0 02 0 03 0 04 0 05 0 06 0 07 0 08 0 09 0 0
2 1 4 1 . 1 8 4 1 6 2 3 2 4 6 5 1P ower(mW)

F r e q u e n c y (M H z)
(a) Average power vs. frequency

01 02 03 04 05 06 07 08 09 0
2 1 4 1 . 1 8 4 1 6 2 3 2 4 6 5 1f ramespersecond

F r e q u e n c y (M H z)
(b) Encoded frames per second vs. frequency

Figure 6.4: Average power and number of encoded frames per secondvs. frequency at 1.2V on
AsAP2 chip

6.3. ANALYSIS 87

01 0 02 0 03 0 04 0 05 0 06 0 07 0 08 0 0
1 6 . 9 3 3 . 3 6 4 1 4 5 2 6 2 5 3 9P ower(mW)

F r e q u e n c y (M H z)
(a) Average power vs. frequency

01 02 03 04 05 06 07 0
1 6 . 9 3 3 . 3 6 4 1 4 5 2 6 2 5 3 9f ramespersecond

F r e q u e n c y (M H z)
(b) Encoded frames per second vs. frequency

Figure 6.5: Average power and number of encoded frames per secondvs. frequency at 1.1V on
AsAP2 chip

88 CHAPTER 6. RESULTS AND ANALYSIS

05 01 0 01 5 02 0 02 5 03 0 03 5 04 0 04 5 0
1 2 . 7 2 5 . 4 5 1 1 0 0 1 9 0 4 1 0P ower(mW)

F r e q u e n c y (M H z)
(a) Average power vs. frequency

01 02 03 04 05 06 0
1 2 . 7 2 5 . 4 5 1 1 0 0 1 9 0 4 1 0f ramespersecond

F r e q u e n c y (M H z)
(b) Encoded frames per second vs. frequency

Figure 6.6: Average power and number of encoded frames per secondvs. frequency at 1.0V on
AsAP2 chip

6.3. ANALYSIS 89

05 01 0 01 5 02 0 02 5 0
8 . 7 1 7 . 2 3 3 . 3 6 6 . 7 1 4 1 2 9 5P ower(mW)

F r e q u e n c y (M H z)
(a) Average power vs. frequency

051 01 52 02 53 03 54 0
8 . 7 1 7 . 2 3 3 . 3 6 6 . 7 1 4 1 2 9 5f ramespersecond

F r e u q u e n c y (M H z)
(b) Encoded frames per second vs. frequency

Figure 6.7: Average power and number of encoded frames per secondvs. frequency at 0.9V on
AsAP2 chip

90 CHAPTER 6. RESULTS AND ANALYSIS

02 04 06 08 01 0 01 2 0
5 1 0 2 0 3 9 . 9 8 3 . 3 1 7 2P ower(mW)

F r e q u e n c y (M H z)
(a) Average power vs. frequency

051 01 52 02 5
5 1 0 2 0 3 9 . 9 8 3 . 3 1 7 2f ramespersecond

F r e q u e n c y (M H z)
(b) Encoded frames per second vs. frequency

Figure 6.8: Average power and number of encoded frames per secondvs. frequency at 0.8V on
AsAP2 chip

6.3. ANALYSIS 91

0 51 01 52 02 53 03 54 04 5
A verageP ower(mW)

(a) Average power of intra prediction processors

0246
81 01 21 4

A verageP owerperP rocessor(mW)

(b) Average power of inter prediction processors

Figure 6.9: Average power of prediction processors

92 CHAPTER 6. RESULTS AND ANALYSIS

routing processors are used which the primary power consumers in the intra prediction process.

The majority of power used for integer transform is in routing for the intra prediction

mode, inputs are constantly scanned for which type of intra prediction mode isused. The actual

transform processors have been optimized by Zhibin [3] therefore consuming very little power. The

amount of time that these processors are active is also very small when compared to the entire

encoding process hence they are idle most of the time.

The CAVLC used in this work has also been previously optimized by Zhibin [3], some

changes were make to the prediction processes for non zero coefficients resulting in the much larger

power consumption. The power for each processor is data dependenthowever, so for another input

sequence the power difference may also be different. These processors can be optimized by either

code scheduling to reduce the number of no-ops used or DVFS.

Energy Overhead of Switching I/P Frames

The energy overhead associated with switching frame types is negligible since the only

difference would be that the SPS and PPS need to be resent which resultsin a average power of 129

uW for that processor. The only control change would be an additional8 lines of code inside the

main control processor which is negligible. This low switching cost is possible because the header

information is hardcoded and do not need to be recomputed.

6.3.3 Processor Utilization

Processor utilization is presented as the percentage of time the processorsis active, stalling

(when oscillator is on or off combined) on input, stalling on output, and stalling on no-ops. The ac-

tivity tracks closely with those of the power plots. The stall on no-ops can beeliminated through

code scheduling to hide latencies. By analyzing the stall on inputs/outputs, DVFS values can be cal-

culated for maximum utilization. The majority of stalls occur on reads where data from a previous

processor is needed, this arises from the fact that during intra prediction each macroblock must be

predicted, computed, transformed, and reconstructed before the nextmacroblock can begin. These

long periods of stalling generally do not consume too much power because the processor oscilla-

tors are halted after a certain period, the exception again are routing processors which continuously

6.3. ANALYSIS 93

051 01 52 02 53 0
A verageP ower(mW)

(a) Average power of reconstruction processors in intra prediction

0 123456
7891 0

A verageP ower(mW)

(b) Average power of reconstruction processors in inter prediction

Figure 6.10: Average power of reconstruction processors

94 CHAPTER 6. RESULTS AND ANALYSIS

0246
81 01 21 4

A verageP ower(mW)

(a) Average power of processors for integer transform in intra prediction

00 . 20 . 40 . 60 . 811 . 21 . 41 . 61 . 82
A verageP ower(mW)

(b) Average power of processors for integer transform in inter prediction

Figure 6.11: Average power of integer transform processors

6.3. ANALYSIS 95

051 01 52 02 53 03 5
A verageP ower(mW)

(a) Average power of CAVLC processors in intra prediction

051 01 52 02 53 03 5
A verageP ower(mW)

(b) Average power of CAVLC processors in inter prediction

Figure 6.12: Average power for CAVLC processors

96 CHAPTER 6. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

Figure 6.13: Average activity of processors used in intra prediction

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

Figure 6.14: Average Activity of processors used in inter prediction

branch between a few no-ops and branch on FIFO instructions. The indexes for the x-axis for these

plots correspond to the same functions as those shown for the power plots.

During the reconstruction phase, although the inverse transform process is also done on

a 4x4 block basis, they must be reordered prior to being transformed. Asshown in Fig. 6.15, the

first few processors hold the DC data and must wait for the forward integer transform process to

complete before starting, showing the stall on input. Once this is complete, the inverse transform

process is fairly simple consisting of mainly adds and shifts resulting in the majorityof time waiting

for more inputs.

Because the integer transform and CAVLC process are quick comparedto the prediction

process, the majority of time is spent idle waiting for more data to encode. For maximum optimiza-

tion these blocks are important, but the focus should be on the prediction blocks first because they

6.3. ANALYSIS 97

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

(a) Average activity of reconstruction processors for intra prediction

1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

60

70

80

90

100

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

(b) Average activity of reconstruction processors for inter prediction

Figure 6.15: Average activity of reconstruction processors

98 CHAPTER 6. RESULTS AND ANALYSIS

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

70

80

90

100

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

(a) Average activity of integer transform processors for intra prediction

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

(b) Average activity of integer transform processors for inter prediction

Figure 6.16: Average activity of integer transorm processors

are bottle necks using the majority of encoding time.

Optimization

Because of the low activity of the processors, the majority of power is wasted on cycling

on empty cycles. For the power optimization the voltage and frequency of each processor can be

scaled for efficiency. Original measurements are taken with the chip running at full power at 1.3V

and 1.2 GHz, using this activity number, the frequency is scaled for each processors for greater

utilization. Reducing the frequency by a factor of 2 increases the activity of that processors by a

factor of 2. To achieve maximum efficiency the frequency can be scaled by any multiple, in this

6.3. ANALYSIS 99

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

(a) Average activity of CAVLC processors for intra prediction

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

(b) Average activity of CAVLC processors for inter prediction

Figure 6.17: Average activity of CAVLC processors

100 CHAPTER 6. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

(a) Average activity of intra prediction processors prior to frequencyscaling

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

(b) Average activity of intra prediction processors post frequency scaling

Figure 6.18: Comparison of average activty before and after frequency scaling for intra prediction

example though only factors of two are used. Each processors is frequency is scaled until the new

activity is greater than 110%.

Using the new activity and frequency for each processors, the voltageis scaled. Because

only two voltage rails are available, operating frequency is used to determinewhich voltage the

processors should used. The comparison frequency is determined from optimum frequency at that

particular voltage. Power is then calculated using the voltage, frequency,and new activity number,

as shown in Fig. 6.20, power is reduce by over 50%.

6.3. ANALYSIS 101

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

P
ro

ce
ss

or
 F

re
qu

en
cy

 (
M

H
z)

Figure 6.19: Frequency of intra prediction processors after frequency scaling

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

50

100

150

200

250

300

350

400

450

A
sA

P
 P

ow
er

 (
m

W
)

Figure 6.20: Average power of intra prediction processors after frequency and voltage scaling

102 CHAPTER 6. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

(a) Average activity of inter prediction processors prior to frequencyscaling

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

P
ro

ce
ss

or
 A

ct
iv

ity
 (

%
)

(b) Average activity of inter prediction processors post frequency scaling

Figure 6.21: Comparison of average activity before and after frequency scaling for inter prediction

6.3. ANALYSIS 103

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

P
ro

ce
ss

or
 F

re
qu

en
cy

 (
M

H
z)

Figure 6.22: Frequency of inter prediction processors after frequency scaling

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

50

100

150

200

250

300

A
sA

P
 P

ow
er

 (
m

W
)

Figure 6.23: Average power of inter prediction processors after frequency and voltage scaling

104 CHAPTER 6. RESULTS AND ANALYSIS

6.3.4 Processor Memory Usage

This section presents the instruction data memory usage of the all the processors. The

majority of the processors average around 45 instructions and the main computation processors av-

eraging around 100 instructions. A greater instruction memory block would reduce the number of

processors required and increase the percentage of time that each computation processor is active,

however much of this space might not be used because nearly half the processors are used for routing

and memory purposes. Increasing the amount of code in each processors may also decrease through-

put due to less parallelization, but would also reduce the overhead of code splitting. Many of the

processors in intra prediction if further divided would not provide any additional speed up through

parallelization because of data dependencies. The dynamically configurable memory (DCMem)

count is only given for memory processors where they are used for computation, DCMem registers

that are used for setting output directions and long distance communication are not used.

The instruction count spread for integer transform and CAVLC are fairly constant because

the majority of processors are used for computation and few routing processors are needed. These

processes are also done on a 4x4 block basis only so the amount of control can also be reduced

because data can be stored locally and passed along at every stage. Inthe CAVLC even less variables

are needed for the actual computation but the majority of the instruction memory is used for storing

look-up tables and checking previous encoding levels.

6.3.5 Communication

This section looks at the communication links used the AsAP processors. Each link is

assigned a number for reference only, this does not correlate with any modules or functions. Link

length is measured by the number of processors between the beginning andend minus 1, so a link

between two neighboring processors would have a length of one. The average number of cycles

between writes is taken from beginning of simulation (after configuration) till the end of simulation

and is used to calculate the average throughput. These throughput values are calculated based on a

simulation running at 1.3V and 1.22 GHz. Max throughput is calculated from the average number

of cycles between writes when stalling time is not included. These max values are much greater

than the average throughput giving the approximate throughput when active. Two tables are given,

6.3. ANALYSIS 105

Processor I m e m D m e m D C M e m Processor I m e m D m e m D C M e m
data collector 46 6 - reorder resdu 2 35 128 7

main control 82 9 - QP table 46 118 -

redirect 38 5 - 4x4 transform 117 32 -

MB request 17 0 - 4x4 AC 1 44 75 -

intra control 95 7 - 4x4 AC 2 62 74 -

intra Cb/Cr mem 60 128 7 2x2 DC transform 85 70 -

intra Y mem 1 42 128 5 2x2 quantization 118 58 -

intra Y mem 2 47 128 5 16x16 DC transform 78 40 -

intra mem control 13 1 - 16x16 quantization 31 51 -

16x16 DC 117 78 - zig zag 2 83 40 -

16x16 resdu 70 128 7 temp hold 6 128 3

16x16 resdu 2 97 128 18 CAVLC scan 2 69 50 -

router 14 3 - data receiver 103 10 -

router 37 5 - luma nnz 2 72 24 -

reorder resdu 49 28 - luma nnz 1 127 48 -

intra resdu 31 128 8 Cb/Cr nnz 110 44 -

intra resdu 2 37 128 7 zig zag 1 79 35 -

test generator 113 89 - CAVLC scan 1 98 50 -

transform generator 37 9 - num coeff 75 119 -

16x16 H/V 127 51 - sign trailing 1's 115 89 -

4x4 DC pred 118 47 - router 21 10 -

4x4 DC resdu 102 49 - level code 1 71 50 -

4x4 vertical 116 55 - level code 2 121 44 -

4x4 horizontal 103 55 - total zero 56 124 -

router 15 3 - router 13 3 -

MB reconstruction 14 3 - non zero run 46 62 -

16x16 pred 1 40 128 5 router 25 5 -

16x16 pred 2 22 128 2 CAVLC out 44 14 -

4x4 pred 1 111 128 4 SPS/PPS 50 25 -

4x4 pred 2 92 128 4 SH 126 10 -

pred. collector 34 5 - intra pred mode 63 45 -

DC pred 24 18 - inter mv mode 90 45 -

vertical pred 22 18 - router 11 5 -

horizontal pred 17 18 - output 81 22 -

4x4 resdu 19 6 - inter control 115 25 -

Cb/Cr resdu 27 128 5 ME_ACC control 106 40 -

router 21 1 - calc SAD 58 15 -

router 26 2 - calc MV 121 24 -

router 14 0 - calc MV mem control 38 20 -

router 17 0 - ref Y 0 45 128 5

router 18 1 - ref Y 1 46 128 5

router 26 1 - ref Y 2 46 128 5

router 18 1 - ref Y 3 46 128 5

router 15 0 - ref Y 4 46 128 5

router 16 3 - ref Y 5 46 128 5

chroma pred 41 128 2 ref Y 6 46 128 5

Cb/Cr H/V 127 59 - ref Y 7 46 128 5

Cb/Cr DC 112 62 - ref Y 8 46 128 5

Cb/Cr DC 2 121 54 - cur Y 46 128 5

16x16 dequant 77 50 - ref C 0 41 128 5

2x2 dequant 58 24 - ref C 1 41 128 5

AC rescale 94 65 - ref C 2 41 128 5

router 23 9 - ref C 3 41 128 5

router 19 2 - ref C 4 35 128 5

inverse transform 79 44 - calc inter MB 72 12 -

reorder 46 28 - inter resdu calc 124 10 -

reorder resdu 1 36 128 8

Figure 6.24: Number of instruction and data memory words used per processors. Dynamic Mem-
ory (DC Mem) is only listed for memory processors where they are used fordata storage and
computation.

106 CHAPTER 6. RESULTS AND ANALYSIS

02 04 06 08 01 0 01 2 01 4 0
N umb erof I nst ructi onsper P rocessor

Figure 6.25: Number of instruction memory words used per processor

02 04 06 08 01 0 01 2 01 4 0
N umb erofI nst ructi onsperP rocessor

(a) Number of instruction memory words for intra prediction

processors

02 04 06 08 01 0 01 2 01 4 0
N umb erofI nst ructi onsperP rocessor

(b) Number of instruction memory words for inter prediction

processors

Figure 6.26: Instruction memory usage for prediction processors

6.3. ANALYSIS 107

02 04 06 08 01 0 01 2 01 4 0
N umb erofI nst ructi onsperP rocessor

(a) Number of instruction memory words used for integer

transform processors

02 04 06 08 01 0 01 2 01 4 0
N umb erofI nst ructi onsperP rocessor

(b) Number of instruction memory words used for CAVLC

processors

02 04 06 08 01 0 01 2 0
N umb erofI nst ructi onsperP rocessor

(c) Number of instruction memory words used for recon-

struction processors

Figure 6.27: Number of instruction memory words used for integer transform, CAVLC, and recon-
struction processors

108 CHAPTER 6. RESULTS AND ANALYSIS

02 04 06 08 01 0 01 2 01 4 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
D mem

I m e m
Figure 6.28: Scatter plot of instruction memory vs. data memory for all processor.

02 04 06 08 01 0 01 2 01 4 0
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0D mem I m e m02 04 06 08 01 0 01 2 01 4 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0D mem I m e m
D C T

02 04 06 08 01 0 01 2 01 4 0
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0D mem I m e m

C A V L C
02 04 06 08 01 0 01 2 01 4 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0D mem I m e m
(a) Scatter plot of instruction and data memory for intra pre-

diction processors.

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0I m e m
I n t r a P r e d

02 04 06 08 01 0 01 2 01 4 0
0 2 0 4 0 6 0 8 0 1 0 0 1D mem I m e m

C A V L C
02 04 06 08 01 0 01 2 01 4 0

0 2 0 4 0 6 0 8 0D mem D C T
02 04 06 08 01 0 01 2 01 4 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0D mem I m e m
(b) Scatter plot of instruction and data memory for inter pre-

diction processors.

Figure 6.29: Scatter plot of instruction and data memory for prediction processors

6.3. ANALYSIS 109

02 04 06 08 01 0 01 2 01 4 0
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0D mem

I m e m02 04 06 08 01 0 01 2 01 4 0
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0D mem

I m e m
(a) Scatter plot of instruction and data memory for integer

prediction processors.

02 04 06 08 01 0 01 2 01 4 0
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0D mem

I m e m02 04 06 08 01 0 01 2 01 4 0
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0D mem I m e m

D C T
02 04 06 08 01 0 01 2 01 4 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0D mem
I m e m

(b) Scatter plot of instruction and data memory for CAVLC

processors.

Figure 6.30: Scatter plot of instruction and data memory for integer predictionand CAVLC
processors

110 CHAPTER 6. RESULTS AND ANALYSISP r o c e s s o r L e n g t h A v e r a g e M a x P r o c e s s o r L e n g t h A v e r a g e M a xT h r o u g h p u t T h r o u g h t p u t T h r o u g h p u t T h r o u g h t p u t
 data collector 1 0.241 7.6 zig zag 2 1 12 505

 main control 1 33.2 809.3 zig zag 1 1 12 510

 main control 1 0.103 1.9 CAVLC data receiver 1 13.1 1200

 MB request 1 0.0685 0.0695 CAVLC data receiver 1 0.37 52.1

 redirect 1 64.3 186700 CAVLC data receiver 2 12.8 1200

 intra control 1 6.6 105.1 Cb/Cr pred nnz 1 0.705 100

 intra control 4 813 813 CAVLC scan 2 1 3.8 180

 intra control 9 2.2 37.9 CAVLC scan 2 2 6.5 314

 intra control 3 0.103 2.2 CAVLC scan 1 1 7.4 316

 intra control 1 2.2 37.9 CAVLC scan 1 3 2.1 88.9

 intra mem Y 1 1 813 154900 CAVLC scan 1 1 3.9 165.2

 intra mem Y 2 1 98.2 98.6 num coeff 1 4.5 430.6

 test generator 9 0.236 47.3 luma pred nnz 2 2 5.1 544

 16x16 DC 1 14.8 109.1 luma pred nnz 1 2 0.994 65

 16x16 DC 1 0.45 4.7 luma pred nnz 1 1 0.994 65

 16x16 H/V 1 2 16.1 SPS/PPS 1 1.2 1200

 Tx start 1 24.5 98600 sign 1's 1 9 449

 Cb/Cr DC 1 8.3 117.6 sign 1's 2 7.4 368

 QP table 1 24.3 1600 sign 1's 1 3.1 151

 QP table 1 0.236 24.9 router 1 7.5 7000

 4x4 AC 1 6 12.4 472.8 level code 1 1 8.5 393

 4x4 AC 1 1 13 510 SH 1 2000 5200

 2x2 DC HT 1 12.1 2200 intra mode pred 1 143.7 2300

 2x2 DC HT 1 0.236 62.9 Inverse Tx reorder 1 8.2 443

 reorder Cb/Cr 9 5.1 1600 AC rescale 3 0.0337 0.207

 4x4 DC pred 1 0.74 11.6 total zero 1 7.4 699

 4x4 DC pred 1 2.4 37.1 total zero 2 3.1 250

 4x4 horizontal 1 4.7 32 router 1 8.1 1200

 4x4 horizontal 1 0.461 3.3 level code 2 1 6.7 484

 4x4 Tx 1 11.8 274.1 router 1 4.6 1300

 4x4 Tx 2 12.3 284 MV pred 1 6200 17100

 4x4 AC 2 6 11.6 485 non zero run 2 7.4 420

 4x4 AC 2 1 11.5 482 router 1 15.7 3900

 2x2 quant 1 23.2 3500 CAVLC out 11 18.3 1700

 2x2 quant 5 0.498 67.4 output 1 13.4 1400

Figure 6.31: Average and max throughput of major intra prediction communication links. Link
lenght is determined by the number of intersected processros minus 1.

one for intra and one for inter prediction.

6.3. ANALYSIS 111

P r o c e s s o r L e n g t h A v e r a g e M a x P r o c e s s o r L e n g t h A v e r a g e M a xT h r o u g h p u t T h r o u g h t p u t T h r o u g h p u t T h r o u g h t p u t
data collector 1 1.1 6.4 2x2 DC HT 1 0.193 35.8

 main control 1 216 8900 4x4 Tx 1 10.7 276.3

 main control 1 0.534 23.1 4x4 Tx 2 10.4 272.6

 MB request 1 1.4 1.4 4x4 AC 2 1 10.3 465

 ref Y 2 1 13.7 62.3 4x4 AC 2 6 10.3 465

 ref Y 3 1 13.7 66.2 2x2 quant 1 20.7 2600

 ref Y 6 1 13.7 81.7 2x2 quant 6 0.455 63.7

 ref Y 7 1 13.7 88.6 zig zag 2 1 10.8 482.3

 ref Y 8 1 13.7 96.7 zig zag 1 1 10.7 486.6

 cur Y 1 13.7 106.6 data receiver 2 11.4 1000

 ref C 2 1 13.7 153.4 data receiver 1 0.386 37.8

 ref C 3 1 13.7 179.6 data receiver 1 11.4 1000

 request MB 9 1.4 2500 Cb/Cr pred nnz 1 0.649 99.6

 redirect 1 215.3 9300 CAVLC scan 2 1 3.3 185.4

 ref Y 0 1 13.7 59.1 CAVLC scan 2 2 4.6 257.5

 ref Y 0 1 18.5 61.4 CAVLC 1 5.4 261.7

 ref Y 1 1 13.7 59.8 CAVLC 3 1.9 93.6

 ref Y 4 1 13.7 70.7 CAVLC scan 1 1 3.5 172.3

 ref Y 5 1 13.7 75.8 num coeff 1 4.1 415.1

 router 1 0.338 15.1 luma pred nnz 2 2 4.3 511.8

 ref C 0 1 13.7 118.6 luma pred nnz 1 2 0.853 63.6

 ref C 1 1 13.7 133.8 luma pred nnz 1 1 0.853 63.6

 ref C 4 1 13.7 211.6 SPS/PPS 1 1.1 719

 inter control 2 0.241 4.3 sign 1's 1 6.8 444.3

 inter control 1 0.265 4.8 sign 1's 2 5.4 352.1

 inter control 1 133 3000 sign 1's 1 2.8 183

 router 1 0.289 10.8 router 1 6.8 4100

 test generator 8 0.434 54.1 level code 1 1 6.3 369.1

 test generator 3 0.048 6 SH 1 2.7 4200

 calc. resdu 9 13.7 389.1 resdu reorder 2 8.5 306

 calc SAD 1 0.193 2.7 AC rescale 3 0.048 0.207

 calc SAD 6 0.241 3.4 total zero 1 5.4 531

 ME control 2 3.6 391.7 total zero 2 2.8 275.4

 ME control 1 0.526 58 router 1 6.4 987.2

 calc MV 17 0.193 1600 level code 2 1 2.1 440.6

 Integer Start 1 20.5 8800 router 1 4.5 1100

 QP table 1 20.6 1400 inter mv pred 1 0.338 399

 QP table 1 0.338 24.9 non zero run 2 4.5 438

 4x4 AC 6 11 455.8 router 1 13.1 2700

 4x4 AC 1 11.8 488.6 CAVLC out 11 13.5 1300

 2x2 DC HT 1 10.7 1800 output 1 15.8 1300

Figure 6.32: Average and max throughput of major inter prediction communication links. Link
length is determined by the number of intersected processors minus 1.

112 CHAPTER 6. RESULTS AND ANALYSIS

113

Chapter 7

Future Work and Conclusion

7.1 Architecture Enhancements for Parallel Programming

This implementation of the H.264 encoder has been highly parallelized for maximum

performance, however many of the techniques used are due to limitation in the processing platform,

some enhancements are suggested for improving the parallel programming process and increasing

performance.

7.1.1 Multiple I/O Chips

The small and simple processor architecture of AsAP allows for the easy replication of

many cores and low power advantages. Larger programs will be bound by memory issues however

and having multiple I/O ports for the chip will give much needed bandwidth and reduce extra control

logic that was added to support dual output functions as well as long distance communication.

Multiple I/O ports would also allow for multiple applications to run simultaneously.

7.1.2 Multiple Input Processors

As shown in the analysis, the majority of power is consumed through routing processors,

this was necessary because only two inputs were available per processor and could not be dynam-

ically configured. Increasing the number of inputs per processor wouldgreatly reduce the number

of processors and power needed.

114 CHAPTER 7. FUTURE WORK AND CONCLUSION

7.1.3 Local Shared Memory

Many of the processors are used as shared memory for other processors, these however

only provide small amounts of extra memory and when many are needed the access time is greatly

increased because the data must trickle through all the routing processors. Having small local shared

memories weather dedicated or processor configured would allow for faster throughput and free up

more processors for other tasks.

7.2 Tool Enhancements for Parallel Programming

The majority of time spent in implementing this encoder was in the debug phase, because

of the number of processors used (131) and the simulation time, this proved tobe the most difficult

task.

7.2.1 Arbitrary Mapping Tool For AsAP2

The mapping for this encoder has been hardcoded, using a tool similar to thearbitrary

mapping tool available for MPI-C and AsAP1 would greatly speed up the process and reduce com-

munication connection problems. This would also allow for greater ease in modifying this applica-

tion at a later point.

7.2.2 Analysis of I/O Traffic

One of the most useful debugging tools was to look at the program counterand stall sig-

nals for the input FIFOs and output in ModelSim. A tool that would allow for quick easy viewing

as well as flagging which processor caused the final stall signal (traceback) to occur would greatly

reduce debugging time. Another feature that would be helpful would be to also have a few instruc-

tions in the processor causing the stall available to quick viewing. Often times theerror would be a

simple typo or branch error but would require a lot debugging time to manually do trace back.

7.3. ADDITIONAL ENCODING FUNCTIONS ON ASAP 115

7.2.3 Enhanced I/O File Operations

The H.264 encoder has a feedback loop for storing the reconstructed data, since this is too

large to fit on AsAP, it must be stored off chip. In simulation however this is not possible because

the input file used for reading cannot also be written to in the same instance. Atool that can provide

this function would improve the accuracy of testing and debugging.

7.3 Additional Encoding Functions on AsAP

The encoder presented has been simplified reducing the capabilities and advantages of the

H.264 standard. Future work in these areas would improve the compressionand quality of encoded

videos.

Intra Prediction

In intra prediction, only 3 modes are currently used, by using all available modes in the

standard the entropy values of the encoded bitstream can be reduced. Each prediction mode has

been implemented on either one or two processors, adding additional modes on separate processors

should be fairly simple, the only problems would be with the shared memory which can be replicated

and mode decision which may need to be done on a separate processor.

Inter Prediction

One the advantages of H.264 over previous standards is the ability to use interpolated

samples. Because of the complexity of the motion estimation process only integer samples were

used in the MEACC. Fully supporting interpolated samples in the future will probably also need to

be done via an accelerator. A possible work around for this would be usea smaller search window

and interpolate the samples outside of the MEACC and send them in as if they were part of the

window used by the accelerator. This process though would like increasethe latency of the encoder

significantly.

116 CHAPTER 7. FUTURE WORK AND CONCLUSION

Encoding With Slices

The H.264 standard also supports encoding using slices. The advantageof this is that

each slice of the picture/frame can be encoded independently (using data for previous matching

slices only). On AsAP these can be done in parallel increasing the throughput, the only limitation

would then be in hardware where each module would need to be replicated.

Support for HD-resolution

The algorithm presented can be optimized to support up to 720p real time or nearly 1080p-

resolution (20fps) when using inter prediction. Initial calculations for this are based off the number

of macroblocks that can be loaded for the MEACC within a second. The current implementation

loads 10 macroblocks every time, this can be reduced to 4 macroblocks by re-using the previously

loaded ones however the control logic becomes more complicated since the reference blocks must

be stored in processors for residue calculation and do not provide foreasy indexing.

7.4 Conclusion

Here an H.264 compliant baseline encoder has been implemented in both MPI and on a

programmable parallel processor. The AsAP implementation is shown to be comparable in perfor-

mance to other DSP while achieving the low power capabilities of ASICs. An analysis of perfor-

mance and chip usage is also given to provide a stepping stone for future programs and architectures

in parallel processing. In applications such as this, the primary source ofpower consumption are

from the ME ACC and the shared memories, optimizing code for the computation processors will

not provide any significant reduction in power will only provide more speed. A more practical ap-

proach towards power might be to not use the MEACC but implement the process using individual

processors, although this is much more complex, there is the possibility of 90% power reduction.

117

Bibliography

[1] Iain E. G. Richardson.H.264 adn MPEG-4 Video Compression Video Coding for Next gener-
ation Multimedia. John Wiley Sons Ltd, 2003.

[2] International Standard Organization and Information Technology-Coding of Audio-Visual Ob-
jects.Part10-Advanced Video Coding. ISO/IEC 14496-10.

[3] Z. Xiao and B. M. Baas. A high-performance parallel CAVLC encoder on a fine-grained
many-core system. InIEEE International Conference of Computer Design (ICCD), October
2008.

[4] Yen-Kuang Chen, Eric Q. Li, Xiaosong Zhou, and Steven Ge. Implementation of h.264 en-
coder and decoder on personal computers.Journal of Visual Communication and Image Rep-
resentation, 2006.

[5] Zhenyu Wei, Kai Lam Tang, and King N. Ngan. Implementation of h.264 on mobile devices.
In IEEE Transactions on Consumer Electronics, 2007.

[6] Yu-Wen Huang et al. A 1.3 tops h.264/avc single-chip encoder for hdtv applications. InISSCC
Conference on Multimedia Processing, 2005.

[7] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, T. Jacobson, G. Landge, M. Meeuwsen, C. Watnik,
P. Mejia, A. Tran, J. Webb, E. Work, Z. Xiao, and B. Baas. A 167-processor 65 nm com-
putational platform with per-processor dynamic supply voltage and dynamicclock frequency
scaling. InSymposium on VLSI Circuits, pages 22–23, June 2008.

[8] R. W. Apperson, Z. Yu, M. J. Meeuwsen, T. Mohsenin, and B. M.Baas. A scalable dual-clock
FIFO for data transfers between arbitrary and haltable clock domains.IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 15(10):1125–1134, October 2007.

[9] W. H. Cheng and B. M. Baas. Dynamic voltage and frequency scaling circuits with two
supply voltages. InIEEE International Symposium on Circuits and Systems (ISCAS), pages
1236–1239, May 2008.

[10] Michael Meeuwsen, Zhiyi Yu, and Bevan M. Baas. A shared memory module for asyn-
chronous arrays of processors. 2007.

[11] Gouri Landge. A configurable motion estimation accelerator for videocompression. Master’s
thesis, University of California Davis, 2009.

[12] Eric W. Work. Algorithms and software tools for mapping arbitrarily connected tasks onto
an asynchronous array of simple processors. Master’s thesis, University of California, Davis,
CA, USA, September 2007.http://www.ece.ucdavis.edu/vcl/pubs/theses/
2007-4.

118 BIBLIOGRAPHY

[13] Kun Ouyang, Qing Ouyang, and Zhengda Zhou. Optimization and implementation of h.264
encoder on symmetric multi-processor platform. In2009 WRI World Congress on Computer
Science and Information Engineering, pages 265–269, 2009.

[14] G Nageswara Rao, D Jaya Chandra Prasad RSV, and Srividya Narayanan. Real-time software
implementation of h.264 baseline profile video encoder for mobile and handhelddevices. In
IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, 2006.

[15] Tung-Chien Chen et al. Analysis and architecture design of an hdtv720p 30 frames/s h.264/avc
encoder.IEEE Transactions on Circuits and Systems for Video Technology, 2006.

